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Abstract

The initial-boundary value problem for the Poisson-Nernst-Planck/Navier-Stokes
model was investigated in [Nonlinear Analysis 71 (2009), e2487–e2497], where an
existence theory was demonstrated, based upon Rothe’s method of horizontal lines.
In this article, the steady case is considered, and the existence of a weak solution
is established for the boundary-value problem. This solution satisfies a weak maxi-
mum principle for the concentrations relative to the boundary values. As noted in
the above-mentioned citation, the model assumes significance because of its con-
nection to the electrophysiology of the cell, including neuronal cell monitoring and
microfluidic devices in biochip technology. The model has also been used in other
applications, including electro-osmosis. The steady model is especially important in
ion channel modeling, because the channel remains open for milliseconds, and the
transients appear to decay on the scale of tens of nanoseconds.

Key words: Navier-Stokes, Poisson-Nernst-Planck, boundary-value problem for
hybrid systems, existence, invariant region

1 Introduction

We consider the Poisson-Nernst-Planck/Navier-Stokes (PNP/NS) system of
non-linear partial differential equations. The basic system was introduced
by Rubinstein in [1]. Self-consistent charge transport is represented by the
Poisson-Nernst-Planck system, and the fluid motion by a Navier-Stokes sys-
tem with forcing terms. This model is capable of describing electro-chemical
and fluid-mechanical transport throughout the cellular environment. This in-
cludes a range of spatial and temporal scales. For extensive applications, we
refer the reader to [2–11], and, for appropriate numerical analysis, to [12,13].
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A local smooth theory based upon these equations was derived for the Cauchy
problem in [14], and a global theory of weak solutions for the initial-boundary-
value problem in [15] (see also the paper of Schmuck [16]; this article is also
interesting for its derivation, where ions of spherical shape are considered
within the fluid). In this article, we analyze the steady boundary value prob-
lem in Ω ⊂ Rm, and demonstrate the existence of a weak solution (Theorem
6.1), satisfying a weak maximum principle for the concentrations. The steady
model is especially important in ion channel modeling, because the channel
remains open for milliseconds, and the transients appear to decay on the scale
of tens of nanoseconds. This phenomenon is continually repeated with channel
gating.

The model is described in the next section. The general approach to the
Navier-Stokes subsystem is well documented in the mathematical literature,
beginning with the seminal paper of Leray [17]. We adopt the definition of
weak solution as presented in [18], and the use of Galerkin solutions as a tool
of proof [19,20]. These approaches are discussed in detail in [21] and [22] (see
also [23]). For the Fujita-Kato approach, see [24]. In this article, it has been
found necessary to define a decomposition type map, with each of two com-
ponent maps analyzed by the Galerkin method. Solutions are obtained via
the Schauder theorem. Existence, but not uniqueness, is demonstrated. The
hypotheses which we employ, particularly those which require certain inequal-
ities among the viscosity coefficient, the domain diameter, the magnitude(s)
of the boundary data, and some other parameters, are consistent with those
in the mathematical literature cited above for the steady problem.

2 The Fluid/Transport System

2.1 The System Description

We recall the constitutive relations for the ionic current densities. They extend
the usual relations, given in PNP theory, by the inclusion of velocity convection
terms. If ~v is the velocity of the electrolyte, and the ionic concentrations are
denoted by n, p, respectively, the current densities are:

~Jn = eDn∇n− eµnn∇φ− e~vn, (1)

~Jp =−eDp∇p− eµpp∇φ+ e~vp. (2)

Here, Jn, Jp are the anion and cation current densities, with corresponding
(constant) diffusion and mobility coefficients, Dn, Dp, µn, µp, respectively. The
charge modulus is given by e, and φ is the electric potential. The Poisson
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equation, given shortly, describes the coupling. The enhanced PNP system is
then given by, with ε the dielectric constant:

∂n

∂t
− 1

e
∇· ~Jn = 0, (3)

∂p

∂t
+

1

e
∇· ~Jp = 0, (4)

~E=−∇φ, (5)

∇· (ε∇φ) = e(n− p) (Poisson equation). (6)

The Einstein relations are employed: Dn = (kT0/e)µn, Dp = (kT0/e)µp. Here,
T0 is the ambient temperature; k denotes Boltzmann’s constant.

The velocity of the electrolyte is determined by the Navier-Stokes equations:

ρ(~vt + ~v·∇~v)− η∆~v = −∇Pf − e(p− n)∇φ, (7)

∇·~v = 0, (8)

where ρ is the constant (mass) density of the electrolyte, Pf denotes fluid
pressure, and η is the constant dynamic viscosity. We shall make use of the
kinematic viscosity, ν∗ = η/ρ, in the statement of the mathematical model.
The above system is found essentially in [1]. As mentioned previously, we
consider in this article the important case of the steady system. Its weak
formulation is defined in a later subsection.

