CORRECTION AND ADDITION TO CHAPTER 19

1. SUMMARIZING THE ISSUE

There is a gap in the proof in [II, Section 10.2.3] and the completion
of this in [2] Chapter 19] does not fully address the issue and is inaccu-
rate. This document summarizes the issue, necessary corrections, and
additions.

In the notation of Section 10.2.3 of [I], we show that Y is a nilmani-
fold H/I" by lifting the action of the group G on X to an action of the
group H on Y. We then say that this action is “transitive,” writing
“Choose a lift y; of x1 in Y and consider the map f: H — Y given by
f(h) = h-x1.” Next we define I to be the stabilizer {h € H: f(h) =y}
of y; and use the map f to identify Y and H/I". However, this argument
does not make sense: at this stage in the proof, Y is a probability space
and does not have any topological structure and the action of H on Y
is a measure preserving action that is only defined almost everywhere.
In particular, the map f is not defined, the notion of a transitive action
does not make sense, and we can not define the stabilizer of x;.

In [2, Chapter 19, Section 3] we claimed to have filled in this gap,
but this proof requires correction. In Section 19.3, we first consider
the general case of a measure preserving action of a group G on a
probability space (X, 1) and we define a convolution product ¢ * f for
¢ € C.(G) and f € L'(X) (see Equation (10) on page 312). However,
the comments below Equation (10) are easily seen to be false, as seen
by considering a trivial action. Moreover, these comments do not even
hold in our setting, meaning when X = G/I" is a nilmanifold.

This note corrects and completes the arguments of both [I] and [2].
The incorrect comments on page 312 are replaced by a new result
(Lemma [2]), and we use this endow our space X with a topological
structure such that the action of GG is continuous and transitive, avoid-
ing any consideration of a general action.

Henceforth, we use the notation of [2], where the roles of X and Y

are reversed with respect to [IJ.
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2. MODIFICATIONS OF THE ARGUMENT

Using the set up and notation of [2, Chapter 19], we have that Y =
H/A is a nilmanifold with Haar measure v. We start with a preliminary
lemma.

Lemma 1. For every compact M subset of H, there exists a constant
C > 0 such that for any f € L'(v) with f >0,

(1) sup [ fh-y)dman(h) < €I s
yeY J M

Proof. Let m: H — Y = H/A be the quotient map, set ey = mw(epy),
and let D be a compact fundamental domain of the projection 7. This
means that [ = (J,c, DA and the sets comprising this union pairwise
have my-negligible intersections. We normalize the Haar measure mpy
of H such that mg(D) = 1.

We first consider the case that y = ey. We claim that for every

compact M C H, there exists a constant ¢ > 0 such that for any
f € LY(v) with f > 0, we have that

/M F(h - ev) dm(h) < o] flli).

To check this, note that since D~'M is compact and A is discrete, the
set F:= D'M N A is finite. Since M C J,.p DA, it follows that

/Mf(h-ey)de(h)gZ f(h-ey)dmgy(h)

AeF Y DA
1P /D f(h-ey)dmu(h) = |F| | fllciw)

and the claim is proven.

For the general case, let M be a compact subset of H and let C' be
the constant associated by to the compact set M D for the case that
y =ey. Let y € Y and choose g € D such that 7(q) = y. In particular,
q - ey =y. Then we have that

/M F(h - y) dm(y) = /M f(hq - ex) dm(h)

= f(h-eq)dmu(y) < f(h-eq)dmu(y) < Clfllzw),

Mg MD

and so holds with the constant C. O

We next establish a result similar to Lemma [I} but with the group
H replaced by G and the nilmanifold (Y, v) replaced by (X, p).
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Recall that if ¢ is a bounded function with compact support on G
and f € L'(u), the convolution function ¢ x f on X is defined by

(Equation (10)in ) 0+ /() = [ 6la) F(Syo) duo).

We use C.(G) to denote the algebra of continuous functions on G with
compact support.

Lemma 2. For every ¢ € C.(G), there exists a constant C' > 0 such
for any f € L'(u) with f > 0, we have

16 fllzoeqwy < Cllfllzr()-

Proof. We recall some notation and results from [2, Chapter 19]. Let
p: G — H be the quotient map, let L = ker(p), and recall that K is a
finite dimensional torus. By [2, Proposition 5], we have that K is an
open subgroup of L. We normalize the Haar measure mj; of L such
that mz(K) = 1. Choosing a countable family (z;);c; in L such that
the sets z; K form a partition of L, then for ¢ € L'(my) we have that

/wdmL = Z/ Y(ziu) dmg (u).

