
CORRECTION AND ADDITION TO CHAPTER 19

1. Summarizing the issue

There is a gap in the proof in [1, Section 10.2.3] and the completion
of this in [2, Chapter 19] does not fully address the issue and is inaccu-
rate. This document summarizes the issue, necessary corrections, and
additions.

In the notation of Section 10.2.3 of [1], we show that Y is a nilmani-
fold H/Γ by lifting the action of the group G on X to an action of the
group H on Y . We then say that this action is “transitive,” writing
“Choose a lift y1 of x1 in Y and consider the map f : H → Y given by
f(h) = h·x1.” Next we define Γ to be the stabilizer {h ∈ H : f(h) = y1}
of y1 and use the map f to identify Y and H/Γ. However, this argument
does not make sense: at this stage in the proof, Y is a probability space
and does not have any topological structure and the action of H on Y
is a measure preserving action that is only defined almost everywhere.
In particular, the map f is not defined, the notion of a transitive action
does not make sense, and we can not define the stabilizer of x1.

In [2, Chapter 19, Section 3] we claimed to have filled in this gap,
but this proof requires correction. In Section 19.3, we first consider
the general case of a measure preserving action of a group G on a
probability space (X,µ) and we define a convolution product φ ∗ f for
φ ∈ Cc(G) and f ∈ L1(X) (see Equation (10) on page 312). However,
the comments below Equation (10) are easily seen to be false, as seen
by considering a trivial action. Moreover, these comments do not even
hold in our setting, meaning when X = G/Γ is a nilmanifold.

This note corrects and completes the arguments of both [1] and [2].
The incorrect comments on page 312 are replaced by a new result
(Lemma 2), and we use this endow our space X with a topological
structure such that the action of G is continuous and transitive, avoid-
ing any consideration of a general action.

Henceforth, we use the notation of [2], where the roles of X and Y
are reversed with respect to [1].
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2. Modifications of the argument

Using the set up and notation of [2, Chapter 19], we have that Y =
H/Λ is a nilmanifold with Haar measure ν. We start with a preliminary
lemma.

Lemma 1. For every compact M subset of H, there exists a constant
C > 0 such that for any f ∈ L1(ν) with f ≥ 0,

(1) sup
y∈Y

∫
M

f(h · y) dmH(h) ≤ C‖f‖L1(ν).

Proof. Let π : H → Y = H/Λ be the quotient map, set eY = π(eH),
and let D be a compact fundamental domain of the projection π. This
means that H =

⋃
λ∈ΛDλ and the sets comprising this union pairwise

have mH-negligible intersections. We normalize the Haar measure mH

of H such that mH(D) = 1.
We first consider the case that y = eY . We claim that for every

compact M ⊂ H, there exists a constant c > 0 such that for any
f ∈ L1(ν) with f ≥ 0, we have that∫

M

f(h · eY ) dmH(h) ≤ c‖f‖L1(ν).

To check this, note that since D−1M is compact and Λ is discrete, the
set F := D−1M ∩ Λ is finite. Since M ⊂

⋃
λ∈F Dλ, it follows that∫

M

f(h · eY ) dmH(h) ≤
∑
λ∈F

∫
Dλ

f(h · eY ) dmH(h)

= |F |
∫
D

f(h · eY ) dmH(h) = |F | ‖f‖L1(ν)

and the claim is proven.
For the general case, let M be a compact subset of H and let C be

the constant associated by to the compact set MD for the case that
y = eY . Let y ∈ Y and choose g ∈ D such that π(q) = y. In particular,
q · eY = y. Then we have that∫

M

f(h · y) dmH(y) =

∫
M

f(hq · eY ) dmH(h)

=

∫
Mq

f(h · eG) dmH(y) ≤
∫
MD

f(h · eG) dmH(y) ≤ C‖f‖L1(ν),

and so (1) holds with the constant C. �

We next establish a result similar to Lemma 1, but with the group
H replaced by G and the nilmanifold (Y, ν) replaced by (X,µ).



