CORRECTION AND ADDITION TO CHAPTER 19

1. Summarizing the issue

There is a gap in the proof in [1, Section 10.2.3] and the completion of this in [2, Chapter 19] does not fully address the issue and is inaccurate. This document summarizes the issue, necessary corrections, and additions.

In the notation of Section 10.2.3 of [1], we show that Y is a nilmanifold H/Γ by lifting the action of the group G on X to an action of the group H on Y. We then say that this action is "transitive," writing "Choose a lift y_1 of x_1 in Y and consider the map $f: H \to Y$ given by $f(h) = h \cdot x_1$." Next we define Γ to be the stabilizer $\{h \in H: f(h) = y_1\}$ of y_1 and use the map f to identify Y and H/Γ . However, this argument does not make sense: at this stage in the proof, Y is a probability space and does not have any topological structure and the action of H on Y is a measure preserving action that is only defined almost everywhere. In particular, the map f is not defined, the notion of a transitive action does not make sense, and we can not define the stabilizer of x_1 .

In [2, Chapter 19, Section 3] we claimed to have filled in this gap, but this proof requires correction. In Section 19.3, we first consider the general case of a measure preserving action of a group G on a probability space (X, μ) and we define a convolution product $\phi * f$ for $\phi \in C_c(G)$ and $f \in L^1(X)$ (see Equation (10) on page 312). However, the comments below Equation (10) are easily seen to be false, as seen by considering a trivial action. Moreover, these comments do not even hold in our setting, meaning when $X = G/\Gamma$ is a nilmanifold.

This note corrects and completes the arguments of both [1] and [2]. The incorrect comments on page 312 are replaced by a new result (Lemma 2), and we use this endow our space X with a topological structure such that the action of G is continuous and transitive, avoiding any consideration of a general action.

Henceforth, we use the notation of [2], where the roles of X and Y are reversed with respect to [1].

2. Modifications of the argument

Using the set up and notation of [2, Chapter 19], we have that Y = H/Λ is a nilmanifold with Haar measure ν . We start with a preliminary lemma.

Lemma 1. For every compact M subset of H, there exists a constant C > 0 such that for any $f \in L^1(\nu)$ with $f \ge 0$,

(1)
$$\sup_{y \in Y} \int_{M} f(h \cdot y) \, dm_{H}(h) \le C \|f\|_{L^{1}(\nu)}.$$

Proof. Let $\pi: H \to Y = H/\Lambda$ be the quotient map, set $e_Y = \pi(e_H)$, and let D be a compact fundamental domain of the projection π . This means that $H = \bigcup_{\lambda \in \Lambda} D\lambda$ and the sets comprising this union pairwise have m_H -negligible intersections. We normalize the Haar measure m_H of H such that $m_H(D) = 1$.

We first consider the case that $y = e_Y$. We claim that for every compact $M \subset H$, there exists a constant c > 0 such that for any $f \in L^1(\nu)$ with $f \ge 0$, we have that

$$\int_M f(h \cdot e_Y) \, dm_H(h) \le c \|f\|_{L^1(\nu)}$$

To check this, note that since $D^{-1}M$ is compact and Λ is discrete, the set $F := D^{-1}M \cap \Lambda$ is finite. Since $M \subset \bigcup_{\lambda \in F} D\lambda$, it follows that

$$\int_{M} f(h \cdot e_Y) dm_H(h) \leq \sum_{\lambda \in F} \int_{D\lambda} f(h \cdot e_Y) dm_H(h)$$
$$= |F| \int_{D} f(h \cdot e_Y) dm_H(h) = |F| ||f||_{L^1(\nu)}$$

and the claim is proven.

For the general case, let M be a compact subset of H and let C be the constant associated by to the compact set MD for the case that $y = e_Y$. Let $y \in Y$ and choose $q \in D$ such that $\pi(q) = y$. In particular, $q \cdot e_Y = y$. Then we have that

$$\int_{M} f(h \cdot y) \, dm_H(y) = \int_{M} f(hq \cdot e_Y) \, dm_H(h)$$

=
$$\int_{Mq} f(h \cdot e_G) \, dm_H(y) \le \int_{MD} f(h \cdot e_G) \, dm_H(y) \le C \|f\|_{L^1(\nu)},$$

and so (1) holds with the constant C.

and so (1) holds with the constant C.