2.2 Boundary Conditions and Assumptions

We shall refer to the incompressibility condition (8) as a divergence free prop-
erty. Projections onto such functions will be introduced subsequently. This
follows the original idea of Leray, permitting a pressure-free formulation (see
[22,21] for discussion). Scalar or vector functions with components in H1 will
be termed of finite energy. We now discuss the boundary conditions for the
system. We distinguish between ~v, n, p and φ. For φ, the boundary of Ω de-
composes into two components: Σ1, which is a Dirichlet boundary component,
and Σ2, which serves as a zero flux boundary component. Dirichlet bound-
ary values for ~v, n, p are imposed on all of ∂Ω, with the stipulation that a
nonnegative (outward) normal fluid velocity component condition ~v·~ν ≥ 0 is
imposed on ∂Ω. This stipulation is unnecessary if the Navier-Stokes system is
replaced by the Stokes subsystem. More precisely, we assume the existence of
functions ~vB, φB, nB ≥ 0, pB ≥ 0, in appropriately smooth spaces (described
in the following definition), such that the following requirements hold for the
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solution vector in the trace sense:

~v|∂Ω = ~vB|∂Ω, n|∂Ω = nB|∂Ω, p|∂Ω = pB|∂Ω, φ|Σ1 = φB|Σ1 . (9)

Here, we assume that nB|∂Ω, pB|∂Ω, are essentially bounded; also, that the
boundary of Ω is sufficiently regular that the classical trace formulas and
integration by parts formulas are valid. Finally, we assume that the Poisson
solver is H2 regularizing for L2 data. This implies that the mixed boundary
conditions imposed by φB are not completely arbitrary.

2.3 Weak Solution Characterization

Definition 2.1 Let s ≥ m/2 be prescribed. We denote by H the divergence
free functions in the m-fold Cartesian product of H1(Ω), by Hs the intersec-
tion of H with the m-fold Cartesian product of Hs(Ω), and by Hs

0 the zero
trace subspace of Hs. (Hs)∗ is the dual of the latter space. The boundary data
functions are assumed to be in L∞ and, for s∗ = max(2, s):

~vB ∈ Hs, nB ∈ Hs, pB ∈ Hs, φB ∈ Hs∗ ;∇·~vB = 0.

We define the regularity class C = {~u = (~v, φ, n, p)} by the explicit conditions:

~v ∈ H, n and p ∈ H1, φ ∈ H2.

A weak solution of the PNP/Navier-Stokes system is a vector ~u ∈ C such that
(9) holds, such that φ is related to n, p via the weak formulation of (6), and,

for a(~v,~v, ~ψ) :=
∫
Ω ~v·∇~v ~ψ dξ, and functions ~ψ, ωn, ωp, in Hs

0 ×Hs
0 ×Hs

0 , we
have:

∫
Ω
[ν∗∇~v·∇~ψ]dξ + a(~v,~v, ~ψ) + (e/ρ)

∫
Ω
(p− n)∇φ· ~ψ dξ = 0∫

Ω
[Dn∇n·∇ωn −

(
eDn

kT0

)
n∇φ·∇ωn − ~vn·∇ωn]dξ = 0∫

Ω
[Dp∇p·∇ωp +

(
eDp

kT0

)
p∇φ·∇ωp − ~vp·∇ωp]dξ = 0. 2

If the second term of the first equation is suppressed, the system reduces to the
PNP/Stokes system. For convenience, the first term of the first equation uses
a dot product notation to express the tensor action of row by row summation
of dot products. This action is often expressed as A : B for matrices A,B.
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3 Framework: The Stationary Problem and the Fixed Point Map

The framework for the analysis is motivated by the results described in the
monograph [23] and refined in [15]. It is based upon finite-dimensional approx-
imations, combined with an appropriate passage to the limit. The method has
its origin in earlier studies of [19,20]. It is described fully in [21] and [22].

3.1 The Framework and Abstract Stationary Problem

LetX, Y be separable, reflexive real Banach spaces, with Y a subspace, densely
and continuously embedded in X. We also suppose that X is compactly em-
bedded in the real reflexive Banach space W . In addition, we consider a map-
ping, A : X 7→ Y ∗, given explicitly by

A(u) = Lu+ a(u, u, · ) + F (u, · ), (10)

where L : X 7→ X∗ is an isomorphism, The structure of L is induced by a
continuous, coercive bilinear form B(· , · ) on X ×X:

〈Lu, v〉 = B(u, v), B(u, u) ≥ c‖u‖2
X .

We outline the general assumptions now. In addition to the stated hypotheses,
we assume:

(1) a is continuous on X ×X × Y and F is continuous on X × Y .
(2) For each u ∈ X, a(u, u, · ), F (u, · ) are continuous linear functionals on Y .
(3) The coerciveness property,

〈A(u), u〉/‖u‖X →∞, as ‖u‖X →∞, u ∈ Y,

holds in the norm on X for elements in Y .
(4) If uk ⇀ u (weakly) in X and uk → u in W , then

a(uk, uk, v) → a(u, u, v), ∀v ∈ Y,

F (uk, v) → F (u, v), ∀v ∈ Y.

The following theorem was proven in [15]. It will be required in this article.

Theorem 3.1 Under the stated hypotheses, there is an element u ∈ X sat-
isfying A(u) = f|Y for a prescribed f ∈ X∗. The estimate, ‖u‖X ≤ ‖f‖X∗

holds.
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3.2 The Fixed Point Mapping: Summary Statement

The idea of the proof of existence for the system defined in Definition 2.1 is to
define a decoupling map T , whose fixed point(s) serve as solutions. Theorem
3.1 is used to analyze each of the subsystems involved in the decoupling. Thus,
set

K = {(ñ, p̃) ∈ L2(Ω)× L2(Ω) : 0 ≤ ñ ≤ α, 0 ≤ p̃ ≤ α}, (11)

where α is defined by:

α = max{sup
∂Ω

nB, sup
∂Ω

pB}.

