CORRECTION AND ADDITION TO CHAPTER 19

1. Summarizing the issue

There is a gap in the proof in [1, Section 10.2.3] and the completion of this in [2, Chapter 19] does not fully address the issue and is inaccurate. This document summarizes the issue, necessary corrections, and additions.

In the notation of Section 10.2.3 of [1] we show that Y is a nilmanifold H / Γ by lifting the action of the group G on X to an action of the group H on Y. We then say that this action is "transitive," writing "Choose a lift y_{1} of x_{1} in Y and consider the map $f: H \rightarrow Y$ given by $f(h)=h \cdot x_{1}$." Next we define Γ to be the stabilizer $\left\{h \in H: f(h)=y_{1}\right\}$ of y_{1} and use the map f to identify Y and H / Γ. However, this argument does not make sense: at this stage in the proof, Y is a probability space and does not have any topological structure and the action of H on Y is a measure preserving action that is only defined almost everywhere. In particular, the map f is not defined, the notion of a transitive action does not make sense, and we can not define the stabilizer of x_{1}.

In [2, Chapter 19, Section 3] we claimed to have filled in this gap, but this proof requires correction. In Section 19.3, we first consider the general case of a measure preserving action of a group G on a probability space (X, μ) and we define a convolution product $\phi * f$ for $\phi \in C_{c}(G)$ and $f \in L^{1}(X)$ (see Equation (10) on page 312). However, the comments below Equation (10) are easily seen to be false, as seen by considering a trivial action. Moreover, these comments do not even hold in our setting, meaning when $X=G / \Gamma$ is a nilmanifold.

This note corrects and completes the arguments of both [1] and [2]. The incorrect comments on page 312 are replaced by a new result (Lemma 2), and we use this endow our space X with a topological structure such that the action of G is continuous and transitive, avoiding any consideration of a general action.

Henceforth, we use the notation of [2], where the roles of X and Y are reversed with respect to 1 .

2. Modifications of The Argument

Using the set up and notation of [2, Chapter 19], we have that $Y=$ H / Λ is a nilmanifold with Haar measure ν. We start with a preliminary lemma.

Lemma 1. For every compact M subset of H, there exists a constant $C>0$ such that for any $f \in L^{1}(\nu)$ with $f \geq 0$,

$$
\begin{equation*}
\sup _{y \in Y} \int_{M} f(h \cdot y) d m_{H}(h) \leq C\|f\|_{L^{1}(\nu)} . \tag{1}
\end{equation*}
$$

Proof. Let $\pi: H \rightarrow Y=H / \Lambda$ be the quotient map, set $e_{Y}=\pi\left(e_{H}\right)$, and let D be a compact fundamental domain of the projection π. This means that $H=\bigcup_{\lambda \in \Lambda} D \lambda$ and the sets comprising this union pairwise have m_{H}-negligible intersections. We normalize the Haar measure m_{H} of H such that $m_{H}(D)=1$.

We first consider the case that $y=e_{Y}$. We claim that for every compact $M \subset H$, there exists a constant $c>0$ such that for any $f \in L^{1}(\nu)$ with $f \geq 0$, we have that

$$
\int_{M} f\left(h \cdot e_{Y}\right) d m_{H}(h) \leq c\|f\|_{L^{1}(\nu)} .
$$

To check this, note that since $D^{-1} M$ is compact and Λ is discrete, the set $F:=D^{-1} M \cap \Lambda$ is finite. Since $M \subset \bigcup_{\lambda \in F} D \lambda$, it follows that

$$
\begin{aligned}
\int_{M} f\left(h \cdot e_{Y}\right) d m_{H}(h) & \leq \sum_{\lambda \in F} \int_{D \lambda} f\left(h \cdot e_{Y}\right) d m_{H}(h) \\
& =|F| \int_{D} f\left(h \cdot e_{Y}\right) d m_{H}(h)=|F|\|f\|_{L^{1}(\nu)}
\end{aligned}
$$

and the claim is proven.
For the general case, let M be a compact subset of H and let C be the constant associated by to the compact set $M D$ for the case that $y=e_{Y}$. Let $y \in Y$ and choose $g \in D$ such that $\pi(q)=y$. In particular, $q \cdot e_{Y}=y$. Then we have that

$$
\begin{array}{rl}
\int_{M} & f(h \cdot y) d m_{H}(y)=\int_{M} f\left(h q \cdot e_{Y}\right) d m_{H}(h) \\
& =\int_{M q} f\left(h \cdot e_{G}\right) d m_{H}(y) \leq \int_{M D} f\left(h \cdot e_{G}\right) d m_{H}(y) \leq C\|f\|_{L^{1}(\nu)}
\end{array}
$$

and so (1) holds with the constant C.
We next establish a result similar to Lemma 1, but with the group H replaced by G and the nilmanifold (Y, ν) replaced by (X, μ).