We next establish a result similar to Lemma 1, but with the group H replaced by G and the nilmanifold (Y, ν) replaced by (X, μ) .

Recall that if ϕ is a bounded function with compact support on Gand $f \in L^1(\mu)$, the convolution function $\phi * f$ on X is defined by

(Equation (10) in [2])
$$\phi * f(x) = \int_G \phi(g) f(S_g x) d\mu(g).$$

We use $C_c(G)$ to denote the algebra of continuous functions on G with compact support.

Lemma 2. For every $\phi \in C_c(G)$, there exists a constant C > 0 such for any $f \in L^1(\mu)$ with $f \ge 0$, we have

$$\|\phi * f\|_{L^{\infty}(\mu)} \le C \|f\|_{L^{1}(\mu)}.$$

Proof. We recall some notation and results from [2, Chapter 19]. Let $p: G \to H$ be the quotient map, let $L = \ker(p)$, and recall that K is a finite dimensional torus. By [2, Proposition 5], we have that K is an open subgroup of L. We normalize the Haar measure m_L of L such that $m_L(K) = 1$. Choosing a countable family $(z_i)_{i \in I}$ in L such that the sets $z_i K$ form a partition of L, then for $\psi \in L^1(m_L)$ we have that

$$\int_{L} \psi \, dm_{L} = \sum_{i \in I} \int_{K} \psi(z_{i}u) \, dm_{K}(u).$$

The group G is endowed with a right invariant distance d_G , and so there exists $\varepsilon > 0$ such that for all distinct $i, j \in I$,

$$d_G(z_iK, z_jK) > 4\varepsilon.$$

Let $\sigma: H \to G$ be a Borel cross section of the quotient map $p: G \to H$. We normalize the Haar measure m_G of G such that for all $\psi \in C_c(G)$,

$$\int_{G} \psi \, dm_G = \int_{H} \left(\int_{L} \psi(z\sigma(h)) \, dm_L(z) \right) dm_H(h)$$

and thus we have

$$\int_{G} \psi \, dm_{G} = \int_{H} \left(\sum_{i \in I} \int_{K} \psi(z_{i} u \sigma(h)) \, dm_{K}(u) \right) \, dm_{H}(h).$$

As in [2, Section 2.2], we make use of the identification $X = Y \times K$, and for $g \in G$ and $x = (y, u) \in X$, we write

$$S_g(y,u) = \left(T_{p(g)}y, u + \rho_g(y)\right),$$

where $(\rho_g)_{g \in G}$ is a cocycle on Y taking values in K and such that for all $g \in G$ and $u \in K$ we have

$$\rho_{gu}(y) = u + \rho_g(y) \quad \text{for } \nu\text{-almost every } y \in Y.$$

Let $\phi \in C_c(G)$. We can express ϕ as a finite sum of functions belonging to $C_c(G)$, each of which has support with diameter bounded by ε . Thus without loss of generality, we can assume that ϕ is a smooth function whose support M has diameter bounded by ε . For $\chi \in \widehat{K}$, define

$$\phi_{\chi}(g) = \int_{K} \phi(gu) \overline{\chi}(u) \, dm_{K}(u).$$

It follows that for any $\chi \in \widehat{K}$, the function ϕ_{χ} is smooth, supported on MK, and ϕ_{χ} has vertical frequency χ , meaning that for all $g \in G$ and $u \in K$,

$$\phi_{\chi}(gu) = \phi_{\phi}(g)\chi(u).$$

Thus, we can write

$$\phi = \sum_{\chi \in \widehat{K}} \phi_{\chi},$$

where this series converges in the uniform norm of $C_c(G)$. In particular, without loss of generality, we can restrict ourselves to the case that ϕ has vertical frequency χ for some $\chi \in \hat{K}$ and ϕ is supported on MK where M is a compact set whose diameter is bounded by ε .

