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Abstract. For a mixing shift of finite type, the associated automorphism

group has a rich algebraic structure, and yet we have few criteria to distin-

guish when two such groups are isomorphic. We introduce a stabilization of
the automorphism group, study its algebraic properties, and use them to dis-

tinguish many of the stabilized automorphism groups. We also show that for

a full shift, the subgroup of the stabilized automorphism group generated by
elements of finite order is simple, and that the stabilized automorphism group

is an extension of a free abelian group of finite rank by this simple group.

1. Distinguishing automorphism groups

1.1. Automorphism groups and stabilized automorphism groups. Let (X,σ)
be a shift over a finite alphabet A, that is, X ⊂ AZ is closed and invariant under
the left shift σ : AZ → AZ. The automorphism group Aut(X,σ) of the shift is the
collection of homeomorphisms φ : X → X such that φ ◦ σ = σ ◦ φ. For many shifts
with complicated dynamical behavior, including any mixing shift of finite type, the
associated automorphism group is known to have a rich algebraic structure, for
example containing isomorphic copies of any finite group, the countably infinite
direct sum of copies of Z, and the free group on two generators (see [11, 6]). In
contrast to shifts of finite type, numerous results show that for many zero entropy
shifts, the automorphism group is more constrained (see for example [8, 10, 9]).

In spite of much attention, several natural and simple to state questions remain
open. Boyle, Lind, and Rudolph [6] raised the question of distinguishing (up to iso-
morphism) the automorphism groups of full shifts (Xn, σn) for various n (meaning
Xn = AZ and the alphabet A has n symbols). They ask if the automorphism group
of the full shift on 2 symbols is isomorphic to the automorphism group of the full
shift on 3 symbols, and more generally, for which p and q the groups Aut(Xp, σp)
and Aut(Xq, σq) are isomorphic as groups. For some choices of p and q, such as
when q = p2 for a prime p, one can show that the associated automorphism groups
are not isomorphic (this was explicitly pointed out for 2 and 4 in [6], and we make
note in Theorem 2.5 of the natural generalization using their method). But for
general p and q, this problem remains open.

While many groups are known to embed into the automorphism group of a shift
of finite type, the subgroup structure of the automorphism groups can not be used to
distinguish them, as shown by a result of Kim and Roush [17]. Namely, they showed
the automorphism group of any full shift can be embedded into the automorphism
group of any other full shift (in fact, it can be embedded into the automorphism
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group of any mixing shift of finite type). Thus any strategy for distinguishing two
automorphism groups relying on finding some subgroup of one that does not lie in
the other, must fail.

Taking a new approach to this problem, we define a certain stabilization of
the automorphism group, and show that many of these stabilized groups can be
distinguished (up to isomorphism) based only on the alphabet size. To simplify
notation, we suppress the associated space in the notation for the automorphism
group, writing Aut(σ) instead of Aut(X,σ). For a subshift (X,σ), we define the

stabilized automorphism group Aut(∞)(σ) to be

Aut(∞)(σ) =

∞⋃
k=1

Aut(σk).

Passing from the non-stabilized automorphism group to the stabilized setting offers
certain advantages, and some of our results are analogous to what happens in the
realm of algebraic K-theory. Given a ring R, one defines the stabilized general lin-
ear group GL(R) by taking the union of the finite general linear groups GLn(R).
An important subgroup of GLn(R) is En(R), the subgroup generated by elemen-
tary matrices (matrices which differ from the identity in at most one coordinate),
and in 1950, Whitehead proved that, upon stabilizing, the commutator of GL(R)
coincides with the stabilized subgroup of elementary matrices E(R). One way to
interpret this result is that, by stabilizing, a certain abstract subgroup which is
defined group-theoretically (in this case the commutator) may be identified with a
concrete naturally occurring subgroup: the group of stabilized elementary matri-
ces. In our setting, stabilizing produces analogous results. While the commutator of
Aut(σ) is not very well understood, we prove in Theorem 3.14 that, at the stabilized

level, the abelianization of Aut(∞)(σ) coincides with the abelianization of a certain

explicit quotient of Aut(∞)(σ): the dimension representation (see Section 3.4 for
definitions). Thus in many cases (e.g. when (X,σ) is a full shift), the commutator

subgroup of Aut(∞)(σ) coincides with a certain naturally occurring subgroup (the
subgroup of stabilized inert automorphisms).

Illustrating the stronger tools available in the stabilized setting, we are able
to distinguish many stabilized automorphism groups for which there are currently
no techniques to distinguish the (non-stabilized) counterparts. In particular, in
Section 3.5, we show that the stabilized automorphism groups of full shifts on
alphabets with different numbers of prime factors can not be isomorphic:

Theorem 1.1. Assume that (Xm, σm) and (Xn, σn) are the full shifts on m and
n symbols for some integers m,n ≥ 2 and assume that the stabilized automorphism

group Aut(∞)(σm) on m symbols and the stabilized automorphism group Aut(∞)(σn)
on n symbols are isomorphic. Then m and n have the same number of distinct prime
divisors.

In particular, this means that the stabilized automorphism groups on 2 symbols
and 6 symbols are not isomorphic; the analog of this result for the (non-stabilized)
automorphism groups on 2 and on 6 symbols remains open. However, our results
do not distinguish the stabilized automorphism groups with 2 and 3 symbols, nor
those with 6 and 12 symbols, and another method is needed to address this question
(see Question 3.23).
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In Section 3, we prove various properties of the stabilized automorphism group,
and compare them to the (non-stabilized) automorphism group of the shift. It is
easy to check that, as for the automorphism group, the stabilized automorphism
group is countable. We also prove that, like the automorphism group, the stabilized
automorphism group is not finitely generated; in contrast, though, the proof is quite
different from the proof for the non-stabilized case.

However, differences between the (non-stabilized) automorphism group and the
stabilized group appear quickly. For example, while Ryan’s Theorem [33, 34] states
that the center of the automorphism is exactly the powers of the shift, in Proposi-
tion 3.8 we show that the stabilized automorphism group has a trivial center.

A mixing shift of finite type (XA, σA) has a dense set of periodic points, and as
a result, the action of the automorphism group on XA is far from minimal, and
has many invariant measures. However, it follows from a result of Boyle, Lind, and

Rudolph [6] that the Aut(∞)(σA)-action on the space XA is minimal and uniquely
ergodic. We discuss this in Section 3.3.

An important tool for studying Aut(σ) when (X,σ) is a shift of finite type is
the dimension representation, a certain homomorphism from Aut(σ) to the group
of automorphisms of an ordered abelian group associated to (X,σ). The kernel of
this dimension representation, known as the subgroup of inert automorphisms, is
a large, algebraically rich subgroup of Aut(σ): for example, in the case of a full
shift, the automorphism group is an extension of a finitely generated free abelian
group by the inert subgroup. However, in general the inert subgroup is not well
understood. In Section 3 we show the dimension representation extends naturally
to a stabilized dimension representation, and that the abelianization of the group

Aut(∞)(σ) factors through this stabilized dimension representation. Similar to the
non-stabilized group Aut(σ), the kernel of the stabilized dimension representation,
which we refer to as the group of stabilized inerts, constitutes the core combinatorial

part of Aut(∞)(σ). In the classical (non-stabilized) setting, the inert subgroup
Inert(σ) ⊂ Aut(σ) is residually finite, and hence (since Inert(σ) is infinite) is far
from simple. In stark contrast to this, in Section 5, we prove:

Theorem 1.2. For any n ≥ 2, the group of stabilized inert automorphisms of the
full shift (Xn, σn) is simple.

In some sense, the stabilized automorphism groups capture different information
about the shift system than the non-stabilized automorphism groups. For example,
the stabilized automorphism groups for the full shift on 2 symbols and on 4 sym-
bols are isomorphic, whereas for the automorphism groups this is essentially the
only case in which these groups can be distinguished. However, there is often an
advantage in working with a stabilized object involving sufficiently high powers of
the transformation, rather than the original object. Examples of success in solving
problems in the stabilized setting, but which are still open in the non-stabilized
setting, are Wagoner’s Finite Order Generation Theorem [36] for stabilized inert
automorphisms, the classification [38, 15] of shifts of finite type up to topological
conjugacy, and the characterization [7] of the existence of a closing factor map be-
tween equal entropy mixing shifts of finite. Some of these results, in turn, have shed
light on problems in the non-stabilized setting, such as the use of shift equivalence
to address the problem of classification of shifts of finite type up to conjugacy.

In this direction, we use our results on the stabilized automorphism group to ad-
dress a question about the (non-stabilized) automorphism group. In [36], Wagoner,
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asked whether the group of inert automorphisms is always generated by simple au-
tomorphisms. Kim and Roush [19] answered Wagoner’s question by constructing a
particular shift of finite type which has an inert automorphism that is not a prod-
uct of simple automorphisms. Our methods (together with the realization results
in [21, 22]) also show that the same result holds for a wide class of shifts of finite
type; for example, any shift of finite type having at least three fixed points and
no points of least period two (we note this can also be deduced using some results
from [3], though our methods are quite different). However, we do not know if this
phenomena is even more general, and it is possible that the same result holds for
any shift of finite type (including the full shift). A related problem is posed in
Question 3.19.

In Section 4 we prove a stabilized version of the Kim-Roush Embedding Theorem;
namely, we show the stabilized automorphism group of any full shift embeds into
the stabilized automorphism group of any mixing shift of finite type. We use this to
show that, unlike the classical automorphism group, the stabilized automorphism
group of a mixing shift of finite type is never residually finite. We also prove along
the way that the stabilized group contains divisible subgroups, highlighting another
difference with the classical setting.

1.2. Guide to the paper. In Section 2 we give an overview of the tools we need
from the classical setting of (non-stabilized) automorphism groups. Most of these
results appear scattered throughout the literature, and we present them with the
goal of generalizing and adapting these results for the setting of stabilized automor-
phisms. Along the way, in Theorem 2.5 we write down the natural generalization of
the observation made by Boyle, Lind, and Rudolph [6] that Ryan’s Theorem may
be used to distinguish the automorphism groups of the full 2 shift and the full 4
shift.

In Section 3, we introduce the stabilized automorphism group. The basic proper-
ties are small variations on the classical setting, allowing us to set up and study the
stabilized versions of the center, the dimension representation, and the inert sub-
group. The innovations arise when we turn to studying the commutator subgroup
of the stabilized automorphism group. The key ingredient used throughout this
section that is not available in the classical setting is Wagoner’s Theorem, which
shows that the stabilized inert automorphisms are generated by simple automor-
phisms. Our analysis in particular leads to Theorem 3.17, which, in conjunction
with the constructions in [21, 22], gives a method to detect, in the classical non-
stabilized setting, the difference between the subgroup of inerts and the subgroup
generated by simple automorphisms. In Section 3.6, we study the abelianization of
the stabilized automorphism group. Using our characterization of the commutator,
we show how the abelianization can be used to distinguish many automorphism
groups in the stabilized setting.

Section 4 continues the extension of various properties from the classical setting
to the stabilized automorphism group. In particular, we prove a stabilized version
of the Kim-Roush Embedding Theorem. The proof adapts the original construction
used by Kim and Roush, with some necessary modifications.

The most difficult arguments of the paper are in Section 5, where we show that
the group of stabilized inert automorphisms of a full shift is simple. For a given shift
of finite type presented by a labeled graph Γ, the group of stabilized inerts contains a
certain locally finite subgroup of stabilized simple graph automorphisms associated
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to the presenting graph Γ. In the case of a full shift, this locally finite subgroup
turns out to be simple. By a result of Boyle, this locally finite subgroup, together
with the shift, generates all of the stabilized inert subgroup. The key ingredient
for us then is Lemma 5.2, which shows that any non-trivial normal subgroup of the
stabilized inert automorphisms must have non-trivial intersection with the subgroup
of stabilized simple graph automorphisms. The proof of Lemma 5.2 occupies the
majority of the section.