Recall that if ϕ is a bounded function with compact support on G and $f \in L^{1}(\mu)$, the convolution function $\phi * f$ on X is defined by
(Equation (10) in [2])

$$
\phi * f(x)=\int_{G} \phi(g) f\left(S_{g} x\right) d \mu(g)
$$

We use $\mathrm{C}_{\mathrm{c}}(G)$ to denote the algebra of continuous functions on G with compact support.
Lemma 2. For every $\phi \in \mathrm{C}_{\mathrm{c}}(G)$, there exists a constant $C>0$ such for any $f \in L^{1}(\mu)$ with $f \geq 0$, we have

$$
\|\phi * f\|_{L^{\infty}(\mu)} \leq C\|f\|_{L^{1}(\mu)}
$$

Proof. We recall some notation and results from [2, Chapter 19]. Let $p: G \rightarrow H$ be the quotient map, let $L=\operatorname{ker}(p)$, and recall that K is a finite dimensional torus. By [2, Proposition 5], we have that K is an open subgroup of L. We normalize the Haar measure m_{L} of L such that $m_{L}(K)=1$. Choosing a countable family $\left(z_{i}\right)_{i \in I}$ in L such that the sets $z_{i} K$ form a partition of L, then for $\psi \in L^{1}\left(m_{L}\right)$ we have that

$$
\int_{L} \psi d m_{L}=\sum_{i \in I} \int_{K} \psi\left(z_{i} u\right) d m_{K}(u)
$$

The group G is endowed with a right invariant distance d_{G}, and so there exists $\varepsilon>0$ such that for all distinct $i, j \in I$,

$$
d_{G}\left(z_{i} K, z_{j} K\right)>4 \varepsilon
$$

Let $\sigma: H \rightarrow G$ be a Borel cross section of the quotient map $p: G \rightarrow$ H. We normalize the Haar measure m_{G} of G such that for all $\psi \in$ $C_{c}(G)$,

$$
\int_{G} \psi d m_{G}=\int_{H}\left(\int_{L} \psi(z \sigma(h)) d m_{L}(z)\right) d m_{H}(h)
$$

and thus we have

$$
\int_{G} \psi d m_{G}=\int_{H}\left(\sum_{i \in I} \int_{K} \psi\left(z_{i} u \sigma(h)\right) d m_{K}(u)\right) d m_{H}(h) .
$$

As in [2, Section 2.2], we make use of the identification $X=Y \times K$, and for $g \in G$ and $x=(y, u) \in X$, we write

$$
S_{g}(y, u)=\left(T_{p(g)} y, u+\rho_{g}(y)\right)
$$

where $\left(\rho_{g}\right)_{g \in G}$ is a cocycle on Y taking values in K and such that for all $g \in G$ and $u \in K$ we have

$$
\rho_{g u}(y)=u+\rho_{g}(y) \quad \text { for } \nu \text {-almost every } y \in Y \text {. }
$$

Let $\phi \in \mathrm{C}_{c}(G)$. We can express ϕ as a finite sum of functions belonging to $C_{c}(G)$, each of which has support with diameter bounded by
ε. Thus without loss of generality, we can assume that ϕ is a smooth function whose support M has diameter bounded by ε. For $\chi \in \widehat{K}$, define

$$
\phi_{\chi}(g)=\int_{K} \phi(g u) \bar{\chi}(u) d m_{K}(u)
$$

It follows that for any $\chi \in \widehat{K}$, the function ϕ_{χ} is smooth, supported on $M K$, and ϕ_{χ} has vertical frequency χ, meaning that for all $g \in G$ and $u \in K$,

$$
\phi_{\chi}(g u)=\phi_{\phi}(g) \chi(u) .
$$

Thus, we can write

$$
\phi=\sum_{\chi \in \widehat{K}} \phi_{\chi},
$$

where this series converges in the uniform norm of $\mathrm{C}_{c}(G)$. In particular, without loss of generality, we can restrict ourselves to the case that ϕ has vertical frequency χ for some $\chi \in \widehat{K}$ and ϕ is supported on $M K$ where M is a compact set whose diameter is bounded by ε.