L ier VK

The group G is endowed with a right invariant distance dg, and so
there exists € > 0 such that for all distinct 7,7 € I,

dG(ZZ'K, Z]K) > 4e.

Let o: H — G be a Borel cross section of the quotient map p: G —
H. We normalize the Haar measure mg of GG such that for all ¢ €

C.(G),
[ wama = [ ([ oty dns() dmain)

and thus we have
[ vime= [ (3 [ vteotn) dn(w) dmuh),
¢ H “ier /K

As in [2, Section 2.2|, we make use of the identification X =Y x K,

and for g € G and =z = (y,u) € X, we write
So(y,w) = (Tpg)y u+ py(y)),
where (pg)geq is a cocycle on Y taking values in K and such that for
all g € G and u € K we have
pou(y) = u+ py(y)  for v-almost every y € Y.

Let ¢ € C.(G). We can express ¢ as a finite sum of functions be-
longing to C.(G), each of which has support with diameter bounded by
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e. Thus without loss of generality, we can assume that ¢ is a smooth

function whose support M has diameter bounded by €. For y € K,
define

bulg) = /K o(gu)x(us) dme ().

It follows that for any x € K , the function ¢, is smooth, supported on
MK, and ¢, has vertical frequency , meaning that for all ¢ € G and
u € K,

Oy (gu) = do(g)x(u).
Thus, we can write
6= oy
ek

where this series converges in the uniform norm of C.(G). In particular,
without loss of generality, we can restrict ourselves to the case that ¢
has vertical frequency x for some y € K and ¢ is supported on MK
where M is a compact set whose diameter is bounded by e¢.

On the other hand, for f € L'(u), it is easy to check that

¢ f(r) =¢* Jx,  where f%(x) = /K f(S.z)x(u) dmy(u).

The function f5 satisfies || fg|lr1y < || f]l1(w and has vertical fre-
quency Y, meaning that for any u € K,

fx(Suz) = X(u) f ().

Therefore, without loss of generality, we can restrict ourselves to the
case that f has vertical frequency .

Using the identification X =Y x K, we write the function f on X
as

f(y,u) = F(y)X(u)
for some function F' on Y satisfying
IE N 2wy = 1f 2

and where Y is the vertical frequency of f. For g € GG, we have

f(Sy(y,u)) = F(Tygy) X(u) X(pg(y))-
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Computing the convolution, we have that

b f / 6(9) F (Ty0)X(ps(v)) dmc (o)

X(u) / (Thy)
= x(u) /H F(Thy) <Z \Ifi(y,h)) dmpg(h),

where

/ (00 (W)X P (9) A () ) g (1)

D) = [ o R s 0) e ()
By hypothesis, for distinct 4, j € I and u,u’ € K, we have
da(zuo(h), zju'o(h)) > 4e.

Since ¢ is supported on M K and the diameter of M is bounded by ¢, it
follows that for a given h € H, there is at most one value i = i(h) € I
such that ¢;(y, h) # 0 for some y € Y. Therefore,

> Wiy, )| < sup Wiy, )
icl el

Since ¢ vanishes outside M K, for every i € I we have that U;(y, h) =
0 except when z;o0(h) € MK. Since z; € L = ker(p), it follows that
h € p(M). Combining these, we obtain that

sup [0y, M| < [|@lloo Lyan) (h)-

Summarizing, we have that
6% ()] < 6]l / F(Ty)) dmsr ()
p(M)
< Cllollol| Fll 110y = Clldlloo |l fl 210

where C' is the constant from Lemmal[I]that is associated to the compact
subset p(M) of H. O

Corollary 3. For a compact subset M of G, there exists a constant C
such that

’/ [(Sgx) dma(g)| < C|\ fller — for p-almost every x € X.
M

Note that this bound can be rewritten as

[ 1ar * fllreoy < Cll [l

We quote the following lemma from [2], whose proof is correct as
written there.



6 CORRECTION AND ADDITION TO CHAPTER 19

Lemma 4 ([2, Chapter 19, Lemma 7]). For1 < p < oo, the action of G
on LP(p) defined by (g, f) — S,f is strongly continuous. In particular,
for f e LP(n), @ f — fin LP(u) as j — oo.