CORRECTION AND ADDITION TO CHAPTER 19 3

Recall that if φ is a bounded function with compact support on G
and f ∈ L1(µ), the convolution function φ ∗ f on X is defined by

(Equation (10) in [2]) φ ∗ f(x) =

∫
G

φ(g) f(Sgx) dµ(g).

We use Cc(G) to denote the algebra of continuous functions on G with
compact support.

Lemma 2. For every φ ∈ Cc(G), there exists a constant C > 0 such
for any f ∈ L1(µ) with f ≥ 0, we have

‖φ ∗ f‖L∞(µ) ≤ C‖f‖L1(µ).

Proof. We recall some notation and results from [2, Chapter 19]. Let
p : G→ H be the quotient map, let L = ker(p), and recall that K is a
finite dimensional torus. By [2, Proposition 5], we have that K is an
open subgroup of L. We normalize the Haar measure mL of L such
that mL(K) = 1. Choosing a countable family (zi)i∈I in L such that
the sets ziK form a partition of L, then for ψ ∈ L1(mL) we have that∫

L

ψ dmL =
∑
i∈I

∫
K

ψ(ziu) dmK(u).

The group G is endowed with a right invariant distance dG, and so
there exists ε > 0 such that for all distinct i, j ∈ I,

dG(ziK, zjK) > 4ε.

Let σ : H → G be a Borel cross section of the quotient map p : G→
H. We normalize the Haar measure mG of G such that for all ψ ∈
Cc(G), ∫

G

ψ dmG =

∫
H

(∫
L

ψ(zσ(h)) dmL(z)
)
dmH(h)

and thus we have∫
G

ψ dmG =

∫
H

(∑
i∈I

∫
K

ψ(ziuσ(h)) dmK(u)
)
dmH(h).

As in [2, Section 2.2], we make use of the identification X = Y ×K,
and for g ∈ G and x = (y, u) ∈ X, we write

Sg(y, u) =
(
Tp(g)y, u+ ρg(y)),

where (ρg)g∈G is a cocycle on Y taking values in K and such that for
all g ∈ G and u ∈ K we have

ρgu(y) = u+ ρg(y) for ν-almost every y ∈ Y.
Let φ ∈ Cc(G). We can express φ as a finite sum of functions be-

longing to Cc(G), each of which has support with diameter bounded by
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ε. Thus without loss of generality, we can assume that φ is a smooth

function whose support M has diameter bounded by ε. For χ ∈ K̂,
define

φχ(g) =

∫
K

φ(gu)χ(u) dmK(u).

It follows that for any χ ∈ K̂, the function φχ is smooth, supported on
MK, and φχ has vertical frequency χ, meaning that for all g ∈ G and
u ∈ K,

φχ(gu) = φφ(g)χ(u).

Thus, we can write

φ =
∑
χ∈K̂

φχ,

where this series converges in the uniform norm of Cc(G). In particular,
without loss of generality, we can restrict ourselves to the case that φ

has vertical frequency χ for some χ ∈ K̂ and φ is supported on MK
where M is a compact set whose diameter is bounded by ε.

On the other hand, for f ∈ L1(µ), it is easy to check that

φ ∗ f(x) = φ ∗ fχ, where fχ(x) =

∫
K

f(Szx)χ(u) dmk(u).

The function fχ satisfies ‖fχ‖L1(µ) ≤ ‖f‖L1(µ) and has vertical fre-
quency χ, meaning that for any u ∈ K,

fχ(Sux) = χ(u)f(x).

Therefore, without loss of generality, we can restrict ourselves to the
case that f has vertical frequency χ.