On the other hand, for $f \in L^{1}(\mu)$, it is easy to check that

$$
\phi * f(x)=\phi * f_{\bar{\chi}}, \quad \text { where } f_{\bar{\chi}}(x)=\int_{K} f\left(S_{z} x\right) \chi(u) d m_{k}(u) .
$$

The function $f_{\bar{\chi}}$ satisfies $\left\|f_{\bar{\chi}}\right\|_{L^{1}(\mu)} \leq\|f\|_{L^{1}(\mu)}$ and has vertical frequency $\bar{\chi}$, meaning that for any $u \in K$,

$$
f_{\chi}\left(S_{u} x\right)=\bar{\chi}(u) f(x) .
$$

Therefore, without loss of generality, we can restrict ourselves to the case that f has vertical frequency $\bar{\chi}$.

Using the identification $X=Y \times K$, we write the function f on X as

$$
f(y, u)=F(y) \bar{\chi}(u)
$$

for some function F on Y satisfying

$$
\|F\|_{L^{1}(\nu)}=\|f\|_{L^{1}(\mu)}
$$

and where $\bar{\chi}$ is the vertical frequency of f. For $g \in G$, we have

$$
f\left(S_{g}(y, u)\right)=F\left(T_{p(g)} y\right) \bar{\chi}(u) \bar{\chi}\left(\rho_{g}(y)\right) .
$$

Computing the convolution, we have that

$$
\begin{array}{rl}
\phi * & f(y, u)=\bar{\chi}(u) \int_{G} \phi(g) F\left(T_{p(g)} y\right) \bar{\chi}\left(\rho_{g}(y)\right) d m_{G}(g) \\
& =\bar{\chi}(u) \int_{H} F\left(T_{h} y\right) \sum_{i \in I}\left(\int_{K} \phi\left(z_{i} u \sigma(h)\right) \bar{\chi}\left(\rho_{z_{i} u \sigma(h)}(y)\right) d m_{K}(u)\right) d m_{H}(h) \\
& =\bar{\chi}(u) \int_{H} F\left(T_{h} y\right)\left(\sum_{i \in I} \Psi_{i}(y, h)\right) d m_{H}(h),
\end{array}
$$

where

$$
\Psi_{i}(y, h)=\int_{K} \phi\left(z_{i} u \sigma(h)\right) \bar{\chi}\left(\rho_{z_{i} u \sigma(h)}(y)\right) d m_{K}(u)
$$

By hypothesis, for distinct $i, j \in I$ and $u, u^{\prime} \in K$, we have

$$
d_{G}\left(z_{i} u \sigma(h), z_{j} u^{\prime} \sigma(h)\right)>4 \varepsilon .
$$

Since ϕ is supported on $M K$ and the diameter of M is bounded by ε, it follows that for a given $h \in H$, there is at most one value $i=i(h) \in I$ such that $\psi_{i}(y, h) \neq 0$ for some $y \in Y$. Therefore,

$$
\left|\sum_{i \in I} \Psi_{i}(y, h)\right| \leq \sup _{i \in I}\left|\Psi_{i}(y, h)\right|
$$

Since ϕ vanishes outside $M K$, for every $i \in I$ we have that $\Psi_{i}(y, h)=$ 0 except when $z_{i} \sigma(h) \in M K$. Since $z_{i} \in L=\operatorname{ker}(p)$, it follows that $h \in p(M)$. Combining these, we obtain that

$$
\sup _{i \in I}\left|\Psi_{i}(y, h)\right| \leq\|\phi\|_{\infty} \mathbf{1}_{p(M)}(h) .
$$

Summarizing, we have that

$$
\begin{aligned}
|\phi * f(y, u)| & \leq\|\phi\|_{\infty} \int_{p(M)}\left|F\left(T_{h} y\right)\right| d m_{H}(h) \\
& \leq C\|\phi\|_{\infty}\|F\|_{L^{1}(\nu)}=C\|\phi\|_{\infty}\|f\|_{L^{1}(\mu)}
\end{aligned}
$$

where C is the constant from Lemma 1 that is associated to the compact subset $p(M)$ of H.
Corollary 3. For a compact subset M of G, there exists a constant C such that

$$
\left|\int_{M} f\left(S_{g} x\right) d m_{G}(g)\right| \leq C\|f\|_{L^{1}(\mu)} \quad \text { for } \mu \text {-almost every } x \in X
$$

Note that this bound can be rewritten as

$$
\left\|\mathbf{1}_{M} * f\right\|_{L^{\infty}(\mu)} \leq C\|f\|_{L^{1}(\mu)} .
$$

We quote the following lemma from [2], whose proof is correct as written there.