On the other hand, for $f \in L^1(\mu)$, it is easy to check that

$$\phi * f(x) = \phi * f_{\overline{\chi}}, \quad \text{where } f_{\overline{\chi}}(x) = \int_K f(S_z x) \chi(u) \, dm_k(u).$$

The function $f_{\overline{\chi}}$ satisfies $||f_{\overline{\chi}}||_{L^1(\mu)} \leq ||f||_{L^1(\mu)}$ and has vertical frequency $\overline{\chi}$, meaning that for any $u \in K$,

$$f_{\chi}(S_u x) = \overline{\chi}(u)f(x).$$

Therefore, without loss of generality, we can restrict ourselves to the case that f has vertical frequency $\overline{\chi}$.

Using the identification $X = Y \times K$, we write the function f on X as

$$f(y,u) = F(y)\overline{\chi}(u)$$

for some function F on Y satisfying

$$||F||_{L^1(\nu)} = ||f||_{L^1(\mu)}$$

and where $\overline{\chi}$ is the vertical frequency of f. For $g \in G$, we have

$$f(S_g(y,u)) = F(T_{p(g)}y)\,\overline{\chi}(u)\,\overline{\chi}(\rho_g(y)).$$

Computing the convolution, we have that

$$\begin{split} \phi * f(y,u) &= \overline{\chi}(u) \int_{G} \phi(g) F(T_{p(g)}y) \overline{\chi}(\rho_{g}(y)) \, dm_{G}(g) \\ &= \overline{\chi}(u) \int_{H} F(T_{h}y) \sum_{i \in I} \left(\int_{K} \phi(z_{i}u\sigma(h)) \overline{\chi}(\rho_{z_{i}u\sigma(h)}(y)) \, dm_{K}(u) \right) dm_{H}(h) \\ &= \overline{\chi}(u) \int_{H} F(T_{h}y) \left(\sum_{i \in I} \Psi_{i}(y,h) \right) dm_{H}(h), \end{split}$$

where

$$\Psi_i(y,h) = \int_K \phi(z_i u \sigma(h)) \overline{\chi}(\rho_{z_i u \sigma(h)}(y)) \, dm_K(u).$$

By hypothesis, for distinct $i, j \in I$ and $u, u' \in K$, we have

 $d_G(z_i u \sigma(h), z_j u' \sigma(h)) > 4\varepsilon.$

Since ϕ is supported on MK and the diameter of M is bounded by ε , it follows that for a given $h \in H$, there is at most one value $i = i(h) \in I$ such that $\psi_i(y, h) \neq 0$ for some $y \in Y$. Therefore,

$$\left|\sum_{i\in I} \Psi_i(y,h)\right| \le \sup_{i\in I} |\Psi_i(y,h)|$$

Since ϕ vanishes outside MK, for every $i \in I$ we have that $\Psi_i(y, h) = 0$ except when $z_i \sigma(h) \in MK$. Since $z_i \in L = \ker(p)$, it follows that $h \in p(M)$. Combining these, we obtain that

$$\sup_{i\in I} |\Psi_i(y,h)| \le \|\phi\|_{\infty} \,\mathbf{1}_{p(M)}(h).$$

Summarizing, we have that

$$\begin{aligned} |\phi * f(y,u)| &\leq \|\phi\|_{\infty} \int_{p(M)} |F(T_h y)| \, dm_H(h) \\ &\leq C \|\phi\|_{\infty} \|F\|_{L^1(\nu)} = C \|\phi\|_{\infty} \|f\|_{L^1(\mu)}, \end{aligned}$$

where C is the constant from Lemma 1 that is associated to the compact subset p(M) of H.

Corollary 3. For a compact subset M of G, there exists a constant C such that

$$\left|\int_{M} f(S_{g}x) \, dm_{G}(g)\right| \leq C \|f\|_{L^{1}(\mu)} \quad \text{for } \mu\text{-almost every } x \in X.$$

Note that this bound can be rewritten as

$$\|\mathbf{1}_M * f\|_{L^{\infty}(\mu)} \le C \|f\|_{L^{1}(\mu)}.$$

We quote the following lemma from [2], whose proof is correct as written there.