Using the identification X = Y ×K, we write the function f on X
as

f(y, u) = F (y)χ(u)

for some function F on Y satisfying

‖F‖L1(ν) = ‖f‖L1(µ)

and where χ is the vertical frequency of f . For g ∈ G, we have

f(Sg(y, u)) = F (Tp(g)y)χ(u)χ(ρg(y)).
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Computing the convolution, we have that

φ ∗ f(y, u) = χ(u)

∫
G

φ(g)F (Tp(g)y)χ(ρg(y)) dmG(g)

= χ(u)

∫
H

F (Thy)
∑
i∈I

(∫
K

φ(ziuσ(h))χ(ρziuσ(h)(y)) dmK(u)
)
dmH(h)

= χ(u)

∫
H

F (Thy)
(∑
i∈I

Ψi(y, h)
)
dmH(h),

where

Ψi(y, h) =

∫
K

φ(ziuσ(h))χ(ρziuσ(h)(y)) dmK(u).

By hypothesis, for distinct i, j ∈ I and u, u′ ∈ K, we have

dG(ziuσ(h), zju
′σ(h)) > 4ε.

Since φ is supported on MK and the diameter of M is bounded by ε, it
follows that for a given h ∈ H, there is at most one value i = i(h) ∈ I
such that ψi(y, h) 6= 0 for some y ∈ Y . Therefore,∣∣∣∑

i∈I

Ψi(y, h)
∣∣∣ ≤ sup

i∈I
|Ψi(y, h)|

Since φ vanishes outside MK, for every i ∈ I we have that Ψi(y, h) =
0 except when ziσ(h) ∈ MK. Since zi ∈ L = ker(p), it follows that
h ∈ p(M). Combining these, we obtain that

sup
i∈I
|Ψi(y, h)| ≤ ‖φ‖∞ 1p(M)(h).

Summarizing, we have that

|φ ∗ f(y, u)| ≤ ‖φ‖∞
∫
p(M)

|F (Thy)| dmH(h)

≤ C‖φ‖∞‖F‖L1(ν) = C‖φ‖∞‖f‖L1(µ),

where C is the constant from Lemma 1 that is associated to the compact
subset p(M) of H. �

Corollary 3. For a compact subset M of G, there exists a constant C
such that∣∣∣∫

M

f(Sgx) dmG(g)
∣∣∣ ≤ C‖f‖L1(µ) for µ-almost every x ∈ X.

Note that this bound can be rewritten as

‖1M ∗ f‖L∞(µ) ≤ C‖f‖L1(µ).

We quote the following lemma from [2], whose proof is correct as
written there.
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Lemma 4 ([2, Chapter 19, Lemma 7]). For 1 ≤ p <∞, the action of G
on Lp(µ) defined by (g, f) 7→ Sgf is strongly continuous. In particular,
for f ∈ Lp(µ), Φj ∗ f → f in Lp(µ) as j →∞.

Let A denote the family of regular functions, meaning that collection
of f ∈ L∞(µ) such that the map g 7→ Sgf is a continuous map from G
to L∞(µ).

Lemma 5 ([2, Chapter 19, Lemma 8]).

(i) If φ ∈ Cc(G) and f ∈ L1(µ), then φ ∗ f ∈ A.
(ii) For 1 ≤ p <∞, the algebra A is dense in Lp(µ).

(iii) If f ∈ A, then Φj ∗ f → f in L∞(µ) as j →∞.
(iv) The algebra A is the closure in L∞(µ) of

{φ ∗ f : φ ∈ Cc(X), f ∈ L1(µ)}.
(v) The algebra A is separable with respect to the norm of L∞(µ).

Proof. Part (i): Let M be the support of φ and let W be a compact
neighborhood of eG in G. Let C be the constant associated to the
compact set MW in Corollary 3.

Let ε > 0. Since φ is uniformly continuous, there exists a neighbor-
hood V of eG in G, contained in W , and such that |φ(hg)−φ(g)| < ε/C
for all g ∈ G.