Lemma 4 ([2, Chapter 19, Lemma 7]). For $1 \leq p<\infty$, the action of G on $L^{p}(\mu)$ defined by $(g, f) \mapsto S_{g} f$ is strongly continuous. In particular, for $f \in L^{p}(\mu), \Phi_{j} * f \rightarrow f$ in $L^{p}(\mu)$ as $j \rightarrow \infty$.

Let \mathcal{A} denote the family of regular functions, meaning that collection of $f \in L^{\infty}(\mu)$ such that the map $g \mapsto S_{g} f$ is a continuous map from G to $L^{\infty}(\mu)$.

Lemma 5 ([2, Chapter 19, Lemma 8]).
(i) If $\phi \in \mathrm{C}_{\mathrm{c}}(G)$ and $f \in L^{1}(\mu)$, then $\phi * f \in \mathcal{A}$.
(ii) For $1 \leq p<\infty$, the algebra \mathcal{A} is dense in $L^{p}(\mu)$.
(iii) If $f \in \mathcal{A}$, then $\Phi_{j} * f \rightarrow f$ in $L^{\infty}(\mu)$ as $j \rightarrow \infty$.
(iv) The algebra \mathcal{A} is the closure in $L^{\infty}(\mu)$ of

$$
\left\{\phi * f: \phi \in \mathrm{C}_{\mathrm{c}}(X), f \in L^{1}(\mu)\right\}
$$

(v) The algebra \mathcal{A} is separable with respect to the norm of $L^{\infty}(\mu)$.

Proof. Part (i): Let M be the support of ϕ and let W be a compact neighborhood of e_{G} in G. Let C be the constant associated to the compact set $M W$ in Corollary 3 .

Let $\varepsilon>0$. Since ϕ is uniformly continuous, there exists a neighborhood V of e_{G} in G, contained in W, and such that $|\phi(h g)-\phi(g)|<\varepsilon / C$ for all $g \in G$.

Fix $h \in V$. Then for every $x \in X$, we have

$$
\phi * f\left(S_{h} x\right)=\int_{G} \phi\left(g h^{-1}\right) f\left(S_{g} x\right) d m_{G}(g)
$$

It thus follows that for every $x \in X$, we have

$$
\left|\phi * f\left(S_{h} x\right)-\phi * f(x)\right| \leq \int_{G}\left|\phi\left(g h^{-1}\right)-\phi(g)\right|\left|f\left(S_{g} x\right)\right| d m_{G}(g) .
$$

Since $\left|\phi\left(g h^{-1}\right)-\phi(g)\right| \leq \varepsilon / C$ for every $g \in G$ and since ϕ is supported on M and $h \in V \subset W$, we have that $\phi\left(g h^{-1}\right)-\phi(g)=0$ and for all g not contained in $M W$. Therefore, $\left|\phi\left(g h^{-1}\right)-\phi(g)\right| \leq \mathbf{1}_{M W}(g) \varepsilon / C$. By the definition of C, we conclude that for every $h \in V$,

$$
\left|\phi * f\left(S_{h} x\right)-\phi * f(x)\right|<\varepsilon \quad \text { for } \mu \text {-almost every } x \in X
$$

Part (iii): This follows by combining Lemma 4 and Part (i).
Part (iii): Let $\varepsilon>0$. Since $f \in \mathcal{A}$, there exists $j \in \mathbb{N}$ such that $\left\|S_{g} f-f\right\|_{L^{\infty}(\mu)}<\varepsilon$ for every g in the ball B of radius $1 / j$ centered at e_{G}. For any g in this ball and $x \in X$, we have

$$
\phi_{j} * f(x)-f(x)=\int_{G} \Phi_{j}(g)\left(f\left(S_{g} x\right)-f(x)\right) d m_{G}(g)
$$

It then follows that

$$
\left\|\Phi_{j} * f-f\right\|_{L^{\infty}(\mu)} \leq\left\|\Phi_{j}\right\|_{L^{1}(\mu)}\left\|S_{g} f-f\right\|_{L^{\infty}(\mu)} \leq \varepsilon
$$