The fixed point map T : K → K is defined by decoupling. One begins with
(ñ, p̃) ∈ K, and obtains φ from the mixed boundary value problem associated
with the Poisson equation. One uses φ, as well as (ñ, p̃), in the Navier-Stokes
system to obtain a (weak-Leray) solution ~v, which is guaranteed to be unique
by the assumptions. One designates this map by V . The function ~v is used in
the PNP system to solve uniquely for (n, p). In the process, φ is determined
implicitly (see (18) below). This map is designated by U . Next, one verifies
that T := U ◦ V has range in K. Finally, the hypotheses of the Schauder
fixed point theorem are verified. Theorem 6.1 expresses the principal result
of the paper: the existence of a weak solution of the system of Definition 2.1.
All of the hypotheses are assembled there. The theorem contains a refinement,
covering the case when the boundary values of the concentrations are bounded
from below by a positive constant δ. In this case, the definition of K remains
unchanged: however, an ‘a posteriori’ argument established in Corollary 5.1
implies the further property asserted in Theorem 6.1.

3.3 The Boundary Condition Reductions

We make an explanatory comment here regarding the handling of boundary
conditions. In order to maintain congruence with the existence theory, we shall
write:

~v = ~vB + ~σ, n = nB + ν, p = pB + π,

where ~σ, ν, π have zero boundary trace. However, in the actual verification of
the continuity and coerciveness properties to follow, it is sometimes logically
equivalent to consider ~v, n, p, so that we adhere to this notationally simpler
approach whenever possible.
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4 The Mapping V

The mapping has been briefly discussed at the end of the previous section.
Here, we give a precise analysis based upon Theorem 3.1.

4.1 Definition of V and Fundamental Lemma

Given (ñ, p̃) ∈ K, and φ, satisfying the mixed boundary value problem for
the equation, ∇· (ε∇φ) = e(ñ − p̃), define ~v to be a ‘Leray’ solution of the
boundary value problem:

∫
Ω
[ν∗∇~v·∇~ψ]dξ + a(~v,~v, ~ψ) + (e/ρ)

∫
Ω
(p̃− ñ)∇φ· ~ψ dξ = 0,∀~ψ ∈ Hs

0. (12)

Lemma 4.1 There is a solution ~v of the boundary value problem (12) if the
product of diam(Ω) and the boundary value expression, ‖~vB‖L∞, is sufficiently
small with respect to ν∗. This is made precise in (15) below.

We now link this mapping to the framework of Theorem 3.1.

4.1.1 Identification of Function Spaces and Mappings

Specifically, we require the finite energy spaces to be constrained further by
zero boundary trace on ∂Ω: X = H0. Similarly, the space Y is defined by
Y = Hs

0 and W is defined by W =
∏m

1 L
2. It will be convenient to use the

equivalent norm on H0, defined by the standard
∏
H1 seminorm.

• We note that the assumptions of §3.1 hold for these spaces.

We now make the identifications with the mappings of §3.1.

• B(~σ, ~τ) = ν∗(∇~σ,∇~τ)L2 .
• The use of the form a requires the domain of the mapping to include two

components for the fluid system. Theorem 3.1 does not require a to be
trilinear, however. The form a is defined by

a(~σ, ~τ , · ) = ((~vB + ~σ) · ∇(~vB + ~τ), · )L2 = (~v · ∇~w, · )L2 .

For later reference, we define: b(~v, ~w, · ) := a(~σ, ~τ , · ).
• We set F = 0, and

f(~ψ) = (e/ρ)((ñ− p̃)∇φ, ~ψ)L2 − ν∗(∇~vB,∇~ψ)L2 .
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4.2 Hypothesis Verification

We now proceed to verify the hypotheses of Theorem 3.1.

4.2.1 Continuity Properties

The analysis of the bilinear form B is standard. The properties of the func-
tional a are now discussed. The earlier arguments of [21] essentially apply

here, with minor adaptations. Joint continuity in the argument (~σ, ~τ , ~ψ) (i. e. ,

on X × X × Y ) is equivalent to continuity of b in the argument (~v, ~w, ~ψ);
continuity in the latter argument is a consequence of the following inequality:

|a(~σ, ~τ , ~ψ)| = |b(~v, ~w, ~ψ)| ≤ C‖~v‖L2‖~w‖H1‖~ψ‖Hs ,

for s ≥ m/2. This estimate first uses b(~v, ~w, ~ψ) = −b(~v, ~ψ, ~w), followed by the
Hölder and Sobolev inequalities (see [21,23]). For the former inequality, the
reciprocal indices are 1/2, 1/m, (m−2)/(2m), resp. Note that s ≥ m/2 implies
that Hs−1 is continuously embedded into Lm. Continuity is established via the
triangle inequality, after the standard addition and subtraction of like terms.
Here, C is a constant obtained from the Sobolev embedding theorem [25].

4.2.2 Coerciveness

The bilinear form B is coercive by definition. It will be used in the subsequent
analysis to absorb certain terms. We consider the functional a. First, notice
that

a(~σ, ~σ, ~σ) = b(~v,~v,~v − ~vB) = b(~v,~v,~v)− b(~v,~v,~vB).