Lemma 4 ([2, Chapter 19, Lemma 7]). For $1 \le p < \infty$, the action of G on $L^p(\mu)$ defined by $(g, f) \mapsto S_g f$ is strongly continuous. In particular, for $f \in L^p(\mu)$, $\Phi_j * f \to f$ in $L^p(\mu)$ as $j \to \infty$.

Let \mathcal{A} denote the family of regular functions, meaning that collection of $f \in L^{\infty}(\mu)$ such that the map $g \mapsto S_g f$ is a continuous map from Gto $L^{\infty}(\mu)$.

Lemma 5 ([2, Chapter 19, Lemma 8]).

- (i) If $\phi \in \mathsf{C}_{\mathsf{c}}(G)$ and $f \in L^1(\mu)$, then $\phi * f \in \mathcal{A}$.
- (ii) For $1 \leq p < \infty$, the algebra \mathcal{A} is dense in $L^p(\mu)$.
- (iii) If $f \in \mathcal{A}$, then $\Phi_j * f \to f$ in $L^{\infty}(\mu)$ as $j \to \infty$.
- (iv) The algebra \mathcal{A} is the closure in $L^{\infty}(\mu)$ of

$$\{\phi * f \colon \phi \in \mathsf{C}_{\mathsf{c}}(X), \ f \in L^1(\mu)\}.$$

(v) The algebra \mathcal{A} is separable with respect to the norm of $L^{\infty}(\mu)$.

Proof. Part (i): Let M be the support of ϕ and let W be a compact neighborhood of e_G in G. Let C be the constant associated to the compact set MW in Corollary 3.

Let $\varepsilon > 0$. Since ϕ is uniformly continuous, there exists a neighborhood V of e_G in G, contained in W, and such that $|\phi(hg) - \phi(g)| < \varepsilon/C$ for all $g \in G$.

Fix $h \in V$. Then for every $x \in X$, we have

$$\phi * f(S_h x) = \int_G \phi(gh^{-1}) f(S_g x) \, dm_G(g).$$

It thus follows that for every $x \in X$, we have

$$|\phi * f(S_h x) - \phi * f(x)| \le \int_G |\phi(gh^{-1}) - \phi(g)| |f(S_g x)| dm_G(g).$$

Since $|\phi(gh^{-1}) - \phi(g)| \leq \varepsilon/C$ for every $g \in G$ and since ϕ is supported on M and $h \in V \subset W$, we have that $\phi(gh^{-1}) - \phi(g) = 0$ and for all gnot contained in MW. Therefore, $|\phi(gh^{-1}) - \phi(g)| \leq \mathbf{1}_{MW}(g)\varepsilon/C$. By the definition of C, we conclude that for every $h \in V$,

$$|\phi * f(S_h x) - \phi * f(x)| < \varepsilon$$
 for μ -almost every $x \in X$.

Part (ii): This follows by combining Lemma 4 and Part (i).

Part (iii): Let $\varepsilon > 0$. Since $f \in \mathcal{A}$, there exists $j \in \mathbb{N}$ such that $\|S_g f - f\|_{L^{\infty}(\mu)} < \varepsilon$ for every g in the ball B of radius 1/j centered at e_G . For any g in this ball and $x \in X$, we have

$$\phi_j * f(x) - f(x) = \int_G \Phi_j(g) \left(f(S_g x) - f(x) \right) dm_G(g).$$

It then follows that

$$\|\Phi_j * f - f\|_{L^{\infty}(\mu)} \le \|\Phi_j\|_{L^1(\mu)} \|S_g f - f\|_{L^{\infty}(\mu)} \le \varepsilon.$$

Part (iv): By Part (i), the set $\{\phi * f : \phi \in C_c(X), f \in L^1(\mu)\}$ is contained in \mathcal{A} and by Part (iii) its closure with respect to the norm of $L^{\infty}(\mu)$ contains \mathcal{A} .