Part (iv): By Part (i), the set $\left\{\phi * f: \phi \in C_{c}(X), f \in L^{1}(\mu)\right\}$ is contained in \mathcal{A} and by Part (iii) its closure with respect to the norm of $L^{\infty}(\mu)$ contains \mathcal{A}.
Part (V): Since $L^{1}(\mu)$ is separable, it follows from Lemma 2 that for every $j \in \mathbb{N}$ the set $\left\{\Phi_{j} * f: f \in L^{1}(\mu)\right\}$ is separable with respect to the norm of $L^{\infty}(\mu)$. Thus the union of these sets is separable. By Part (iii), the closure of this union is equal to \mathcal{A}.

3. An alternate approach

Another possible method to endow X with a topological structure is by using the dual functions studied in [2, Chapter 8]. We outline this approach, using the notation of that chapter.

Define

$$
\mathcal{D}=\left\{\mathrm{D}_{k+2}\left(f_{\underline{\epsilon}}: \underline{\epsilon} \in \llbracket k+2 \rrbracket^{*}\right): f_{\underline{\epsilon}} \in L^{2^{k+2}-1}(\mu) \text { for every } \underline{\epsilon} \in \llbracket k+2 \rrbracket^{*}\right\}
$$

By [2, Chapter 8, Proposition 21], $\mathcal{D} \subset L^{\infty}(\mu)$, and when $f_{\underline{\epsilon}} \in$ $L^{2^{k+2}-1}(\mu)$ for $\underline{\epsilon} \in \llbracket k+2 \rrbracket^{*}$, the dual function $\mathrm{D}_{k+2}\left(f_{\underline{\epsilon}}: \underline{\epsilon} \in \llbracket k+2 \rrbracket^{*}\right)$ satisfies

$$
\begin{equation*}
\left\|\mathrm{D}_{k+2}\left(f_{\underline{\epsilon}}: \underline{\epsilon} \in \llbracket k+2 \rrbracket^{*}\right)\right\|_{L^{\infty}(\mu)} \leq \prod_{\underline{\epsilon} \in \llbracket k+2 \rrbracket^{*}}\left\|f_{\underline{\epsilon}}\right\|_{L^{2^{k+2}-1}(\mu)} . \tag{2}
\end{equation*}
$$

It follows that \mathcal{D} is separable with respect to the norm of $L^{\infty}(\mu)$. Furthermore, by definition of G, for every $g \in G$ the measure $\mu^{\llbracket k+2 \rrbracket}$ is invariant under $S_{g}^{\llbracket k+2 \rrbracket}$ and it follows that

$$
S_{g} \mathrm{D}_{k+2}\left(f_{\underline{\epsilon}}: \underline{\epsilon} \in \llbracket k+2 \rrbracket\right)=\mathrm{D}_{k+2}\left(S_{g}^{-1} f_{\underline{\epsilon}}: \underline{\epsilon} \in \llbracket k+2 \rrbracket^{*}\right)
$$

Therefore, \mathcal{D} is invariant under S_{g}. By using the inequality (2) again and Lemma 4, we deduce that for $h \in \mathcal{D}$, the map $g \mapsto S_{g} h$ from G to $L^{\infty}(\mu)$ is continuous. Thus \mathcal{D} is contained in \mathcal{A}. Furthermore, since (X, μ, T) is an ergodic $(k+1)$-step nilsystem, the linear span of \mathcal{D} is dense in $L^{1}(\mu)$ by [2, Chapter 9, Proposition 17].

Therefore, instead of using the algebra \mathcal{A}, we can make use of the closed subalgebra of $L^{\infty}(\mu)$ spanned by \mathcal{D}. This method eliminates the need of Lemmas 1 and 2, Corollary 3, and Lemma 5.

We note that we can not, instead, use the closed linear span of \mathcal{D}, as we do not have a method of of showing that this space in an algebra; while it can be checked that the product of two elements of this space is a limit in $L^{1}(\mu)$ of elements of this space, this is not sufficient.

References

[1] B. Host \& B. Kra. Non conventional ergodic averages and nilmanifolds. Ann. of Math. (2), 161 (2005), 397-488.
[2] B. Host \& B. Kra. Nilpotent Structures in Ergodic Theory. Mathematical Surveys and Monographs 236. American Mathematical Society, Providence, RI, 2018.