We estimate these terms separately. The assumption on the normal boundary
component implies that

b(~v,~v,~v) ≥ 0,

since

b(~v,~v,~v) =
1

2

∫
Ω
~v·∇|~v|2 dx =

1

2

∫
Ω
∇· (~v|~v|2) dx,

which is then integrated by parts, after use of the divergence free property of
~v. For the second term, we begin with the estimate:

−b(~v,~v,~vB) ≥ −‖~v‖L2‖∇~v‖L2‖~vB‖L∞ . (13)

By use of the decomposition, ~v = ~σ+~vB, together with the triangle inequality,
the coerciveness analysis of the term in (13) reduces to the analysis of the
(numerator) term,

−‖~σ‖L2‖~σ‖H0‖~vB‖L∞ .
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This expression, in turn, is absorbed into the corresponding part of B if
‖~vB‖L∞ is sufficiently small, via Poincare’s inequality [25, Theorem 12.17],
which is stated as follows:

‖~σ‖L2 ≤ dΩ‖∇~σ‖L2 , dΩ = diam(Ω)/
√

2.

Notice that dΩ has the units of length. Since we have defined the H1
0 norm of

~σ as ‖∇~σ‖L2 , the inequality applies to give:

−‖~σ‖L2‖~σ‖H0‖~vB‖L∞ ≥ −dΩ‖~σ‖2
H0
‖~vB‖L∞ , (14)

and this can be absorbed into B if

ν∗ > dΩ‖~vB‖L∞ . (15)

4.2.3 Sequential Convergence

Assumption (4) of §3.1 is almost immediate. The convergence result for a
has been discussed in [21]. It is straightforward to see that f , as defined, is a
continuous linear functional on H0. This completes the hypothesis verification.
2

4.3 Summary Statement for the Stationary Problem for V

We have established that there is an element in the range of V (ñ, p̃). Unique-
ness is known to hold if ν∗ is sufficiently large [22, Theorem 4.2]. This will
be assumed throughout this paper. Inequality (15) is consistent with the hy-
potheses of [22, Theorem 4.2].

Remark 4.1 For later reference we recall the bound for solutions of (12).
More precisely, this is a bound in H0 for the σ-component of ~v, when expressed
as ~v = ~vB + σ. The bound of Theorem 3.1 translates here to a bound for:
‖f‖ ≤ ‖f1‖+ ‖f2‖, where

‖f1‖ ≤
(
αe

ρ

)
dΩ‖∇φ‖L2 , ‖f2‖ ≤ ν∗‖∇~vB‖L2 .

It is possible to estimate to estimate ‖∇φ‖L2 by using the decomposition, φ =
φB + φ0, where φ0 = (−∆0)

−1[(e/ε)(p̃ − ñ) + ∆φB] is the solution of the
stated Poisson equation with mixed homogeneous boundary values. Note that
|p̃− ñ| ≤ α.
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5 The Mapping U

We give a precise analysis, based on Theorem 3.1.

5.1 Definition of U and Fundamental Lemma

Given a finite energy, divergence free, function ~v, we define

U(~v) = (n, p),

where n, p satisfy the weak system, for ωn, ωp ∈ Hs
0(Ω):

∫
Ω
[Dn∇n·∇ωn −

(
eDn

kT0

)
n∇φ·∇ωn − ~vn·∇ωn]dξ = 0, (16)∫

Ω
[Dp∇p·∇ωp +

(
eDp

kT0

)
p∇φ·∇ωp − ~vp·∇ωp]dξ = 0. (17)

In these equations, φ is defined implicitly:

∇· (ε∇φ) = e(τ(n)− τ(p)), (18)

where τ is the truncation operator:

τ(u) =


u, for 0 ≤ u ≤ α,

0, for u < 0,

α, for u > α.

Note that τ(n(x)) = n+(x)− (n(x)− α)+ follows from the definition of τ .

Lemma 5.1 There is a unique solution pair (n, p) of the boundary value prob-
lem (16,17,18) if the product of α and dΩ is sufficiently small (cf.(27)). The
function pair (n, p) satisfies the invariant region property: (n, p) ∈ K. In par-
ticular, τ(n) = n, τ(p) = p in (18).

We use Theorem 3.1 to establish existence. Uniqueness and the invariant region
property are proved directly.
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5.1.1 Identification of Function Spaces and Mappings

Specifically, we require the finite energy spaces to be constrained further by
zero boundary trace on ∂Ω:

X = H1
0 ×H1

0 .

Similarly, the space Y is defined by

Y = Hs
0 ×Hs

0 ,

and W is defined by W =
∏2

1 L
2. We retain the convention of the previous

section for the norm in X; we use only the gradient semi-norm.

• We note that the assumptions of §3.1 hold for these spaces.

We now make the identifications with the mappings of §3.1. Accordingly, we
write:

~u = (n, p) = (nB + ν, pB + π),

and formulate the definitions in terms of ~ζ = (ν, π). Test functions are denoted
by ωn, ωp.

• We begin with B, which depends upon ~ζ, ωn, ωp:

B(~ζ;ωn, ωp) = Dn(∇ν,∇ωn)L2 +Dp(∇π,∇ωp)L2 .

• We turn to the identification of F . Thus, define, in terms of ~v, φ, n, p:

F (~v;φ, n, p;ωn, ωp) = −µn(n∇φ,∇ωn)L2 − (n~v,∇ωn)L2

+µp(p∇φ,∇ωp)L2 − (p~v,∇ωp)L2 .

Here, we use the relations: µn = eDn

kT0
, µp = eDp

kT0
.