Part (v): Since $L^1(\mu)$ is separable, it follows from Lemma 2 that for every $j \in \mathbb{N}$ the set $\{\Phi_j * f : f \in L^1(\mu)\}$ is separable with respect to the norm of $L^{\infty}(\mu)$. Thus the union of these sets is separable. By Part (iii), the closure of this union is equal to \mathcal{A} .

3. An Alternate Approach

Another possible method to endow X with a topological structure is by using the dual functions studied in [2, Chapter 8]. We outline this approach, using the notation of that chapter.

Define

$$\mathcal{D} = \left\{ \mathcal{D}_{k+2}(f_{\underline{\epsilon}} : \underline{\epsilon} \in \llbracket k+2 \rrbracket^*) : f_{\underline{\epsilon}} \in L^{2^{k+2}-1}(\mu) \text{ for every } \underline{\epsilon} \in \llbracket k+2 \rrbracket^* \right\}.$$

By [2 Chapter 8 Proposition 21] $\mathcal{D} \subset L^{\infty}(\mu)$ and when $f \in \mathbb{C}$

By [2, Chapter 8, Proposition 21], $\mathcal{D} \subset L^{\infty}(\mu)$, and when $f_{\underline{\epsilon}} \in L^{2^{k+2}-1}(\mu)$ for $\underline{\epsilon} \in [\![k+2]\!]^*$, the dual function $D_{k+2}(f_{\underline{\epsilon}}: \underline{\epsilon} \in [\![k+2]\!]^*)$ satisfies

(2)
$$\| \mathbf{D}_{k+2}(f_{\underline{\epsilon}} \colon \underline{\epsilon} \in \llbracket k+2 \rrbracket^*) \|_{L^{\infty}(\mu)} \leq \prod_{\underline{\epsilon} \in \llbracket k+2 \rrbracket^*} \| f_{\underline{\epsilon}} \|_{L^{2^{k+2}-1}(\mu)}.$$

It follows that \mathcal{D} is separable with respect to the norm of $L^{\infty}(\mu)$. Furthermore, by definition of G, for every $g \in G$ the measure $\mu^{[\![k+2]\!]}$ is invariant under $S_g^{[\![k+2]\!]}$ and it follows that

$$S_g \mathcal{D}_{k+2}(f_{\underline{\epsilon}} \colon \underline{\epsilon} \in \llbracket k+2 \rrbracket) = \mathcal{D}_{k+2}(S_g^{-1}f_{\underline{\epsilon}} \colon \underline{\epsilon} \in \llbracket k+2 \rrbracket^*).$$

Therefore, \mathcal{D} is invariant under S_g . By using the inequality (2) again and Lemma 4, we deduce that for $h \in \mathcal{D}$, the map $g \mapsto S_g h$ from Gto $L^{\infty}(\mu)$ is continuous. Thus \mathcal{D} is contained in \mathcal{A} . Furthermore, since (X, μ, T) is an ergodic (k + 1)-step nilsystem, the linear span of \mathcal{D} is dense in $L^1(\mu)$ by [2, Chapter 9, Proposition 17].

Therefore, instead of using the algebra \mathcal{A} , we can make use of the closed subalgebra of $L^{\infty}(\mu)$ spanned by \mathcal{D} . This method eliminates the need of Lemmas 1 and 2, Corollary 3, and Lemma 5.

We note that we can not, instead, use the closed linear span of \mathcal{D} , as we do not have a method of of showing that this space in an algebra; while it can be checked that the product of two elements of this space is a limit in $L^1(\mu)$ of elements of this space, this is not sufficient.

References

- B. HOST & B. KRA. Non conventional ergodic averages and nilmanifolds. Ann. of Math. (2), 161 (2005), 397–488.
- [2] B. HOST & B. KRA. Nilpotent Structures in Ergodic Theory. Mathematical Surveys and Monographs 236. American Mathematical Society, Providence, RI, 2018.