Let A denote the family of regular functions, meaning that collection
of f € L>°(p) such that the map g — S, f is a continuous map from G
to L>®(u).

Lemma 5 (|2, Chapter 19, Lemma §]).

(i) If p € C(G) and f € L*(p), then ¢ x f € A.
(ii) For 1 <p < oo, the algebra A is dense in LP(u).
(iii) If f € A, then ®; % f — f in L>®(u) as j — oo.
(iv) The algebra A is the closure in L>(u) of
{pxf:0€CX), feLl(m}

(v) The algebra A is separable with respect to the norm of L*(u).
Proof. Part : Let M be the support of ¢ and let W be a compact
neighborhood of e¢ in G. Let C be the constant associated to the
compact set MW in Corollary [3]

Let € > 0. Since ¢ is uniformly continuous, there exists a neighbor-
hood V of e in G, contained in W, and such that |¢(hg) —¢(g)| < €/C

for all g € G.
Fix h € V. Then for every z € X, we have

b % [(Shr) = /G Blgh™)1(Syr) dmalg).

It thus follows that for every z € X, we have

6% F(Shx) — 6% f(2)] < /G 16(gh™Y) — 6(g)| 1£(S,2)] dmag).

Since |¢p(gh™') — ¢(g)| < /C for every g € G and since ¢ is supported
on M and h € V. C W, we have that ¢(gh™) — ¢(g) = 0 and for all ¢
not contained in MW. Therefore, |¢p(gh™) — ¢(g9)| < 1yw(g9)e/C. By
the definition of C, we conclude that for every h € V,

lp* f(Shx) — @ f(x)] <e for p-almost every z € X.

Part : This follows by combining Lemma 4| and Part .

Part (ii): Let & > 0. Since f € A, there exists j € N such that
|Sgf — fllzoe(u) < € for every g in the ball B of radius 1/ centered at
eg. For any ¢ in this ball and z € X, we have

6% 1) — f(z) = /G 8,(9) (F(Sy2) — F(x)) dme(g).
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It then follows that
1D % f — fllzocy < NPsllzrgollSof — fllre < e.

Part (iv): By Part (i), the set {¢p * f: ¢ € Co(X), f € LY (n)} is
contained in A and by Part its closure with respect to the norm
of L*°(u) contains A.

Part (v): Since L'(p) is separable, it follows from Lemma [2] that for
every j € N the set {®;« f: f € L'(u)} is separable with respect to the
norm of L>(u). Thus the union of these sets is separable. By Part ,
the closure of this union is equal to A. O

3. AN ALTERNATE APPROACH

Another possible method to endow X with a topological structure is
by using the dual functions studied in [2, Chapter 8]. We outline this
approach, using the notation of that chapter.

Define

D = {Dyyo(fe: e € [k+2]): fe € L¥7 7Yy for every € € [k + 2]*}.

By [2 Chapter 8, Proposition 21], D C L*(u), and when f. €
L¥7=1(y) for € € [k+ 2]*, the dual function Dyys(f.: € € [k + 2]*)
satisfies

@ Dl €+ 2AVMamn <[] Iellsrn sy
eec[k+2]*

It follows that D is separable with respect to the norm of L>(u). Fur-
thermore, by definition of G, for every ¢ € G the measure plFt? is
invariant under Sgk+2ﬂ and it follows that

SgDiio(fe: € € [k +2]) = Drya(S, ' fe: € € [k +2]).

Therefore, D is invariant under S,. By using the inequality again
and Lemma [ we deduce that for h € D, the map g — Sgh from G
to L>(u) is continuous. Thus D is contained in A. Furthermore, since
(X, u,T) is an ergodic (k + 1)-step nilsystem, the linear span of D is
dense in L'(u) by [2, Chapter 9, Proposition 17].

Therefore, instead of using the algebra A, we can make use of the
closed subalgebra of L (u) spanned by D. This method eliminates the
need of Lemmas [T and [2], Corollary [3] and Lemma

We note that we can not, instead, use the closed linear span of D, as
we do not have a method of of showing that this space in an algebra;
while it can be checked that the product of two elements of this space
is a limit in L'(u) of elements of this space, this is not sufficient.
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