Acknowledgement. The authors gratefully thank Mike Boyle for helpful com-
ments.

2. Background and notation

2.1. Symbolic Dynamics. Assume thatA is a finite set endowed with the discrete
topology; we callA the alphabet. The spaceAZ, endowed with the product topology,
is a compact, metrizable space. An element x ∈ AZ is a bi-infinite sequence over
the alphabet A, and we write x = (xi)i∈Z with each xi ∈ A. It is easy to check that
the left shift σ : AZ → AZ defined by (σx)i := xi+1 is a homeomorphism of AZ to
itself, and the dynamical system (AZ, σ) is called the full A-shift. While the choice
of symbols in the alphabet is irrelevant, we often want to distinguish different full
shifts by the size of the alphabet A, and so to emphasize the size of the alphabet,
we write the full shift as (Xn, σn) when |A| = n.

A subshift X ⊂ AZ is a closed, σ-invariant set X, and we use the shorthand shift
to refer to a subshift. We write (X,σX) for this system, though when the context
is clear we simplify this and just write (X,σ).

If w = w1 . . . wn ∈ An, then we call w a word of length n. If w is a word of
length n, then the set [w] defined by

[w] = {x ∈ AZ : xi = wi for i = 1, . . . n}

is the cylinder set determined by w. If (X,σ) is a subshift, then the language L(X)
of X is defined by

L(X) = {w ∈
∞⋃
n=1

An : [w] ∩X 6= ∅}.

The cylinder sets associated to words in L(X) generate the topology of the space
X.

If x ∈ X and k,m ∈ Z with m > k, then x[k,m] denotes the word xkxk+1 . . . xm of
consecutive entries in x. Analogously, x(−∞,m] denotes the infinite word . . . xm−1xm,
and we similarly define x[k,∞).

A shift (X,σ) is irreducible if for all words u, v ∈ L(X) there exists some w ∈
L(X) such that uwv ∈ L(X), and the shift is mixing if for all u, v ∈ L(X), there
exists N ∈ N such that for all n ≥ N there is a word w ∈ L(X) of length n such that
uwv ∈ L(X). Irreducibility of the shift (X,σ) is equivalent to the system (X,σ)

being transitive: there exists some x ∈ X such that the orbit closure {σnx}n∈N is
all of X.

Two systems (X,σX) and (Y, σY ) are (topologically) conjugate if there exists a
homeomorphism h : X → Y such that h ◦ σX = σY ◦ h and we refer to the map h
as a conjugacy.

A shift of finite type is a subshift whose language consists of all words (over some
finite alphabet) which do not contain some given finite list of words. Alternatively,
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a shift of finite type can be defined by an n × n adjacency matrix A = (ai,j) over
Z+ as follows. Given A, we define ΓA to be a graph with n vertices and ai,j edges
between vertices i and j. Labeling the set of edges, the associated shift of finite
type, which we denote by (XA, σA), consists of bi-infinite walks through edges in
ΓA. Any shift of finite type (X,σ) is conjugate to a shift of finite type (XA, σA)
for some Z-matrix A.

A shift of finite type (X,σ) is mixing if and only if it is conjugate to a shift of
finite type (XA, σA) for which the Z+-matrix A is primitive, meaning there exists
K such that every entry of AK is positive. A shift of finite type (X,σ) is irreducible
if and only if it is conjugate to some (XA, σA) for which A is an irreducible matrix,
i.e. for any entry Ai,j in A there exists k such that Aki,j is positive.

Standing Assumption: Unless otherwise noted, we always assume that any
shift of finite type (X,σ) has positive entropy htop(X): in terms of the language,
this means that

htop(X) = lim
n→∞

log |{w ∈ L(X) : |w| = n}|
n

> 0.

In terms of a matrix presentation, if A is an irreducible matrix and (X,σ) is con-
jugate to (XA, σA), then h(σ) = h(σA) = log λA where λA is the Perron-Frobenius
eigenvalue of the matrix A.

It follows from the Curtis-Hedlund-Lyndon Theorem [11] that any such conju-
gacy is given by a sliding block code, meaning there exists some radius r ∈ N such
that for all x ∈ X, the value h(x)i only depends on the entries xi−r . . . xi . . . xi+r.
For example, the shift σ is given by a sliding block code with r = 1.

2.2. Automorphism groups. Given a compact space X, let Homeo(X) denote
the group of all homeomorphisms from X to itself (with group operation given by
composition). It is obvious that for a shift system (X,σ) one has σ ∈ Homeo(X),
and the centralizer of σ in Homeo(X) is called the automorphism group of the
subshift (X,σ). As we consider various shift spaces, we denote the group (under
composition) of all automorphisms of a subshift (X,σ) by Aut(X,σ), and when the
shift is clear from the context, we write this as Aut(σ). So the automorphism group
of the full shift on n letters is denoted by Aut(σn).

A topological conjugacy h : (X,σX)→ (Y, σY ) between shift spaces (X,σX) and
(Y, σY ) induces an isomorphism h∗ : Aut(X,σX)→ Aut(Y, σY ) defined by

h∗(φ) = h ◦ φ ◦ h−1.
For any subshift (X,σ), the subgroup 〈σ〉 generated by the shift always lies, by

definition, in the center Z(Aut(X)) of the automorphism group Aut(X); when X
is infinite, the subgroup generated by σ is isomorphic to Z. For an irreducible shift
of finite type, this subgroup is the whole center:

Theorem 2.1 (Ryan [33, 34]). If (X,σ) is an infinite irreducible shift of finite
type, then Z(Aut(X)) = 〈σ〉.

As observed in [6], this has an immediate application to distinguishing automor-
phism groups of full shifts, using arithmetic properties of the size of the alphabet.

Corollary 2.2. For any prime p, Aut(σp) is not isomorphic to Aut(σpp).

Proof. Fix a prime p. It is easy to check that σpp ∈ Aut(σpp) has a pth root,
meaning there exists φ ∈ Aut(σpp) such that φp = σpp (for example, one can
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construct such an φ using the fact that (Xpp , σpp) and (Xp, σ
p
p) are topologically

conjugate).
If Aut(σp) and Aut(σpp) are isomorphic, then any isomorphism maps the center

isomorphically onto the center. By Ryan’s Theorem, this means that σp ∈ Aut(σp)

is mapped to σ±1pp ∈ Aut(σpp). Since σpp has a pth root, this implies either σp
or σ−1p has a pth root. However, we claim that neither σp nor σ−1p does. Indeed,

suppose there exists ψ ∈ Aut(σp) such that ψp = σp or ψp = σ−1p ; we’ll suppose
ψp = σp, as the other case is similar. The system (Xp, σp) has pp−p points of least
period p, and hence pp−1 − 1 orbits of length p. Since p does not divide pp−1 − 1,
there exists some 1 ≤ i < p, 0 ≤ j < p, such that ψi(x) = σjp(x) for some period p
point x. But this implies

σip(x) = ψpi(x) = σpjp (x) = x

which, since i < p, is a contradiction. �

We prove a more general result along these lines in Theorem 2.5.

2.3. The dimension representation. Krieger [23, 24] defined a dimension triple
(GA,G+A , δA) associated to a shift of finite type (XA, σA), where GA is an abelian

group, G+A is a positive cone in GA (i.e. a subsemigroup of GA containing 0 which

generates GA), and δA is a group automorphism of the pair (GA,G+A ). A conjugacy
between shifts of finite type induces a corresponding isomorphism of their respective
dimension triples; since each element of Aut(σA) is a conjugacy from (XA, σA) to
itself, this gives rise to the dimension representation

πA : Aut(σA)→ Aut(GA).

To define this representation precisely in the manner suitable for our purposes, we
briefly outline two definitions of the dimension triple (GA,G+A , δA); the first is an
intrinsic definition given by Krieger, and the second is more algebraic. These two
definitions produce isomorphic objects and this is described in [27, Section 7.5]; our
presentation closely follows the one given there.

Assume that A is an irreducible k×k matrix with entries in Z+ and let (XA, σA)
denote the associated shift of finite type. We further assume that (XA, σA) has
positive topological entropy htop(σA) > 0, and note that htop(σA) = log λA where
λA denotes the Perron-Frobenius eigenvalue of A. The eventual range R(A) of A
is the subspace of Qk defined by

R(A) =

∞⋂
j=1

QkAj

(throughout we assume the matrices act on row vectors). The dimension triple
(GA,G+A , δA) associated to A consists of the abelian group GA, the semigroup G+A ⊂
GA, and the automorphism δA of GA, where

(i) GA = {x ∈ R(A) : xAj ∈ Zk for some j ≥ 0}.
(ii) G+A = {x ∈ R(A) : xAj ∈ (Z+)k for some j ≥ 0}.
(iii) δA(x) = xA.

When A = (n), we usually simply write (Gn,G+n , δn) instead of (G(n),G+(n), δ(n)).
We now describe the intrinsic definition of the dimension triple. An m-ray is

defined to be a subset of XA of the form

R(x,m) = {y ∈ XA : y(−∞,m] = x(−∞,m]}
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for some x ∈ XA and m ∈ Z, and an m-beam is a finite union of m-rays. A ray is
defined to be an m-ray for some m ∈ Z, and a beam is an m-beam for some m ∈ Z.
Note that if U is an m-beam for some m ∈ Z, then U is also an n-beam for any
n ≥ m. Given an m-beam

U =

j⋃
i=1

R(x(i),m),

let vU,m ∈ Zk denote the vector whose J-th component is the cardinality of the set

{x(i) ∈ U : the edge corresponding to x(i)m ends at state J}.

Beams U and V are said to be equivalent if there exists some m ∈ Z such that
vU,m = vV,m, and we use [U ] to denote the equivalence class of a beam U . Since
A is irreducible and 0 < htop(σA) = log λA, given beams U, V , there exists beams
U ′, V ′ such that

[U ] = [U ′], [V ] = [V ′], and U ′ ∩ V ′ = ∅.

Let D+
A denote the abelian semigroup whose elements are equivalence classes of

beams endowed with the operation defined by

[U ] + [V ] = [U ′ ∪ V ′].

Letting DA denote the group completion of D+
A (thus elements of DA are formal

differences [U ]− [V ]), the map dA : DA → DA induced by

dA([U ]) = [σA(U)]

is a group automorphism ofDA. This defines Krieger’s dimension triple (DA, D
+
A , dA).

An automorphism φ ∈ Aut(XA, σA) induces an automorphism

φ∗ : (DA, D
+
A , dA)→ (DA, D

+
A , dA)

by setting

φ∗([U ]) = [φ(U)].

Here by a morphism of a triple, we mean a morphism preserving all the relevant
data given by the group, the subsemigroup, and the group automorphism associated
to DA or GA. For example, an automorphism Φ ∈ Aut(GA,G+A , δA) is a group

automorphism Φ: GA → GA taking G+A onto G+A such that Φ ◦ δA = δA ◦ Φ.
The relation between these two definitions is settled by the following.

Proposition 2.3 (see [27, Theorem 7.5.13]). Assume (XA, σA) is a shift of finite
type. The map θ : D+

A → G
+
A induced by the map

θ([U ]) = δ−k−nA (vU,nA
k),

where U is an n-beam, is a semigroup isomorphism, and its completion is a group
isomorphism θ : DA → GA such that

θ ◦ dA = δA ◦ θ.