• Finally, the right hand side element f is given by

f(ωn, ωp) = −Dn(∇nB,∇ωn)L2 −Dp(∇pB,∇ωp)L2 .

5.2 Hypothesis Verification

5.2.1 Continuity Properties

The analysis of the bilinear form B is standard. We now consider the functional
F , and estimate the individual terms for continuity.

(1) The terms, −µn(n∇φ,∇ωn)L2 and µp(p∇φ,∇ωp)L2 , make use of the es-
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timate:
|µn(n∇φ,∇ωn)L2| ≤ C‖n‖L2‖φ‖H2‖ωn‖Hs , (19)

and a similar estimate with n replaced by p.
(2) The terms, −(n~v,∇ωn)L2 and −(p~v,∇ωp)L2 , make use of

|(n~v,∇ωn)L2| ≤ C‖n‖H1‖~v‖L2‖ωn‖Hs , (20)

and a similar estimate with n replaced by p.

In (19) and (20), C is obtained from the Sobolev embedding theorem. This is
sufficient to prove that F is continuous on X × Y .

5.2.2 Coerciveness

The bilinear form B is coercive by definition. It will be used in the subsequent
analysis to absorb certain terms.

• We now turn to F .

(1) Each of the terms,

−(n~v,∇ν)L2 , −(p~v,∇π)L2 ,

is handled similarly. For the first, we write n = nB + ν, and consider the
resulting pair of terms:

−(nB~v,∇ν)L2 , −(ν~v,∇ν)L2 .

The first of these two terms is estimated by a constant times the H1
0 norm

of ν; the constant results from the fact that the product, nB~v, is in L2.
Thus, this term, when divided by the H1

0 norm of ν, is estimated by a
constant. We claim that the second term is zero. Since ν ∈ Hs

0 , we write:

ν~v·∇ν =
1

2
∇· (~vν2).

The integral of this expression is zero by the divergence theorem.
(2) Estimation of

−µn(n∇φ,∇ν)L2 , µp(p∇φ,∇π)L2 ,

is handled as follows. We consider the expression for n. The expression
for p follows the same logic. One begins with the decomposition for n and
the term splitting. The fixed term involving nB is treated as follows.

|µn(nB∇φ,∇ν)L2| ≤ µn‖nB‖L∞‖∇φ‖L2‖∇ν‖L2 .

Remark 4.1 permits the estimation of ‖∇φ‖L2 in terms of a fixed constant.
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When divided by the appropriate norm, the product is thus estimated by
a fixed constant. For the second term in the splitting, we write:

−µn(ν∇φ,∇ν)L2 = −(µn/2)(∇φ,∇ν2)L2 .

This is integrated by parts, and the definition of φ as the solution of
the Poisson equation, based on τ(n), τ(p), is utilized. One obtains the
following relation:

−µn(ν∇φ,∇ν)L2 =
eµn

2ε

[∫
Ω
τ(n)ν2 dx−

∫
Ω
τ(p)ν2 dx

]
.

If αdΩ is sufficiently small, this can be absorbed into B by use of the
Poincare inequality. More precisely, this holds if

e2αd2
Ω

2εkT0

< 1, (21)

by use of the Einstein relations. The analysis of the p-equation is parallel.

Altogether, the coerciveness follows.

5.2.3 Sequential Convergence and Remarks

Assumption (4) of §3.1 is verified as follows. The terms involving µn, µp use
the analysis of inequality (19), following the use of the Rellich theorem. The
two terms involving ~v use the Rellich theorem and the fact that ~v·∇ωn and
~v·∇ωp are both square integrable. Again, f is continuous on X as defined.
This completes the hypothesis verification. 2

Remark 5.1 Theorem 3.1 now applies to yield a solution of the system. In
addition, any solution satisfies the norm gradient bound for (ν, π) induced by
the linear functional f . In this case, the bound is written,

‖f‖ ≤ Dn‖∇nB‖L2 +Dp‖∇pB‖L2 .

Remark 5.2 The following sections treat the remaining logical issues required
for a complete definition of U : the invariant region property and uniqueness.
There is an important technical consideration which is briefly discussed now.
In order to prove the results to follow, it will be necessary to select test func-
tions ωn, ωp from a less restrictive function space than Hs

0 . It is possible to
show, via limits of C∞

0 functions, that a function in H1
0 can be selected, pro-

vided each inner product involves a triple pointwise product which is an inte-
grable function. We will typically employ functions in H1

0 ∩ L∞.
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5.3 Invariant Region for Lemma 5.1

We establish upper and lower bounds. We begin with the former.

Lemma 5.2 If (n, p) is a solution of the system: (16, 17, 18), then

n ≤ α, p ≤ α, a.e..

Proof Fix an arbitrary positive real number β. In order to satisfy the restric-
tion discussed in the previous remark, one uses ωn = σ(n) as a test function
in (16), where we define

σ(u) =


u− α, for α ≤ u ≤ α+ β,

0, for u < α,

β, for u > α + β.

In fact, σ(n) = (n − α)+ − (n − α − β)+ represents σ(n) as the difference of
functions in H1

0 . The following identities are essential for the analysis:

∇n·∇σ(n) = ∇σ(n)·∇σ(n),

(n− α)∇σ(n) = (1/2)∇[σ(n)]2,

σ(n)∇· (n~v) = σ(n)~v·∇(n− α)+.