Fix h ∈ V . Then for every x ∈ X, we have

φ ∗ f(Shx) =

∫
G

φ(gh−1)f(Sgx) dmG(g).

It thus follows that for every x ∈ X, we have∣∣φ ∗ f(Shx)− φ ∗ f(x)| ≤
∫
G

|φ(gh−1)− φ(g)| |f(Sgx)| dmG(g).

Since |φ(gh−1)− φ(g)| ≤ ε/C for every g ∈ G and since φ is supported
on M and h ∈ V ⊂ W , we have that φ(gh−1)− φ(g) = 0 and for all g
not contained in MW . Therefore, |φ(gh−1)− φ(g)| ≤ 1MW (g)ε/C. By
the definition of C, we conclude that for every h ∈ V ,

|φ ∗ f(Shx)− φ ∗ f(x)| < ε for µ-almost every x ∈ X.

Part (ii): This follows by combining Lemma 4 and Part (i).

Part (iii): Let ε > 0. Since f ∈ A, there exists j ∈ N such that
‖Sgf − f‖L∞(µ) < ε for every g in the ball B of radius 1/j centered at
eG. For any g in this ball and x ∈ X, we have

φj ∗ f(x)− f(x) =

∫
G

Φj(g)
(
f(Sgx)− f(x)

)
dmG(g).
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It then follows that

‖Φj ∗ f − f‖L∞(µ) ≤ ‖Φj‖L1(µ)‖Sgf − f‖L∞(µ) ≤ ε.

Part (iv): By Part (i), the set {φ ∗ f : φ ∈ Cc(X), f ∈ L1(µ)} is
contained in A and by Part (iii) its closure with respect to the norm
of L∞(µ) contains A.

Part (v): Since L1(µ) is separable, it follows from Lemma 2 that for
every j ∈ N the set {Φj ∗f : f ∈ L1(µ)} is separable with respect to the
norm of L∞(µ). Thus the union of these sets is separable. By Part (iii),
the closure of this union is equal to A. �

3. An alternate approach

Another possible method to endow X with a topological structure is
by using the dual functions studied in [2, Chapter 8]. We outline this
approach, using the notation of that chapter.

Define

D =
{

Dk+2(fε : ε ∈ Jk + 2K∗) : fε ∈ L2k+2−1(µ) for every ε ∈ Jk + 2K∗
}
.

By [2, Chapter 8, Proposition 21], D ⊂ L∞(µ), and when fε ∈
L2k+2−1(µ) for ε ∈ Jk + 2K∗, the dual function Dk+2(fε : ε ∈ Jk + 2K∗)
satisfies

(2) ‖Dk+2(fε : ε ∈ Jk + 2K∗)‖L∞(µ) ≤
∏

εε∈Jk+2K∗
‖fε‖L2k+2−1(µ)

.

It follows that D is separable with respect to the norm of L∞(µ). Fur-
thermore, by definition of G, for every g ∈ G the measure µJk+2K is

invariant under S
Jk+2K
g and it follows that

SgDk+2(fε : ε ∈ Jk + 2K) = Dk+2(S−1
g fε : ε ∈ Jk + 2K∗).

Therefore, D is invariant under Sg. By using the inequality (2) again
and Lemma 4, we deduce that for h ∈ D, the map g 7→ Sgh from G
to L∞(µ) is continuous. Thus D is contained in A. Furthermore, since
(X,µ, T ) is an ergodic (k + 1)-step nilsystem, the linear span of D is
dense in L1(µ) by [2, Chapter 9, Proposition 17].

Therefore, instead of using the algebra A, we can make use of the
closed subalgebra of L∞(µ) spanned by D. This method eliminates the
need of Lemmas 1 and 2, Corollary 3, and Lemma 5.

We note that we can not, instead, use the closed linear span of D, as
we do not have a method of of showing that this space in an algebra;
while it can be checked that the product of two elements of this space
is a limit in L1(µ) of elements of this space, this is not sufficient.
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