In other words, this proposition means that θ induces an isomorphism of triples

θ : (DA, D
+
A , dA)→ (GA,G+A , δA).
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For φ ∈ Aut(σA), let Sφ : (GA,G+A , δA)→ (GA,G+A , δA) denote the automorphism
of the dimension triple such that the diagram

DA
θ //

φ∗

��

GA
Sφ

��
DA

θ // GA
commutes. We can now define the dimension representation

πA : Aut(σA)→ Aut(GA,G+A , δA)

by setting πA(φ) = Sφ.

2.4. An application of the dimension representation. As usual, ω(n) denotes
the number of distinct prime divisors of n (counted without multiplicity).

The following result appears implicitly in [6]:

Proposition 2.4. For a full shift (Xn, σn) we have

Aut(Gn,G+n , δn) ∼= Zω(n).
Moreover, the dimension representation πn : Aut(σn) → Aut(Gn,G+n , δn) is surjec-
tive.

In the proof and in the sequel, if H ⊂ R is a subgroup and n ≥ 1, we use the
notation mn to refer to the map from H to itself given by a 7→ n · a.

Proof. For a full shift (Xn, σn), there is an isomorphism of triples

(Gn,G+n , δn) ∼= (Z[ 1n ],Z+[ 1n ],mn).

Then it is straightforward to check that

Aut(Z[ 1n ],Z+[ 1n ],mn) ∼= Zω(n)

is generated by the maps {mp : p is a prime dividing n}.
For the second part, we write the prime factorization of n as n =

∏ω(n)
i=1 paii with

pi prime. There exists a conjugacy h : (Xn, σn) →
(∏ω(n)

i=1 Xpi ,
∏ω(n)
i=1 σaipi

)
and we

let h∗ : Aut(σn) → Aut(
∏ω(n)
i=1 σaipi ) denote the induced isomorphism of automor-

phism groups. For each i, let φi denote the automorphism of
(∏ω(n)

i=1 Xpi ,
∏ω(n)
i=1 σaipi

)
which acts by σpi in the ith coordinate and the identity in the other coordinates.
Then the image of the automorphisms h−1∗ (φi) under πn generate Aut(Gn). �

For a ∈ N, let R(a) = {k ∈ N : a1/k ∈ N} denote the non-negative integral roots
of a. To the authors’ knowledge, the only known method for distinguishing auto-
morphism groups of full shifts relies on Ryan’s Theorem [33], which characterizes
the center of the group of Aut(σA). This technique was explicitly mentioned in [6]
for the full shifts on 2 and 4 symbols. The following result, a natural generalization
of this, is not altogether new; we include it since it could not be found explicitly
in the literature. Our argument uses the dimension representation; an alternative
proof may be given using [26, Theorem 8].

Theorem 2.5. Let m,n ≥ 2 and suppose Aut(σm) ∼= Aut(σn). Then R(m) =
R(n). In particular, for any prime p and k ≥ 2, Aut(σp) and Aut(σpk) are not
isomorphic.
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Proof. Let k ∈ R(m), so there exists a ∈ N such that ak = m. Then (Xm, σm)
is topologically conjugate to (Xa, σ

k
a), and in particular, there exists φ ∈ Aut(σm)

such that φk = σm. Suppose Ψ: Aut(σm) → Aut(σn) is an isomorphism and let
φ′ = Ψ(φ). By Ryan’s Theorem (Theorem 2.1), Ψ(σm) = σ±1n , so (φ′)k = σ±1n .
Applying the dimension representation gives

k(πn(φ′)) = πn((φ′)k) = πn(σ±1n ) = ±


v1
v2
...
vr

 ∈ Zω(n).

Since πn(φ′) ∈ Zω(n), each vi must be divisible by k. Let wi = vi
k . Writing n =∏ω(n)

i=1 pvii for some primes pi, it follows from Proposition 2.4 that n =
(∏ω(n)

i=1 pwii

)k
so k ∈ R(n). Thus R(m) ⊂ R(n), and the same argument shows R(n) ⊂ R(m).
Thus R(m) = R(n). �

In particular, it follows that the group Aut(σ9) is not isomorphic to the group
Aut(σ27), as R(9) 6= R(27).

2.5. Inert and Simple Automorphisms. An automorphism φ ∈ Aut(σA) is said
to be inert if it lies in the kernel of the dimension representation, and we denote the
subgroup of inert automorphisms by Inert(σA). A particularly important collection
of inert automorphisms is the class of simple automorphisms, first introduced by
Nasu [29]. We recall the definition.

If Γ is a directed graph, we call a graph automorphism of Γ which fixes every
vertex a simple graph symmetry of the graph Γ. We use the term graph symmetry
instead of graph automorphism to avoid confusion between automorphisms of a
graph and automorphisms of a shift.

Let (XA, σA) be a shift of finite type presented by a matrix A over Z+ with
associated directed labeled graph ΓA, and suppose τ is a simple graph symmetry
of ΓA. Then τ induces an automorphism τ̃ ∈ Aut(σA) given by a 1-block code, and
any automorphism in Aut(σA) which is induced by such a graph symmetry is called
a simple graph automorphism. An automorphism φ ∈ Aut(σA) is called simple if
there exists a shift of finite type (XB , σB), a conjugacy h : (XA, σA) → (XB , σB),
and a simple graph automorphism τ̃ ∈ Aut(XB , σB) such that

φ = h−1∗ (τ̃) = h−1 ◦ τ̃ ◦ h.

Note that, by construction, any simple automorphism is of finite order. It is
straightforward to check that the subgroup of Aut(σA) generated by simple au-
tomorphisms forms a normal subgroup contained in Inert(σA), and we denote this
subgroup by Simp(σA).

There exist irreducible shifts of finite type (XA, σA) for which Simp(σA) is a
proper subgroup of Inert(σA); see [19]. In general, the difference between Simp(σA)
and Inert(σA) for an irreducible shift of finite type is not well understood; for
example, it is not known whether for a full shift (Xn, σn) the groups Simp(σn) and
Inert(σn) agree.

However, Wagoner in [36] showed that, upon passing to sufficiently large powers
of the shift, inert automorphisms can be written as products of simple automor-
phisms (an alternate proof was given by Boyle in [2]).
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Theorem 2.6 (Wagoner [36]). If φ is an inert automorphism of a mixing shift of
finite type (XA, σA), then there exists N such that for all n ≥ N , φ can be written
as a product of simple automorphisms lying in Aut(XA, σ

n
A).

3. The stabilized automorphism group

3.1. First properties. For a subshift (X,σX), let Aut(k)(σX) denote the central-

izer of σkX in the group Homeo(X). Thus Aut(k)(σX) is precisely Aut(X,σkX) and

Aut(k)(σX) is a subgroup of Aut(km)(σX) for all k,m ≥ 1.

Definition 3.1. If (X,σX) is a subshift, define the stabilized automorphism group

Aut(∞)(σX) to be

Aut(∞)(σX) =

∞⋃
k=1

Aut(k)(σX),

where the union is taken in Homeo(X).

For the full shift (Xn, σn) on n symbols, we denote the stabilized automorphism

group by Aut(∞)(σn).
It is straightforward to verify the following:

Lemma 3.2 (Stabilized Curtis-Lyndon-Hedlund Theorem). Let (X,σX) be a shift

with alphabet A and let φ ∈ Aut(k)(σX). Then there exist natural numbers k and
r, and k block maps βi : A2r+1 → A for i = 0, 1, . . . , k − 1 such that

φ(x)z = βz mod k(xz−r, . . . , xz, . . . , xz+r).

Note that, the case that all βi are identical yields an element that commutes
with σX .

One concludes, either from the definition or using Lemma 3.2 that Aut(∞)(σX)
is a countable group that contains the automorphism group Aut(σX).

For some subshifts, nothing new arises in the stabilized automorphism group:

Example 3.3. Let (X,σX) be a minimal shift associated to an irrational rotation:
for example, such a shift can be defined by fixing an irrational α ∈ (0, 1), considering

T (x) = x+ α (mod 1),

and using the coding of the orbit of 0 defined by setting the nth entry to be 0 if
Tn(x) ∈ [0, α) and 1 if Tn(x) ∈ [α, 1). This gives rise to a Sturmian shift (see for
example [32, Chapter 6] for background on Sturmian shifts), and Aut(σX) ∼= Z is
generated by the shift σX (see [31]).

The system (X,σX) has a single pair of asymptotic orbits O1,O2, and for each
k ≥ 1 the system (X,σkX) then has k pairs of asymptotic orbits given by the

collection {σiX(O1), σiX(O2)}k−1i=0 . Using [10, Lemma 2.3], it follows that any auto-

morphism in Aut(σkX) is of the form σjX for some j ∈ Z, and hence

Aut(σkX) ∼= Z = 〈σX〉.
Thus, in this case, for any k,m ≥ 1 we have

(1) Aut(k)(σX) //

∼=
��

Aut(km)(σX)

∼=
��

Z
id

// Z
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and Aut(∞)(σX) = Aut(σX) ∼= Z. Moreover, these groups are not just abstractly
both isomorphic to Z but are the same as subgroups of Homeo(X), as they are all
equal to Aut(σX).

However, for a shift of finite type, each inclusion in the definition of the stabilized
automorphism group is strict:

Lemma 3.4. If (XA, σA) is an infinite irreducible shift of finite type, then for any

k ∈ N and any m ≥ 2, the subgroup Aut(k)(σA) is a proper subgroup of Aut(km)(σA).

Proof. By Ryan’s Theorem (Theorem 2.1), the center of Aut(km)(σA) = Aut(σkmA )

is exactly 〈σkmA 〉. Thus there exists some φ ∈ Aut(km)(σA) such that φ does not
commute with σkA. �

In Proposition 3.8, we make further use of Ryan’s Theorem and prove a stronger
result, showing that for an irreducible shift of finite type (X,σA), we have that
Aut(σA) is not abstractly isomorphic to Aut∞(σA).

The following proposition follows immediately from the definition of the stabi-
lized automorphism group:

Proposition 3.5. For any shift (X,σ) and k ≥ 1, Aut(∞)(σk) = Aut(∞)(σ).

It is well known that if two shifts are conjugate, then their automorphism groups
are isomorphic, and the same holds true for their stabilized automorphism groups.
In fact, a stronger result holds in the stabilized setting, and to make this precise,
we define a weaker notion that suffices for the associated groups to be isomorphic.

Recall that (X,σX) and (Y, σY ) are eventually conjugate if there exists some
K ∈ N such that for all k ≥ K, (X,σkX) and (Y, σkY ) are conjugate. We define a
weaker notion: we say that the systems (X,σX) and (Y, σY ) are rationally conjugate

if there exist j, k ≥ 1 such that the systems (X,σjX) and (Y, σkY ) are conjugate. For
example, the systems (X2, σ2) and (X4, σ4) are rationally conjugate but are not
eventually conjugate.

Proposition 3.6. If the systems (X,σX) and (Y, σY ) are rationally conjugate, then

Aut(∞)(σX) and Aut(∞)(σY ) are isomorphic.

Proof. If h : (X,σjX)→ (Y, σkY ) is a conjugacy then h∗ gives rise to an isomorphism

h∗ : Aut(∞)(σjX)→ Aut(∞)(σkY ).

By Proposition 3.5, this implies Aut(∞)(σX) and Aut(∞)(σY ) are isomorphic. �

In particular, since (X4, σ4) is conjugate to (X2, σ
2
2), it follows that Aut(∞)(σ2)

and Aut(∞)(σ4) are isomorphic, in constrast to the non-stabilized setting, where
Aut(σ2) and Aut(σ4) are not isomorphic (see Theorem 2.5).