The use of the third identity arises after integration by parts of the final term
in (16). Note that the right hand side of this identity has a zero integral, which
follows from the following divergence expression:

σ(n)~v·∇(n− α)+ =

∇· (~v(1/2)[σ(n)]2), for n ≤ α+ β,

β ∇· (~v(n− α)+), for n > α+ β.

The application of the three identities gives:

Dn

∫
Ω
|∇σ(n)|2 dx = µn

∫
Ω
∇φ·∇(1/2)[σ(n)]2 dx+ αµn

∫
Ω
∇φ·∇σ(n) dx.

(22)
If the first term on the right hand side of (22) is integrated by parts, one
obtains for this term:

µn

∫
Ω
∇φ·∇(1/2)[σ(n)]2 dx =

eµn

ε

∫
Ω
[(τ(p)− α)− (τ(n)− α)](1/2)[σ(n)]2 dx.

14



Since
(τ(n)− α)[σ(n)]2 = 0, (τ(p)− α)[σ(n)]2 ≤ 0,

one concludes that

µn

∫
Ω
∇φ·∇(1/2)[σ(n)]2 dx ≤ 0.

In a similar manner, the second right hand side term is estimated as:

αµn

∫
Ω
∇φ·∇σ(n) dx =

αeµn

ε

∫
Ω
[(τ(p)− α)− (τ(n)− α)]σ(n) dx ≤ 0.

One concludes from these inequalities:

Dn

∫
Ω
[∇σ(n)]2 dx ≤ 0.

This inequality implies that σ(n) = 0. In particular, for each β > 0, the set
{x ∈ [α, α + β] : n(x) > α} has measure zero. This completes the proof
that n ≤ α. A parallel proof works for p. 2 We derive (nonnegativity) lower
bounds in the following lemma. Following the lemma, we present a corollary
which provides a sharper lower bound if the boundary data are bounded away
from zero. The corollary uses the result of the lemma, but requires a slightly
stronger version of (21). We mention here that the sharper bounds do not
require a modification of the set K.

Lemma 5.3 If inequality (21) holds, one has

n ≥ 0, p ≥ 0, a.e.,

for any solution (n, p) satisfying (16, 17, 18).

Proof One uses ωn = n− as a test function in (16). Here, n− is the negative
part of n, defined in the standard manner. According to Remark 5.2, this is an
admissible choice. One obtains, after the use of identities analogous to those
used in the proof of the previous lemma,

Dn

∫
Ω
[∇n−]2 dx = µn

∫
Ω
∇φ·∇(1/2)[n−]2 dx. (23)

Integration by parts yields

µn

∫
Ω
∇φ·∇(1/2)[n−]2 dx =

eµn

ε

∫
Ω
[τ(p)− τ(n)](1/2)[n−]2 dx.

By use of the identity, τ(n)[n−]2 = 0, one has

Dn

∫
Ω
[∇n−]2 dx ≤ eµn

ε

∫
Ω
α(1/2)[n−]2 dx.
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If inequality (21) holds, then the right hand side can be absorbed into the left
hand side, and one concludes that n− = 0. The proof for p is parallel. 2

Corollary 5.1 Suppose that δ is defined by:

δ = min{inf
∂Ω
nB, inf

∂Ω
pB}, (24)

and that δ > 0. Suppose the strengthened inequality,

e2d2
Ω

εkT0

(
α

2
+ δ

)
< 1, (25)

holds. Then
n ≥ δ, p ≥ δ, a.e.,

for any solution (n, p) satisfying (16, 17, 18).

Proof The proof requires both of the equations, for n and p, resp. For
σ(· ) = (· −δ)−, these are written as the following system:

Dn

∫
Ω
|∇σ(n)|2 dx=µn

∫
Ω
∇φ·∇(1/2)[σ(n)]2 dx+ δµn

∫
Ω
∇φ·∇σ(n) dx,

Dp

∫
Ω
|∇σ(p)|2 dx=−µp

∫
Ω
∇φ·∇(1/2)[σ(p)]2 dx− δµp

∫
Ω
∇φ·∇σ(p) dx.

Notice that the choice of test functions leads to the vanishing of the velocity
terms, as in each of the two previous lemmas. The first terms on the r.h.s.
of the system equations are estimated as in the previous lemma, via similar
manipulations:

µn

∫
Ω
∇φ·∇(1/2)[σ(n)]2 dx ≤ eµnα

2ε

∫
Ω
[σ(n)]2 dx,

−µp

∫
Ω
∇φ·∇(1/2)[σ(p)]2 dx ≤ eµpα

2ε

∫
Ω
[σ(p)]2 dx.

Each of these terms is absorbed into the respective l.h.s. by inequality (25).
The second r.h.s. terms of the system equations must be added and estimated.
One obtains, after integration by parts:

δµn

∫
Ω
∇φ·∇σ(n) dx−δµp

∫
Ω
∇φ·∇σ(p) dx = (eδ/ε)

∫
Ω
(n−p)(µnσ(n)−µpσ(p)) dx.