Recall that two matrices A and B with entries in Z+ are said to be shift equivalent
(over Z+) if there exists an integer m ≥ 1 and matrices R and S over Z+ such that

AR = RB, SA = BS, Am = RS, and Bm = SR.

If A and B are irreducible Z+-matrices which are shift equivalent then the systems
(XA, σA), (XB , σB) are eventually conjugate, and Kim and Roush [15] showed the
converse holds. We use this to show:
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Proposition 3.7. Suppose (XA, σA) and (XB , σB) are irreducible shifts of finite

type defined by Z+-matrices A,B. If A and B are shift equivalent, then Aut(∞)(σA)

and Aut(∞)(σB) are isomorphic.

Proof. By Kim and Roush [15, 16], matrices A and B are shift equivalent if and
only if the systems (XA, σA) and (XB , σB) are eventually conjugate. The result
then follows from Proposition 3.6. �

3.2. The center. Ryan’s Theorem (Theorem 2.1) shows that for any irreducible
shift of finite type, the center is exactly the powers of the shift. In contrast, the
center is trivial in the stabilized automorphism group:

Proposition 3.8. Suppose (XA, σA) is an infinite irreducible shift of finite type.

Then the center Z(Aut(∞)(σA)) of Aut(∞)(σA) is trivial, and the group Aut(∞)(σA)
is not finitely generated.

Proof. Suppose φ ∈ Z(Aut(∞)(σA)) and choose k ≥ 1 such that φ ∈ Aut(k)(σA).

Then φ ∈ Z(Aut(k)(σA)), so by Ryan’s Theorem we have φ = σkmA for some m ∈ Z.

However if σkmA = φ ∈ Z(Aut(∞)(σA)), then σkmA ∈ Z(Aut(2km)(σA)) = 〈σ2km
A 〉, so

m = 0.
For any irreducible shift of finite type (XA, σA), any finitely generated subgroup

of Aut(∞)(σA) has nontrivial centralizer (as each finitely generated subgroup is

included in Aut(k)(σA) for some k, for which σkA would be in the centralizer). By
the previous part, it follows that for any infinite irreducible shift of finite type, the

group Aut(∞)(σA) is not finitely generated. �

3.3. The Aut(∞)(σA)-action on XA. Let (XA, σA) be a mixing shift of finite type
and let P (XA) denote the set of σA-periodic points in XA. Then both Aut(σA) and

Aut(∞)(σA) act on the set P (XA). While the action of Aut(σA) on P (XA) is far
from transitive (since any φ ∈ Aut(σA) must preserve the order of a σA-periodic

point), it follows from [5, Theorem 3.6] that Aut(∞)(σA) acts highly transitively on
the σA-periodic points of XA (recall an action of a group G on a countable set X
is said to be highly transitive if for all k ≥ 1 it is transitive on the set of ordered
k-tuples of distinct elements in X).

It is straightforward to check that the action of Aut(σA) on XA is not mini-
mal, since there are periodic points. Similarly, there are many Aut(σA)-invariant
probability measures, including atomic measures supported on periodic points, and
the measure of maximal entropy. However, the minimal components and Aut(σA)-
invariant measures are essentially classified in [6, Sections 9 and 10]. Using this, we
deduce:

Proposition 3.9. If (XA, σA) is a mixing shift of finite type, then Aut(∞)(σA)
acts highly transitively on the set of σA-periodic points in XA, and the action

of Aut(∞)(σA) on XA is minimal and uniquely ergodic. Moreover, the unique

Aut(∞)(σA)-invariant probability measure is given by the measure of maximal en-
tropy for the system (XA, σA).

Proof. It follows from [5, Theorem 3.6] that Aut(∞)(σA) acts highly transitively on
the σA-periodic points of XA. Given this, the minimality, unique ergodicity, and
claim regarding the measure of maximal entropy then follow from [6, Theorem 9.2
and Corollary 10.2]. �
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3.4. The stabilized dimension representation. Let A be a Z+-matrix, and
recall we have defined the dimension representation

πA : Aut(σA)→ Aut(GA,G+A , δA).

For any k ≥ 1, we also have a homomorphism

π
(k)
A : Aut(σkA)→ Aut(GAk ,G+Ak , δAk).

Note that in general we have (GA,G+A ) = (GAk ,G+Ak) for all k ∈ N. However the

dimension triples (GA,G+A , δA) and (GAk ,G+Ak , δ
k
A) are not isomorphic, as there is

no isomorphism that intertwines the maps δA and δkA. For each k ≥ 1 the map

π
(k)
A : Aut(k)(σA)→ Aut(GA,G+Ak , δAk) sends σkA to δkA, and the image of π

(k)
A lands

in the centralizer of δkA, so in fact we have a homomorphism

π
(k)
A : Aut(k)(σA)→ Aut(GA,G+A , δ

k
A).

It follows from the definitions that for all k ≥ 1, Aut(GA,G+A , δA) can be viewed

naturally as a subgroup of Aut(GA,G+A , δkA), and we can define the stabilized group
of automorphisms of the dimension triple by setting

Aut(∞)(GA,G+A , δA) =

∞⋃
k=1

Aut(GA,G+A , δ
k
A).

Equivalently, Aut(∞)(GA,G+A , δA) is the union of the centralizers of δkA in the group

of automorphisms of the pair (GA,G+A ), that is, all automorphisms of the group GA,

which preserve G+A .
Furthermore, as remarked in [6, p. 87], for k ≥ 1, the restriction of the map

π
(k)
A : Aut(k)(σA)→ Aut(GAk ,G+Ak , δ

k
A) = Aut(GA,G+A , δ

k
A)

to Aut(σA) ⊂ Aut(σkA) coincides with the map πA : Aut(σA) → Aut(GA,G+A , δA).
We can thus define the stabilized dimension representation

π
(∞)
A : Aut(∞)(σA)→ Aut(∞)(GA,G+A , δA).

In what follows, we use the shorthand notation Aut(∞)(GA) to refer to the group

Aut(∞)(GA,G+A , δA).

Example 3.10. Consider the case of the full 3-shift, presented via the matrix A =
(3). For all k ∈ N, we have G3 = G3k = Z[ 13 ]. In this case Aut(G3k) = Aut(G3) ∼= Z
for any k, and

π
(k)
3 : Aut(k)(σ3)→ Aut(G3) ∼= Z

with π
(k)
3 (σ3) = δ3.

Recall ω(n) denotes the number of distinct prime factors of n, and the maps mp
are defined by mp(x) = p · x.

Proposition 3.11. For the full shift (Xn, σn), we have

Aut(∞)(Gn) ∼= Aut(Gn) ∼= Zω(n)

is generated by the maps {mp : p is a prime dividing n}.

Proof. The statement follows immediately from Proposition 2.4, and the fact that
the maps mp generate Aut(Z[ 1n ],Z+[ 1n ], δn) ∼= Zω(n). �
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In the case of a full shift (Xn, σn), the classical dimension representation

πn : Aut(σn)→ Aut(Gn)

is surjective (see Proposition 2.4). However, in the general setting of mixing shifts of
finite type, the dimension representation need not be surjective: Kim, Roush, and
Wagoner [20] give an example of a mixing shift of finite type for which the dimension
representation is not surjective, and in the general setting of mixing shifts of finite
type, the question of when the dimension representation is surjective remains open.
In the stabilized setting, however, the question has a satisfying answer, as shown
in [6] (our terminology is different, but this is an immediate translation of their
result):

Theorem 3.12 (Boyle, Lind and Rudolph [6, Theorem 6.8]). For any mixing shift
of finite type (XA, σA), the stabilized dimension representation

π
(∞)
A : Aut(∞)(σA)→ Aut(∞)(GA)

is surjective.

As in the standard setting, we define the group of stabilized inert automorphisms

to be the kernel of π
(∞)
A , and we denote this group by

Inert(∞)(σA) = kerπ
(∞)
A .

It follows immediately from the definitions that

Inert(∞)(σA) =

∞⋃
k=1

Inert(σAk).

We show later that one of the many differences between stabilized and standard
automorphism groups lies in the structure of their corresponding inert subgroups.

In particular, in Section 5 we prove that, in the case of a full shift, Inert(∞)(σn) is
always simple. This is in stark contrast to the classical inert subgroup Inert(σn),
which is residually finite. Using the stabilized version of the Kim-Roush Em-
bedding proved in Section 4, it follows that for any mixing shift of finite type

(XA, σA), Inert(∞)(σA) always contains an infinite simple group; in particular,

Inert(∞)(σA) is never residually finite (see Section 4.2). We note that, as a conse-

quence, Inert(∞)(σA) and Inert(σA) are not isomorphic as groups (in fact, it follows

that Inert(∞)(σA) does not even embed into Inert(σA)).
Rewriting Wagoner’s Theorem (Theorem 2.6) in our terminology, we have:

Theorem 3.13 (Wagoner (Theorem 2.6 rephrased)). If (XA, σA) is a mixing shift

of finite type, then Inert(∞)(σA) is generated by simple automorphisms.

3.5. The commutator subgroup. The goal of this section is to prove:

Theorem 3.14. Let (XA, σA) be a mixing shift of finite type. Then

Inert(∞)(σA) ⊆ [Aut(∞)(σA),Aut(∞)(σA)].

If Aut(∞)(GA) is abelian, then equality holds. In particular, for a full shift we have

Inert(∞)(σn) = [Aut(∞)(σn),Aut(∞)(σn)].
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Note that, in the case where Aut(∞)(GA) is torsion-free (e.g. a full shift), Wag-
oner’s Theorem as phrased in Theorem 3.13 characterizes the dynamical object
given by the group of stabilized inert automorphisms via an abstract property of
the group: the subgroup generated by the elements of finite order. Theorem 3.14
gives a general relation between an abstract group property, this time the commu-
tator, and the dimension representation of the symbolic system.

The following lemma is the technical tool needed for the proof of Theorem 3.14:

Lemma 3.15. Let (XA, σA) be a shift of finite type and let τ be a simple graph
symmetry of the graph ΓA which permutes two distinct edges e and f between the
vertices i and j. Let τ̃ denote the automorphism of (XA, σA) induced by τ . Then
τ̃ ∈ [Aut(σ2

A),Aut(σ2
A)].

Proof. We consider (XA, σ
2
A) as a shift on the alphabet

(
a0
a1

)
where a0a1 is an

admissible word in XA. Define the zero-block code φ0 in Aut(σ2
A) by

φ0 :

(
a0
a1

)
7→
(
τ(a0)
a1

)
Note that since τ̃ is a simple graph automorphism, it follows that φ0 is an

automorphism of (XA, σ
2
A). Then in Aut(σ2

A), we have

�(2) τ̃ = φ0σAφ
−1
0 σ−1A .

For a set X, let Sym(X) denote the group of all permutations of the set X.

Theorem 3.16. Let (XA, σA) be a shift of finite type and let φ ∈ Aut(σA) be a
simple automorphism. Then φ ∈ [Aut(σ2

A),Aut(σ2
A)].

Proof. Since φ is simple, there exists some shift of finite type (XB , σB) and a conju-
gacy h : (XA, σA)→ (XB , σB) such that h∗(φ) is a simple graph automorphism. Set
τ̃ = h∗(φ). Since h also induces an isomorphism between Aut(σ2

A) and Aut(σ2
B), it

suffices to show that τ̃ ∈ [Aut(σ2
B),Aut(σ2

B)].
Let Ei,j denote the set of edges between vertices i, j in the graph ΓB . There

exist permutations τi,j ∈ Sym(Ei,j) such that τ̃ is induced by the simple graph
symmetry

∏
i,j τi,j . For each pair i, j, the permutation τi,j is given by a product of

transpositions in Sym(Ei,j). By Lemma 3.15, the automorphism induced by each
of these transpositions lies in [Aut(σ2

B),Aut(σ2
B)], so τ̃ lies in [Aut(σ2

B),Aut(σ2
B)]

as well. �

We now use Theorem 3.16 to complete the proof of Theorem 3.14:

Proof of Theorem 3.14. Theorem 3.16 implies that any simple automorphism lies

in the commutator. By Theorem 3.13, the group Inert(∞)(σA) is generated by
simple automorphisms, proving the first part.

To check the second statement, when Aut(∞)(Gn) is abelian, the dimension rep-
resentation

π(∞)
n : Aut(∞)(σn)→ Aut(∞)(Gn)

factors through the abelianization of Aut(∞)(σA). Thus

[Aut(∞)(σA),Aut(∞)(σA)] ⊆ Inert(∞)(σA). �
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As a second corollary of Theorem 3.16, we can in some cases show that, in
the non-stabilized automorphism group Aut(σA), a particular inert automorphism
can not lie in the subgroup generated by simple automorphisms. Such results
can also be deduced from [3, Theorem 2], where the possible actions of simple
automorphisms on finite subsystems of the shift were classified. Together with the
powerful realization result in [21, 22], this provides a large class of examples where
the answer to Wagoner’s question 3.17 is no:

Theorem 3.17. Let (XA, σA) be a shift of finite type and suppose there exists
odd k ∈ N such that XA has no σA-periodic points of least period 2k and further
assume that there are at least three distinct orbits of least period k. Then the group
generated by simple automorphisms is a proper subgroup of Inert(σA).

Proof. By [21, 22, Main Theorem], there exists φ ∈ Inert(σA) such that the action
of φ on the σA-orbits of length k consists of a 3-cycle. We show that φ can not
be written as a product of commutators in Aut(σ2

A) of the form given in (2). By
Theorem 3.16, it follows that φ 6∈ Simp(σA).

Suppose γ ∈ Aut(σ2
A). Since k is odd, σ2

A maps length k σA-orbits to themselves.
Furthermore, since there are no σA-periodic points of least period 2k, it follows that
Aut(σ2

A) induces a well-defined action on the set of σA-orbits of length k. Since σA
acts trivially on the set of σA-orbits of length k, the commutator γσAγ

−1σ−1A acts
trivially on the set of length k σA-orbits. Thus, since φ acts non-trivially on the
σA-orbits of length k, φ can not be written as a product of such commutators. �

For a concrete example of the phenomena exhibited in this corollary, consider
the primitive matrix

(3) A =


1 1 1 0
0 1 0 1
0 1 1 0
1 0 1 0

 .

Since the system (XA, σA) has 3 fixed points and no period 2 points, by Theo-
rem 3.17, Inert(σA) 6= Simp(σA).

Remark 3.18. Considering the matrix A in (3), it can be shown using [4, Theo-
rem 1] that there exists a product of finite order inert automorphisms in Aut(σA)
whose action on the set of fixed points in (XA, σA) is a 3-cycle. Letting Fin(σA)
denote the subgroup of Inert(σA) generated by elements of finite order, in light of
Theorem 3.17, for this matrix A we have the following proper containments:

Simp(σA) ( Fin(σA) ( Inert(σA).

In general, we do not know if Simp(σA) is always finite index in Inert(σA). Based
on Theorems 3.16 and 3.17, as a way to approach this question, we ask the following:

Question 3.19. Assume (XA, σA) is a shift of finite type. Is

Inert(σA) ∩ [Aut(σ2
A),Aut(σ2

A)]

finite index in Inert(σA)?
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3.6. The abelianization of Aut(∞)(σA) and Theorem 1.1. For a group G, we
let Gab denote its abelianization. With the previous results in hand, we can now

show that the abelianization of Aut(∞)(σA) for a general mixing shift of finite type
(XA, σA) coincides with the abelianization of its dimension representation.

Theorem 3.20. Suppose (XA, σA) is a mixing shift of finite type. Then

Aut(∞)(σA)ab ∼= Aut(∞)(GA)ab.

Proof. Consider the following diagram:

(4) Aut(∞)(σA)

AbσA
��

π
(∞)
A // Aut(∞)(GA)

AbGA
��

f

vv(
Aut(∞)(σA)

)
ab

(
Aut(∞)(GA)

)
abg

oo

By Theorem 3.14, Inert(∞)(σA) ⊂ [Aut(∞)(σA),Aut(∞)(σA)] and by Theorem 3.12

the map π
(∞)
A is surjective, so the map f is well-defined. Since f factors through the

abelianization of Aut(∞)(GA), the map g exists. Moreover, since AbσA is surjective,
f is surjective, and hence g is surjective.

We claim that the map g is also injective. Suppose a ∈ ker g. Since the map

AbGA is surjective, we can find b ∈ Aut(∞)(GA) such that AbGA(b) = a, and hence

f(b) = Id. By Theorem 3.12, π
(∞)
A is surjective, so there exists c ∈ Aut(∞)(σA)

such that π
(∞)
A (c) = b. Then c lies in the kernel of the map AbσA , which implies

that c is a commutator. Thus π
(∞)
A (c) = b is also a commutator, and hence a =

AbGA(b) = Id. �

Corollary 3.21. If n ≥ 2, then Aut(∞)(σn)ab ∼= Zω(n).

Proof. This follows immediately from Theorem 3.20 and Proposition 3.11. �

This allows us to complete the proof of Theorem 1.1, via the following:

Theorem 3.22. If Aut(∞)(σn) and Aut(∞)(σm) are isomorphic, then ω(n) =
ω(m).

Proof. If Aut(∞)(σn) and Aut(∞)(σm) are isomorphic, then their abelianizations
are isomorphic. The result then follows from Corollary 3.21. �

Towards a converse of Theorem 3.22, observe that by Proposition 3.5, if m,n

satisfy mk = nj for some k and j, then Aut(∞)(σm) ∼= Aut(∞)(σn).
In general, we ask:

Question 3.23. For integers m,n ≥ 2, when are Aut(∞)(σm) and Aut(∞)(σn)
isomorphic?

We end this section with an example showing how Theorem 3.20 can be used to

compute the abelianization Aut(∞)(σA)ab of the stabilized automorphism group. In

the example, Aut(∞)(σA)ab has nontrivial torsion, and it follows (by Corollary 3.21)

that Aut(∞)(σA) is not isomorphic to Aut(∞)(σn) for any n ∈ N.
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Example 3.24. Consider the matrix

A =

5 2 2
4 1 4
0 6 3


(this matrix appears in [6, Example 6.7]). By Theorem 3.20, in order to compute

Aut(∞)(σA)ab, it suffices to compute the abelianization of the stabilized automor-
phism group of the dimension group.

As shown in [6], the matrix A has eigenvalues −3, 3, 9 and can be conjugated
over Z[ 13 ] to a diagonal matrix. For any k, A2k then has eigenvalues 9k, 9k, and 81k.

It follows that Aut(GA2k) ∼= Z ⊕ GL2(Z[ 13 ]), so Aut(∞)(GA) ∼= Z ⊕ GL2(Z[ 13 ]) and

Aut(∞)(GA)ab is isomorphic to Z⊕GL2(Z[ 13 ])ab. By Theorem 3.20, the dimension

representation is surjective and coincides with the abelianization of Aut(∞)(σA).
The remainder of this example is devoted to computing GL2(Z[ 13 ])ab. Consider

the determinant map

det : GL2(Z[
1

3
])→ Z[

1

3
]×

where Z[ 13 ]× denotes the group of units. This map is a split surjection with ker-

nel SL2(Z[ 13 ]), with the splitting coming from embedding Z[ 13 ]× = GL1(Z[ 13 ]) ↪→
GL2(Z[ 13 ]). Hence GL2(Z[ 13 ]) is isomorphic to the semidirect product SL2(Z[ 13 ]) o
Z[ 13 ]×.

In general, the abelianization of a semidirect product HoG is given by (Hab)G×
Gab, where the subscript G denotes the coinvariants of the G-action on Hab (arising
from theG-action onH). Since Z[ 13 ]× is abelian, the abelianization of the semidirect

product SL2(Z[ 13 ]) o Z[ 13 ]× has the form

(SL2(Z[
1

3
])ab)Z[ 13 ]× × Z[

1

3
]×.

This leaves us with computing (SL2(Z[ 13 ])ab)Z[ 13 ]× .

The abelianization of SL2(Z[ 13 ]) is SL2(Z[ 13 ])ab ∼= Z/4, as computed by Serre [35]
(see also [1]). Thus we only need to determine the coinvariants of the induced
Z[ 13 ]×-action on this copy of Z/4.

The ring map Z[ 13 ]→ Z/4 given by a
3k
7→ a mod 4 induces a surjection mapping

SL2(Z[ 13 ]) to SL2(Z/4). The group SL2(Z/4) has a normal subgroup N of order 12

(this is its commutator subgroup) which is generated by the matrices

(
2 3
3 1

)
and(

3 1
3 0

)
. Thus SL2(Z/4) factors on to an abelian group G of order 4. Let π denote

the composition of the two maps given by

SL2(Z[
1

3
])→ SL2(Z/4)→ G.

One can check directly that the matrix

(
1 1
0 1

)
and its square do not lie in the

normal subgroup N , and hence do not lie in the kernel of π. Thus π(

(
1 1
0 1

)
) has
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order 4, and π(

(
1 1
0 1

)
) is a generator for G, and hence also pushes down to a

generator for the abelianization.
To compute the coinvariants, we are left with determining the action of Z[ 13 ]×

on the matrix

(
1 1
0 1

)
(since it pushes down to a generator of the abelianization).

Note that Z[ 13 ]× is generated by −1 and 3. The action of these units on

(
1 1
0 1

)
is

given by (modulo commutators)

−1:

(
1 1
0 1

)
7→
(

1 3
0 1

)
3:

(
1 1
0 1

)
7→
(

1 3
0 1

)
.

It follows that the orbit of a generator for the abelianization under this action is a
subgroup of order 2, and the coinvariants are

(SL2(Z[
1

3
])ab)Z[ 13 ]×

∼= Z/2.

Thus, we have that

GL2(Z[
1

3
])ab ∼= Z[

1

3
]× ⊕ Z/2 ∼= Z/2⊕ Z⊕ Z/2

and

Aut(∞)(GA)ab ∼= Z⊕ Z/2⊕ Z⊕ Z/2.

4. Stabilized Kim-Roush embedding

4.1. Extending the embedding result. The purpose of this section is to extend
the following theorem of Kim and Roush to the stabilized setting:

Theorem 4.1 (Kim-Roush Embedding [17]). Let (XA, σA) be a mixing shift of
finite type. Then for any n ≥ 2, the group Aut(σn) embeds into the group Aut(σA).

Thus our goal is to prove the following.

Theorem 4.2. Let (XA, σA) be a mixing shift of finite type. Then for any n ≥ 2,

the group Aut(∞)(σn) embeds into Aut(∞)(σA).

The proof follows much of the original argument given in [17], with a few modifi-
cations. Before beginning, we briefly indicate the idea. We proceed by constructing
a bijection h from the given shift XA to some other space K. While h is nothing
more than a bijection, the advantage in making use of the second space K is that

it admits a natural faithful Aut(∞)(σn)-action. This action of Aut(∞)(σn) leaves
the image of h invariant, and so upon pulling back by h, we obtain an embedding

of Aut(∞)(σn) into the set of bijections from XA to itself. We then show that

this embedding actually lands in Aut(∞)(σA). The construction of the map h uses
markers, as used in [11, 6] and we review this technique in the proof.