(26)
The integrand of the latter expression is analyzed by decomposing Ω into four
sets (up to sets of measure zero), depending on whether n(x) < δ, n(x) ≥ δ,
p(x) < δ, p(x) ≥ δ. These inequalities present four possibilities. Since we know
that n, p are nonnegative from the previous lemma, a study of the four cases
yields

(n− p)(µnσ(n)− µpσ(p)) ≤ µn[σ(n)]2 + µp[σ(p)]2,
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in each case. Thus, the sum, (26), can be absorbed into the sum of the l.h.s.
of the system equations, via (25). This completes the argument, since one can
proceed as previously. 2

5.4 Uniqueness for Lemma 5.1

Lemma 5.4 If the product αdΩ is sufficiently small, uniqueness holds in the
sense of Lemma 5.1. Specifically, we require:(

e2αdΩ

εkT0

)(
2 max(Dn, Dp)

min(Dn, Dp)

√
‖(−∆0)−1‖ +

dΩ

2

)
< 1. (27)

In this inequality, ‖(−∆0)
−1‖ has the units of length squared.

Proof For a given finite energy, divergence free, function ~v, we suppose that
(ni, pi) are solutions of the system (16,17,18). We will use the notation:

B(ν, π) = Dn(∇ν,∇ν)L2 +Dp(∇π,∇π)L2 .

The roles of ν, π will be assumed in this proof by n1 − n2, p1 − p2, resp. These
are the choices of the test functions ωn, ωp also. These are valid choices as
observed in Remark 5.2. We can now write, for the subtraction of the equations
for n1, n2:

Dn(∇ν,∇ν)L2 = µn(ν∇φ1,∇ν)L2 + µn(n2∇(φ1 − φ2),∇ν)L2 + (~v, ν∇ν)L2 .

Similarly, the subtraction of the equations for p1, p2 yields:

Dp(∇π,∇π)L2 = −µp(π∇φ1,∇π)L2 − µp(n2∇(φ1 − φ2),∇π)L2 + (~v, π∇π)L2 .

The third term on the right hand side of each of these equations is zero since
~v is divergence free and ν, π have zero boundary trace. The second (right hand
side) terms are the most subtle; we temporarily defer their analysis. The first
terms require only their respective equations. We write:

µn(ν∇φ1,∇ν)L2 =
µne

2ε
(τ(p1)− τ(n1), ν

2)L2

for the first equation, with a similar representation for the second. Here, we
have integrated by parts, and applied the Poisson equation. Since |τ(p1) −
τ(n1)| ≤ α, Inequality (27) permits this term to be absorbed into the left
hand side. Now the inequality,

2 max(Dn, Dp)

min(Dn, Dp)

√
‖(−∆0)−1‖

(
e2αdΩ

εkT0

)
< 1, (28)
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guarantees that the sum of the second terms can be absorbed into the left
hand side (cf. (27). To verify this, consider the estimate,

|µn(n2∇(φ1 − φ2),∇ν)L2|+ |µp(p2∇(φ1 − φ2),∇π)L2|

≤ α(µn‖∇ν‖L2 + µp‖∇π‖L2)‖∇(φ1 − φ2)‖L2 .

The term, ‖∇(φ1 − φ2)‖L2 , is the central term to bound. If the square of this
term is integrated by parts, and the Poisson equation is utilized, one obtains:

‖∇(φ1 − φ2)‖2
L2 = (e/ε)2((−∆0)

−1(π − ν), π − ν))L2 .

Upon further estimation, including the triangle inequality applied to the term,
‖π − ν‖L2 , one sees that the sum

|µn(n2∇(φ1 − φ2),∇ν)L2|+ |µp(p2∇(φ1 − φ2),∇π)L2|

is bounded by the quadratic form,

c[Aξ2 + (A+B)ξη +Bη2],

where c = (eαdΩ/ε)
√
‖(−∆0)−1‖, and where we have made the identifications:

ξ = ‖∇ν‖L2 , η = ‖∇π‖L2 , A = µn, B = µp.

This quadratic form can be absorbed into B(ν, π) if (28) holds; this form,
together with each first right hand side term, can be absorbed if the more
comprehensive inequality (27) holds. In particular, both ν and π are zero.
Uniqueness follows. 2

5.5 Summary Statement

Lemma 5.1 validates the definition of the mapping U . By joining the results for
V and U we have a well-defined mapping T = U ◦V from K to K. Furthermore,
by the construction of the composite mappings, it is immediate that a fixed
point of T is a solution in the sense of Definition 2.1, and conversely. However,
this discussion does not imply the uniqueness of fixed points of T .

6 Existence via the Schauder Theorem

We verify the hypotheses of Schauder’s fixed point theorem for T .
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6.1 Continuity

In the previous sections, we have demonstrated that the mapping,

T : K 7→ K,

is well defined. We prove, consecutively, that V and U are sequentially L2-
continuous. The continuity of T is implied by Lemmas 6.1 and 6.2.

Lemma 6.1 V is sequentially continuous in the L2 topology on K.

Proof To prove that V is sequentially continuous, suppose that

(ñj, p̃j) → (ñ, p̃) in L2,

and V (ñj, p̃j) = ~vj. By pointwise subsequential convergence, one sees that
(ñ, p̃) ∈ K. By Remark 4.1, one has an (energy) H bound on ~vj, and, by weak
compactness, there is a weakly convergent subsequence, which is relabeled.
Thus,

~vj ⇀ ~v, in H,
~vj → ~v, in L2.