Proof of Theorem 4.2. Let (XA, σA) be a mixing shift of finite type. The proof
consists of multiple steps constructing the embedding.
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Finding markers. Assume that there exists a word M ∈ L(XA) (a marker) and
a collection D ⊂ L(XA) of n2 words of some fixed length such that the word M
overlaps MDM , for any D ∈ D, only in the initial and final segments (the data).
The existence of such pairs of marker and a data set of size n2 is guaranteed for
any n ∈ N since we assume that XA is a mixing shift of finite type.

Since there are n2 words in D, we can view them as pairs of words, from some
collection of size n of some other words. Namely, we define an abstract set of n
words W such that each D ∈ D is a pair of two words from W. Since there are
n words in W, we can view the full shift over these words as (Xn, σn), and the
stabilized automorphism group of this shift is the one we realize as a subgroup of

Aut(∞)(σA).
It is convenient to consider the elements in D as vertical pairs, viewing them as

D =

(
Wu

W l

)
where Wu,W l ∈ W. For simplicity of the presentation we assume that all of the
words D are words of length 1, which is possible after passing via a conjugacy, if
needed, to a copy of (XA, σA). Then for x ∈ XA and some index j, if xj = D we
can write

xj =

(
xuj
xlj

)
.

Coded stretches in the shift. Fix some R ∈ N. An (R,M,D)-coded stretch in x ∈ XA

is an R-gapped (possibly finite) arithmetic progression C ⊂ Z such that xj ∈ D for
all j ∈ C, and C is maximal with respect to these properties. That is, if max(C)
exists then xmax(C)+R /∈ D, and if min(C) exists, then xmin(C)−R /∈ D.

Note that coded stretches may be finite, two sided infinite, or one sided infinite.
Since XA is mixing, there are points x ∈ XA with arbitrarily long coded stretches
(including infinite ones). Moreover, each word in L(Xn), whether finite or infinite,
appears as a coded stretch of some x ∈ XA. For each x ∈ XA, let Sx denote the
union of all the coded stretches in x.

Fix some x ∈ XA. Recall that for j ∈ Sx, xuj and xlj are two words inW. Again,

we consider elements in {u, l}×Sx as vertical pairs, so if p =

(
ε
j

)
∈ {u, l}×Sx, we

write xp = xεj ∈ W.

The function next. We define an invertible map nextx : {u, l} × Sx → {u, l} × Sx
by setting

nextx
(
u
j

)
=

{(
u
j+R

)
if j +R ∈ Sx(

l
j

)
if j +R /∈ Sx

and

nextx
(
l
j

)
=

{(
l
j−R

)
if j −R ∈ Sx(

u
j

)
if j −R /∈ Sx

.

Fix

(
ε
j

)
where j ∈ Sx. Repeated application of the next function produces an

element in Xn when starting with an element in XA, by reading the words appearing
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in the current coded stretch when applying this function; for example,

. . . ∗ Wu
1 → Wu

2 → Wu
3 ∗ . . .

↑ ↓
. . . ∗ W l

1 ← W l
2 ← W l

3 ∗ . . . .

Let C be a finite or one-sided coded stretch, and let j, j′ ∈ C. Note that starting

to read from

(
ε
j

)
or from

(
ε′

j′

)
yields the same element in Xn, up to a shift.

However, for a two sided stretch C, the element of Xn read from the u row has
nothing to do with the element read from the l row.

The function read. To maintain the group structure when embedding the group

Aut(∞)(σn), we are forced to keep track of which level an element belongs to (as

φ ∈ Aut(k)(σn) applies k different block maps, depending on the index mod k). For
this, we define a read map which depends on the index, in such a way that the word

read from

(
ε
j

)
and from

(
ε
j′

)
would be identical (where identical means not just up

to a shift). Formalizing this, define readx : Sx → X2
n by setting readx (i) =

(
yu, yl

)
where

yub iRc+z
= x

(nextx)z

 u
i

 and yl−b iRc+z
= x

(nextx)z

 l
i


for all z ∈ Z.

We note that this complication does not arise in the original embedding of Kim
and Roush [17] of Aut(σn) in Aut(σA), as one can define the read map without the
floor functions (similarly for the multidimensional version of Hochman [12]).

Let Y = A ∪ X2
n, where A is the alphabet of XA, and consider the set K̄ =∏

j∈Z Yj .

Definition of the map h. Define a map h : XA → K̄ by setting

h(x)j =

{
readx(j) if j ∈ Sx
xj otherwise

.(5)

Thus h assigns to every x ∈ XA a sequence in K̄ in the following way. If xj is not
included in any coded stretch, h copies the symbol xj to the j coordinate of the
new element in K̄. If xj is included in a coded stretch, there are two elements in
Xn that are read from this stretch: the one associated with the upper row, and
the one associated with the lower row, and this pair of elements is placed in the j
coordinate of the new element in K̄.

Set K = Im(h) ⊂ K̄.

The map h is injective. We claim that the map h is injective. To see this, we check
the action of the inverse of h on its image. For any coordinate of a given point in
K, there is either an element from A or there is a pair in X2

n. In the first case,
h−1 copies the symbol. In the second case, we (re)-form the pair composed of one
symbol from the first element and the other from the second element from X2

n.
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More precisely, in this case:

h−1(k)j =


(

((kj)1)−b iRc
((kj)2)b iRc

)
if kj ∈ X2

n

kj if kj ∈ A
.

This verifies the claim.
We now make use of the representation of the element x as h(x) by exploit-

ing the natural associated Aut(∞)(σn) action. On Y , we have a pointwise action

of Aut(∞)(σn) (and trivial action on the A part), and this action naturally ex-
tends to a diagonal action on K̄. In other words, there is a group homomorphism

Aut(∞)(σn)→ Bijection(K̄).

Stabilized automorphisms keep the set K invariant. Next we claim that every ele-

ment in Aut(∞)(σn) is a bijection that keeps the set K invariant, and the restriction

action of Aut(∞)(σn) on K is faithful. To check this, note that each element of

Aut(∞)(σn) keeps K invariant by the mixing assumption. In fact, the same holds
for any map Xn → Xn. As K is invariant, we can consider the restriction of the

Aut(∞)(σn)-action to K. Since all words of L(Xn) appear as coded stretches for
some x ∈ XA, every word in Xn appears in some coordinate of some element in K,

and as the action of Aut(∞)(σn) on Xn is faithful (by definition), we conclude that
the action on K is faithful as well. Thus the claim follows.

In other words, this realizes Aut(∞)(σn) as a subgroup of Bijection(K). Further-
more, the bijection h : XA → K induces a group isomorphism h∗ : Bijection(K)→
Bijection(XA).

Stabilized automorphisms give rise to continuous maps commuting with some power

of the shift. By pushing Aut(∞)(σn) through the injective map h∗, we realize

Aut(∞)(σn) as a subgroup of Bijection(XA). To verify that the image lies in

Aut(∞)(σn), we are left with checking that every φ ∈ Aut(∞)(σn) ⊆ Bijection(K)
gives rise to a continuous h∗φ ∈ Homeo(XA) which commutes with some power of
σA.

To do this, we make use of the block map description of the stabilized automor-

phism group (Lemma 3.2). Fix some φ ∈ Aut(k)(σn) of radius r. That is, φ can
be represented as k block maps of radius r, where r is some number greater than
k. Now if x and x′ are two points in XA which are close, then by definition they
agree on a large number of coordinates around the 0 coordinate. In particular, their
coded stretches (if they exist) in this area coincide. So there exists large s > 0 such
that Sx ∩ [−s, s] = Sx′ ∩ [−s, s]. Since φ is of radius r, h∗φ(x) and h∗φ(x′) agree
on [−s + r, s − r], and hence h∗φ is a continuous map. Finally to check that h∗φ

commutes with a power of the shift, using the fact that φ ∈ Aut(k)(σn) is induced
by a k-tuple of block maps on Xn, it is easy to check that h∗φ can be modeled by
a k ·R-tuple of block maps on XA.

This concludes the proof of Theorem 4.2. �

4.2. Residual Finiteness and subgroup properties. For a mixing shift of fi-
nite type (XA, σA), the classical automorphism group Aut(σA) is residually finite
(see [6, Section 3]). Simplicity of the stabilized inerts for the full shifts (proved in
Section 5), together with the stabilized Kim-Roush Embedding, implies that the
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stabilized group Aut(∞)(σA) is never residually finite. In addition, we show below

that Aut(∞)(σA) always contains a divisible group, and hence cannot be residually
finite.

Proposition 4.3. Let (XA, σA) be a mixing shift of finite type. Then Aut(∞)(σA)

contains a divisible subgroup. In particular, the group Aut(∞)(σA) is not residually
finite.

Proof. Since any subgroup of a residually finite group is residually finite, and any
non-trivial divisible group is not residually finite, by Theorem 4.2 it suffices to

prove that Aut(∞)(σ2) contains a divisible subgroup. Let m ≥ 2. We show that

Aut(∞)(σ2) contains the divisible group Z[ 1
m ]/Z. We claim that if φ0 ∈ Aut(σk2 )

is given by a 0-block code, then there exists φ1 ∈ Aut(σmk2 ) such that φm1 = φ0.

The result then follows by letting φ0 be any 0-block code of order m in Aut(σj2) for
some j,m, and induction.

To prove the claim, suppose we have such φ0. We consider the alphabet for

the shift σmk2 as symbols

 a0
...

am−1

 where ai ∈ {0, 1}k. Define 0-block codes in

Aut(σmk2 ) as follows:

α0(

 a0
...

am−1

) =


φ0(a0)
a1
...

am−1

 , ai ∈ {0, 1}k

and

cm


a0
a1
...

am−1

 =


a1
a2
...
a0

 .

Then it is easy to check that
(α0cm)

m
= φ0,

as desired. �

The method used in Proposition 4.3 can also produce embeddings of other groups

into Aut(∞)(σn). Given a prime p ≥ 2, consider the direct limit SLdiag
∞ (Fp) of the

systems (SL2n(Fp), in) where in : SL2n(Fp)→ SL2n+1(Fp) is the map given by A 7→
A ⊕ A. A construction analogous to the one given in the proof of Proposition 4.3

can be used to produce an embedding of SLdiag
∞ (Fp) into Aut(∞)(σp).

We end this section with an example of how results in the stabilized setting can
be used to study the classical automorphism group Aut(σA).

Lemma 4.4. For a full shift (Xn, σn), the group Aut(Xn) embeds into the group
Inert(Xn).

Proof. Let f : Aut(σn)→ Aut(σn) be a Kim-Roush embedding. Since we are con-
sidering a full shift, for any φ ∈ Aut(σn), the action of f∗(φ) on the dimension
group Gn is determined by its action on any 0-ray R, since the equivalence class of
any 0-ray rationally generates Gn.
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For a symbol a, let Ra denote the 0-ray of points x such that xi = a for all i ≤ 0.
By construction of the Kim-Roush embedding, there is some symbol a such that
f∗(φ)(Ra) is again a 0-ray. Since all 0-rays in (Xn, σn) are equivalent, this implies
that f∗(φ) acts trivially on the dimension group, i.e. f∗(φ) ∈ Inert(Xn). �

Theorem 4.5. Let G be a finitely generated group which embeds into Aut(σn).
Then G embeds (using a possibly different embedding) into [Aut(σn),Aut(σn)].

Proof. Suppose G embeds into Aut(σn). Composing this embedding with a Kim-
Roush embedding f gives an embedding of G into Inert(σn) (by the previous

lemma). In particular, G embeds in Inert(∞)(σn), which, by Theorem 3.14, is

a subgroup of [Aut(∞)(σn),Aut(∞)(σn)]. Since G is finitely generated, it follows

that G embeds inside [Aut(m)(σn),Aut(m)(σn)] for some m ∈ N. We can then apply

another Kim-Roush embedding, this time to embed Aut(m)(σn) (which is isomor-
phic to Aut(σnm)) into Aut(σn). The composition of these embeddings takes G
into [Aut(σn),Aut(σn)]. �

While we focus mainly on positive entropy mixing shifts of finite type, the follow-
ing proposition holds in greater generality. This is the only obstruction, of which

we are aware, for realization of a countable group in Aut(∞)(σA). The same proof
as in Boyle, Lind, and Rudolph [6] immediately gives:

Proposition 4.6. Let (X,σ) be any subshift. Then any finitely generated subgroup

of Aut(∞)(σ) has a solvable word problem.

5. Simplicity of the stabilized inerts for full shifts

5.1. Simplicity. For a mixing shift of finite type (XA, σA), the classical inert sub-
group Inert(σA) has an abundance of normal subgroups. For example, given φ ∈
Inert(σA) and k ∈ N, φ leaves invariant the set Pk(σA) of σA-periodic points of pe-
riod k, and there is a well-defined homomorphism from Inert(σA) to Sym(Pk(σA)).
Moreover, if Id 6= φ, then there exists some k such that φ acts nontrivially on
Pk(σA), and it follows from this that the group Inert(σA) is in fact residually finite
(see [6, Section 3] for details).

In contrast, different behavior arises in the stabilized setting, where the inert
subgroup has no nontrivial normal subgroups. The remainder of this section is
devoted to the proof of Theorem 1.2, which we restate for convenience:

Theorem (Theorem 1.2). For any n ≥ 2, the group of stabilized inert automor-
phisms of the full shift (Xn, σn) is simple.

Simplicity of various groups defined via dynamical systems has been shown in
other contexts (see for example [14, 28, 30]). For many of these groups, an important
and useful property is the existence of elements of the group which act by the
identity on certain regions of the domain space. In contrast to such groups, the

action of the group Inert(∞)(σn) on the shift space is of a very different nature;
for example, for any mixing shift of finite type (XA, σA), and in particular any full

shift, if Id 6= φ ∈ Inert(∞)(σA), then for any open subset U ⊂ XA, φ 6= Id on U (in

other words, Inert(∞)(σA) never contains non-trivial elements with small support).
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5.2. Stabilized simple automorphisms. Many of the ingredients in the proof
of Theorem 1.2 hold more generally, and so we start with some preliminaries that
hold for more than the full shift.

Assume (XA, σA) is a mixing shift of finite type defined by a k × k primitive
Z+-matrix A (note that the full shift on n symbols corresponds to A = (n)). Let
ΓA denote a directed labeled graph associated to A and let Simp(ΓA) denote the
subgroup of simple automorphisms in Aut(σA) induced by simple graph symmetries
of ΓA. Note that Simp(ΓA) is contained in Simp(σA), but the converse inclusion
does not hold.

Recall that Ei,j denotes the set of edges between vertices i and j in the graph
ΓA. There is a natural isomorphism

(6) Simp(ΓA) ∼=
k∏

i,j=1

Sym(Ei,j),

where we adopt the convention that if Ei,j = ∅ for some choice of i and j, we
assume that Sym(Ei,j) is the trivial group with one element.

We define the subgroup of even simple graph automorphisms Simpev(ΓA) in
Simp(ΓA) by pulling back the associated product of alternating subgroups, meaning

the subgroup
∏k
i,j=1 Alt(Ei,j), via the isomorphism in (6).

Let Γ
(m)
A denote a graph which presents the shift (XA, σ

m
A ); thus Simp(Γ

(m)
A ) ⊂

Aut(σmA ). We note the graphs Γ
(m)
A and ΓAm differ only up to a choice of labeling.

For any k,m ≥ 1 we have an inclusion map

(7) im,k : Simp(Γ
(m)
A ) ↪→ Simp(Γ

(km)
A ),

and by making the natural identifications among the iterates, this homomorphism
agrees with the restriction of the map

Aut(σmA ) ↪→ Aut(σkmA )

to Simp(Γ
(m)
A ).

Proposition 5.1. For any k,m ≥ 1, the map im,k takes Simpev(Γ
(m)
A ) into Simpev(Γ

(km)
A ).

Proof. Fix vertices I, J in Γ
(m)
A , and let τ ∈ Alt(EI,J). Letting τ̃ denote the element

of Simpev(Γ
(m)
A ) corresponding to τ under the isomorphism in (6), it suffices to show

that im,k(τ̃) lies in Simpev(Γ
(km)
A ). We may write τ̃ as a product of an even number

of transpositions τ̃ =
∏2l
i=1 τ̃i, and for each 1 ≤ i ≤ 2l, since τ̃i is an involution, we

may write im,k(τ̃i) =
∏ri
j=1 cj where each cj is a 2-cycle. It suffices then to show

that rp = rq for any 1 ≤ p, q ≤ 2l. Given some 1 ≤ p ≤ 2l, suppose the involution
τ̃p corresponds (under the isomorphism (6)) to the transposition in Alt(EI,J) which
permutes a pair of edges ep, fp between vertices I and J . Then the value rp is given
by 1

2Mp, where Mp denotes the number of distinct words w of length k, over the

alphabet given by the edge set of Γ
(m)
A , where each word w contains at least one

ep or fp. Since the number Mp of such words is independent of what ep, fp are, it
follows that Mp = Mq for any other 1 ≤ q ≤ 2l, as desired. �

We consider the corresponding stabilized groups, defining the subgroups

Simp(∞)(ΓA) =

∞⋃
m=1

Simp(Γ
(m)
A ) ⊂ Aut(∞)(σA)
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and

Simp(∞)
ev (ΓA) =

∞⋃
m=1

Simpev(Γ
(m)
A ) ⊂ Simp(∞)(ΓA).

Thus α ∈ Aut(∞)(σA) lies in Simp(∞)(ΓA) when α is induced by a simple graph

symmetry of Γ
(m)
A for some m ≥ 1, and α ∈ Simp(∞)

ev (ΓA) if for some m ≥ 1,

α is induced by a simple graph symmetry of Γ
(m)
A which consists of only even

permutations on every edge set for Γ
(m)
A . We note that it follows from the definitions

that

Simp(∞)(ΓA) ⊂ Inert(∞)(σA).

With this notation, Wagoner’s Theorem (Theorem 3.13) states that for a mixing

shift of finite type (XA, σA), Inert(∞)(σA) is generated by the collection of sub-

groups Ψ−1∗ (Simp(∞)(ΓB)), where Ψ: (XA, σ
m
A )→ (XB , σ

m
B ) is any conjugacy and

m ≥ 1 is any integer.
The key lemma in the proof Theorem 1.2 is:

Lemma 5.2. Let n ≥ 2 and let N be a nontrivial normal subgroup of Inert(∞)(σn).

There exists m ≥ 0 and Id 6= ζ ∈ Simp(∞)(Γn) such that σmn ζσ
−m
n ∈ N .

The proof of Lemma 5.2 is technical and long, and we postpone it until Sec-
tion 5.3. For now, we assume this result and proceed to develop the other tools
needed in the proof of Theorem 1.2.

Lemma 5.3. Assume (XA, σA) is a mixing shift of finite type defined by a primitive
Z+-matrix A. Then the following hold:

(i) The commutator subgroup of Simp(∞)(ΓA) is Simp(∞)
ev (ΓA).

(ii) The group Simp(∞)
ev (ΓA) is simple.

(iii) If A = (n) for some n ≥ 2, then Simp(∞)(Γn) = Simp(∞)
ev (Γn).

Proof. For Part (i), clearly Simp(∞)
ev (ΓA) is contained in [Simp(∞)(ΓA),Simp(∞)(ΓA)].

For the other inclusion, consider a commutator αβα−1β−1 ∈ Simp(∞)(ΓA), where

α, β ∈ Simp(∞)(ΓA). We may assume that both α, β ∈ Simp(Γ
(m)
A ) for some m ≥ 1.

Then for each vertex pair i and j in the graph Γ
(m)
A , the component of αβα−1β−1

in Sym(Ei,j) lies in Alt(Ei,j). Thus αβα−1β−1 ∈ Simp(∞)
ev (ΓA).

For Part (ii), let {e} 6= N be a normal subgroup of Simp(∞)
ev (ΓA). For k ≥ 1

and a pair of vertices i, j in the graph Γ
(k)
A , let Alt

(k)
i,j denote the subgroup of

Simp(∞)
ev (ΓA) obtained by pulling back the alternating subgroup contained in the

Sym(Ei,j) component of Simp(k)
ev (ΓA).

Let e 6= α ∈ N and choose K ≥ 1 such that α ∈ Simpev(Γ
(K)
A ). By passing to

larger K if necessary, since A is primitive we may assume that all entries in AK

are greater than or equal to five. We claim that for any i, j ≥ 1 and for all m

sufficiently large, we have N ∩Alt
(Km)
i,j 6= {e}. Since α is nontrivial, for some choice

of I, J we have that αI,J , the component of α in Alt
(K)
I,J , is also nontrivial. Choose

a path γ of length m ≥ 3 in Γ
(K)
A such that γ begins at i, ends at j, and passes

through an edge from I to J on which αI,J acts nontrivially. Then γ corresponds

to an edge in Γ
(Km)
A starting at vertex i and ending at vertex j on which iK,m(αI,J)
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acts nontrivially. It follows that

(8) N ∩Alt
(Km)
i,j

is nontrivial, proving the claim.

Since each entry of AK is at least 5, it follows that Alt
(Km)
i,j is simple for all

i, j ≥ 1 and m ≥ 3. Moreover N is normal in Simp(∞)
ev (ΓA), and so N ∩Alt

(Km)
i,j is

normal in Alt
(Km)
i,j . Thus, since the intersection in (8) is nontrivial, it follows that

for all i, j ≥ 1 and m ≥ 3 we have that Alt
(Km)
i,j ⊂ N . Therefore, N contains the

subgroup generated by the collection of subgroups{
Simpev(Γ

(Km)
A )

}∞
m=3

.

Given any r ≥ 1, there exists M ≥ 3 such that r divides M , so the subgroup

Simp(Γ
(KM)
A ) contains the subgroup Simp(Γ

(r)
A ). It follows that Simp(∞)

ev (ΓA) is
contained in the group generated by the collection{

Simpev(Γ
(Km)
A )

}∞
m=3

and hence

Simp(∞)
ev (ΓA) ⊂ N,

proving Part (ii).

For Part (iii), let l ≥ 1 and suppose ι ∈ Simp(Γ
(l)
n ) is an order two automorphism

induced by the simple graph symmetry of Γ
(l)
n which permutes two edges e and f

and leaves all other edges fixed. We claim il,2(ι) ∈ Simpev(Γ
(2l)
n ) (recall that the

inclusion map il,2 is defined in (7)). To check this, observe that il,2(ι) is induced

by the action of ι on paths of length two in Γ
(l)
n of the form ab, where at least one

of a or b is either e or f . The action of il,2(ι) on such pairs of words is given by

the composition of 2n− 2 transpositions, and it follows that il,2(ι) ∈ Simpev(Γ
(2l)
n ),

proving the claim. Since such involutions generate all of Simp(∞)(Γn), the equality
in Part (iii) follows. �

It follows from Parts (ii) and (iii) of Lemma 5.3 that for a full shift A = (n),

Simp(∞)(Γn) is a simple group.