Rellich’s theorem has been used for the L2 convergence. We show that ~v =
V (ñ, p̃). This means that it suffices to show, by uniqueness, that∫

Ω
[ν∗∇~v·∇~ψ]dξ + a(~v,~v, ~ψ) + (e/ρ)

∫
Ω
(p̃− ñ)∇φ· ~ψ dξ = 0, (29)

for all ~ψ ∈ Hs
0. One may here assume the relations, for j ≥ 1:∫

Ω
[ν∗∇~vj·∇~ψ]dξ + a(~vj, ~vj, ~ψ) + (e/ρ)

∫
Ω
(p̃j − ñj)∇φj· ~ψ dξ = 0,

for all ~ψ ∈ Hs
0. To conclude the proof, we verify that (29) follows by taking the

limit of these relations. The limits of the first two terms use the same analysis
employed in the continuity subsection for V . The final limit is standard; it
follows from [26, Lemma 3.4], for example. This concludes the proof. 2

The analysis of the companion result for U is presented now.

Lemma 6.2 U is sequentially continuous, in the L2 topology, on the range of
V , and may be extended to the limit points of this set.

Proof The proof follows the general template of the previous proof for V .
Suppose that

~vj → ~v,
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and U(~vj) = (nj, pj). By Remark 5.1, one has an (energy) H bound on (nj, pj),
and, by weak compactness, there is a weakly convergent subsequence, which
is relabeled. Thus, for the first components,

nj ⇀ n, in H1,

nj → n, in L2.

Rellich’s theorem has been used for the L2 convergence. A parallel set of
convergence results holds for the p-components. We show that (n, p) = U(~v).
This means that it suffices to show, by uniqueness, that∫

Ω
[Dn∇n·∇ωn −

(
eDn

kT0

)
n∇φ·∇ωn − ~vn·∇ωn]dξ = 0,

for all ωn ∈ Hs
0 , with the parallel result for p. One may assume that∫

Ω
[Dn∇nj·∇ωn −

(
eDn

kT0

)
nj∇φj·∇ωn − ~vjnj·∇ωn]dξ = 0,

for all ωn ∈ Hs
0 , with the parallel result for p. As in the previous proof, term-

by-term limits are straightforward. Once again, a reference is [26, Lemma 3.4].
This concludes the proof. 2

6.2 Relative Compactness and the Schauder Theorem

The bounds for the range of the individual mappings, expressed in terms of
bounded energy, are expressed in Remark 4.1 and Remark 5.1. The latter
remark provides the relative compactness of T via Rellich’s theorem. Since K
is closed and convex in the L2 product space, this completes the verification
of the hypotheses of Schauder’s theorem for the mapping T [27]. A fixed point
is a solution, satisfying the invariant region bounds.

6.3 The Principal Theorem

We first list the hypotheses separately. They are enumerated as H1–H4.

H1 The assumptions of Section 2 are required.
H2 The hypotheses for uniqueness of stationary Navier-Stokes systems are

required (see [22, Theorem 4.2]). In particular, these hold if ν∗ is sufficiently
large in relation to the boundary values specified for ~v and in relation to
the linear functional f discussed in Remark 4.1.

H3 Inequality (15) holds.
H4 Inequality (27) holds.
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Theorem 6.1 Assume that the set of hypotheses enumerated as H1–H4 hold.
There exists a weak solution of the system of Definition 2.1. The components
n, p satisfy the invariant region bounds: 0 ≤ n ≤ α, 0 ≤ p ≤ α. If the initial
data are bounded away from zero in the sense of (24), then the conclusion may
be strengthened to δ ≤ n ≤ α, δ ≤ p ≤ α, provided (27) is strengthened to:(

e2αdΩ

εkT0

)(
2 max(Dn, Dp)

min(Dn, Dp)

√
‖(−∆0)−1‖ + dΩ

(
1

2
+
δ

α

))
< 1. (30)

6.4 Summation

In his monograph [28], C. Koch highlights ion diffusion in Chapter 11, as part
of the global picture of transmission, signaling, and bio-computation. It seems
clear that ion channel currents are now seen as a fundamental topic of study
within this context. The coupling of the PNP model to the Navier-Stokes
model incorporates two elements: (i) effect of fluid fluctuations on current
densities; (ii) microscopic size of carriers, extending beyond point size charge
visualization. Moreover, the steady problem assumes importance because of
scale: the duration of the open channel is several orders of magnitude greater
than the transient scale. These were the motivating factors in our analysis
of this model. Independently, in the articles cited in the bibliography, our
computations suggest the impact of the coupled model; these computations
appear to support the further study of the PNP/Navier-Stokes model.

The reader has no doubt noticed that we have idealized the mobilities in this
article: we have assumed that they are (possibly different) constants, and that
the Einstein relations hold with respect to the diffusion coefficients. Eventually,
mobilities with electric field dependence need to be studied. This was done in
[29] for the semiconductor problem, where the model allowed for mobilities
which are Lipschitz continuous, strictly positive, functions of the electric field.
Here, we discuss reducing the assumption of the Einstein relations to one
comparing diffusion to low-field mobility, and allowing mobility to be field-
dependent. A careful study of the proofs of this paper indicates the following.
In those parts of the paper which employ only continuity, it appears that
Lipschitz continuity of the mobility-electric field product suffices. However,
in those estimates in which right hand side terms must have a divergence
decomposition into a negatively signed part and a part which can be absorbed
into the left hand side, a special structure for the mobility is required. This
comes into play when coerciveness and uniqueness are studied, and even in
the invariant region arguments. It appears that further study is required to
identify a natural structure, and to ensure that this is compatible with the
electrochemistry of fluid-assisted charge transport. We intend to study this
topic in a future publication.
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