Lemma 5.4. Suppose (XA, σA) is a mixing shift of finite type such that for all
m ≥ 1, Am contains an entry greater than or equal to 3. Then:

(i) For any α ∈ Aut(∞)(σA), the group αSimp(∞)
ev (ΓA)α−1 is a simple sub-

group of Inert(∞)(σA). Moreover, if N is a normal subgroup in Inert(∞)(σA)
such that

αSimp(∞)
ev (ΓA)α−1 ∩N 6= {e},

then

αSimp(∞)
ev (ΓA)α−1 ⊂ N.

(ii) If for some m1 ≥ 0

σm1

A Simp(∞)
ev (ΓA)σ−m1

A ⊂ N,

then for any m ≥ 0

σmA Simp(∞)
ev (ΓA)σ−m ⊂ N.
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Proof. The first part follows immediately from Lemma 5.3. For the second part, by
assumption we have that A contains an entry greater than or equal to 3. It follows
there exists some γ ∈ Simpev(ΓA) which commutes with σA, so that

σm1

A Simp(∞)
ev (ΓA)σ−m1

A ∩ Simp(∞)
ev (ΓA) 6= {e}.

Then since

σm1

A Simp(∞)
ev (ΓA)σ−m1

A ⊂ N,
we have

Simp(∞)
ev (ΓA) ∩N 6= {e}.

Part (i) now implies

Simp(∞)
ev (ΓA) ⊂ N.

Given m ≥ 1, since Am contains an entry greater than or equal to 3, the group

Simpev(Γ
(m)
A ) is nontrivial. Thus we have that

σmA Simp(∞)
ev (ΓA)σ−mA ∩ Simp(∞)

ev (ΓA) 6= {e}

and hence

σmA Simp(∞)
ev (ΓA)σ−mA ∩N 6= {e}.

Part (i) then implies that

σmA Simp(∞)
ev (ΓA)σ−mA ⊂ N,

as desired. �

Finally, we use a lemma of Boyle, which is a stronger version of Wagoner’s
Theorem (Theorem 3.13):

Lemma 5.5 (Boyle [2]). Let (XA, σA) be a mixing shift of finite type and suppose

α ∈ Inert(∞)(σA). There exists m1,m2 ≥ 1 and ψ1, ψ2 ∈ Simp(Γ
(m1)
A ) such that

α = ψ1σ
m2
n ψ2σ

−m2
n .

We have now assembled the ingredients to prove Theorem 1.2:

Proof of Theorem 1.2. Since Inert(∞)(σn) ∼= Inert(∞)(σnm) for any m ≥ 1, we may
assume without loss of generality that n ≥ 3. Suppose N is a nontrivial normal

subgroup of Inert(∞)(σn). By Lemma 5.2, there exists m1 ≥ 1 such that

σm1
n Simp(∞)(Γn)σ−m1

n ∩N 6= {e}.

Since Simp(∞)(Γn) = Simp(∞)
ev (Γn) by Part (iii) of Lemma 5.3, we have that

σm1
n Simp(∞)

ev (Γn)σ−m1
n ∩N 6= {e}.

Then, since n ≥ 3, by Lemma 5.4,

σm1
n Simp(∞)

ev (Γn)σ−m1
n ⊂ N

and applying Lemma 5.4 again, it follows that N contains σ−mn Simp(∞)(Γn)σmn for

all m ≥ 0. By Lemma 5.5, the collection of subgroups σ−mn Simp(∞)(Γn)σmn , m ≥ 0,

generate Inert(∞)(σn), completing the proof. �

5.3. Proof of Lemma 5.2.
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5.3.1. Notation. We start with some notation used in the proof of Lemma 5.2 and
we maintain this notation for the remainder of this section.

For m ≥ 1 let E(m)(Γn) denote the edge set of Γ
(m)
n . Label the edges of E(1)(Γn)

by {1, 2, . . . , n}. Note that we may label the edge sets E(m)(Γn) such that for all
m ≥ 2,

E(m)(Γn) =

m∏
i=1

E(1)(Γn).

When working with E(2)(Γn) for some Γn, we denote points in E(2)(Γn) by
(
x1

y1

)
where x1, y1 ∈ E(1)(Γn). We refer to rows and columns of E(2)(Γn), with the
convention that row i of E(2)(Γn) refers to the set of points in E(2)(Γn) of the form{(

i
y

)
: y ∈ E(1)(Γn)

}
,

while column i refers to the set of points in E(2)(Γn) of the form{(
x
i

)
: x ∈ E(1)(Γn)

}
.

Assume (Xn, σn) is a full shift and let Aσn denote the corresponding alphabet
for the shift space. By definition, Aσn = E(1)(Γn). Thus, for m ≥ 1, we identify

the alphabet Aσmn with the set of elements of the form

 a0
...

am−1

 where ai ∈ Aσn

for i = 1, . . . ,m− 1.
Given a point x ∈ X, as usual we write x = (xi)i∈Z. When we need to indicate

where x0 is located, we use a dot to indicate this; thus the point

x = . . . a
•

bc . . .

has x0 = b.
Given any a ∈ Aσn , let pa denote the point . . . aaa . . ., which is fixed by σn.
We let Pk(σn) denote the set of k-periodic points for σn, so Pk(σn) consists of

all points x for which σkn(x) = x (note that Pk(σn) in general contains, but is not
equal to, the set of points of least period k). We can identify Pk(σn) with E(k)(Γn),

and similarly, given m ≥ 1, we can identify Pk(σmn ) with E(k)(Γ
(m)
n ).

To avoid overly cumbersome notation, we often suppress the n, writing Γ and σ
instead of Γn and σn, with the understanding that we are still working with a full
shift on n symbols.

Thus for the remainder of this section, we assume (Xn, σn) is a full shift on
n ≥ 2 symbols, and without loss of generality, we assume that n ≥ 7. This is not a

restrictive assumption, as in the stabilized setting, Inert(∞)(σn) ∼= Inert(∞)(σmn ) ∼=
Inert(∞)(σnm) for any m ≥ 1.

Finally, for the remainder of this section, we fix a nontrivial normal subgroup

N of Inert(∞)(σn), and our goal is to prove Lemma 5.2, showing that there exists

m ≥ 0 and Id 6= ζ ∈ Simp(∞)(Γn) such that σmn ζσ
−m
n ∈ N .

5.3.2. Existence of an inert with additional properties. We start by recording a
slightly stronger version of Lemma 5.5:
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Lemma 5.6 (Boyle [2]). Suppose α ∈ Inert(∞)(σn). There exists M ≥ 1 such that

for all m ≥M , there exist ψ
(m)
1 , ψ

(m)
2 ∈ Simp(Γ

(2m)
n ) such that α = ψ

(m)
1 σmn ψ

(m)
2 σ−mn .

Proof. This can be deduced from the proof of [2, Theorem, pg. 970] (in the notation
used in the proof there, for m large enough, we can choose n = 2p− k +m ≥ 0, so
that t = k +m+ n = 2p+ 2m = 2(p+m)). �

From here on, we usually suppress the n and just write σ for σn.
Suppose α ∈ Inert(σ) and that α is induced by a block code hα of range r ≥ 1;

thus hα : A2r+1
σ → Aσ. We say that

(*) α satisfies property (*) if there exist distinct a, b, c ∈ Aσ such that

(i) α(pa) = pa;
(ii) hα

(
arabar−1

)
6= a ∈ Aσ;

(iii) For all 0 ≤ i ≤ r, hα(ar−ibar+i) = a and hα(a2r−icai) = a.

Lemma 5.7. Suppose α ∈ Inert(σ) is induced by a block code hα of range r and
satisfies (*) for some a, b, c ∈ Aσ. Then there exists m ≥ 1 such that, upon vieweing
α as an element of Inert(σ2m), all of the following hold:

(i) For some ψ
(m)
1 , ψ

(m)
2 ∈ Simp(Γ(2m)), we have α = ψ

(m)
1 σmψ

(m)
2 σ−m;

(ii) α(pa) = pa;

(iii) For w = bam−2c, the point paw = . . . amw
•
aam−1w . . . is a point of least

period two for σm, and in particular, α(paw) ∈ P2(σm);
(iv) The point α(paw) in P2(σm) satisfies (α(paw))m−1 6= a and satisfies (α(paw))i =

a for all m ≤ i ≤ 2m− 1.

Furthermore, using the identification of P2(σm) and E(2)(Γ(m)), we have the fol-
lowing:

(a) α
(
am

am

)
=
(
am

am

)
;

(b) α
(
am

w

)
=
(
w′

am

)
for some word w′ of length m where w′ 6= am.

Proof. By Lemma 5.6, Part (i) holds for all sufficiently large m, so in particular for
some m ≥ 2r+2. Part (ii) is obvious, and since a, b, c are distinct, Part (iii) follows.
To prove Part (iv), note that since α(pa) = pa, it follows that hα(a2r+1) = a. Since
m ≥ 2r + 2, we have that m− r − 1 ≥ r + 1, and it follows that

σm−1(paw) = . . . w a . . . a︸ ︷︷ ︸
m−r−1

a . . . a︸ ︷︷ ︸
r

•
aw . . .

Thus (α(paw))m−1 =
(
σm−1α(paw)

)
0

=
(
ασm−1(paw)

)
0

= hα(arabar−1) 6= a.

Using Condition (iii) of (*), it follows that (α(paw))i = a for all m ≤ i ≤ 2m− 1.
Parts (a) and (b) follow immediately by translating the results via the identifi-

cation. �

Given symbols a, b ∈ Aσ, we use the shorthand a ↔ b to denote the 0-block
code involution in Aut(σ) which permutes the symbols a and b and leaves all other
symbols fixed.

Lemma 5.8. There exists α ∈ N satisfying property (*).

Proof. Suppose Id 6= α ∈ N and α ∈ Inert(σ`) for some ` ≥ 1. By passing to a larger
` if necessary, we may assume that α acts nontrivially on P1(σ`). Since Inert(σ`)
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can induce any permutation on P1(σ`), and since N is normal, by replacing α with
some other α′ ∈ N if needed, we can assume that α satisfies:

α(pA) = pA for some pA ∈ P1(σ`) with A ∈ Aσ` ,

α(pD1
) = pD2

for some pD1
, pD2

∈ P1(σ`) with D1, D2 ∈ Aσ` ,

α(pE1
) = pE2

for some pE1
, pE2

∈ P1(σ`) with E1, E2 ∈ Aσ` ,
and A,D1, D2, E1, E2 are all distinct.

Suppose α is induced by a block code hα of range r. Without loss of generality,
we may assume that r ≥ 1 (if r = 0, the conclusion of Lemma 5.2 already holds).

Set k = 2`r + 1. By considering α as an element of Inert(σk), we may assume

that α is given by a block code h
(k)
α of range 1.

Consider the words

vd =

AkDk
1

Ak

AkAk
Ak

AkDk
1

Ak


and

ve =

AkEk1
Ak

AkAk
Ak

AkEk1
Ak


of length three over the alphabet Aσ3k . Viewing α as an automorphism lying in

Inert(σ3k), we have that α is induced by some block h
(3k)
α of radius one, and this

block code satisfies

h(3k)α (vd) =

AkAk
Ak

 , h(3k)α (ve) =

AkAk
Ak

 ,

while

(9) h(3k)α

AkAk
Ak

AkDk
1

Ak

AkAk
Ak

 =

 ∗D2

∗

 6=
AkDk

1

Ak

 ,

(10) h(3k)α

AkAk
Ak

AkEk1
Ak

AkAk
Ak

 =

 ∗E2

∗

 6=
AkEk1
Ak


(note that hα(Dr

1) = D2 6= D1 and hα(Er1) = E2 6= E1).
Define the words

wd =

Dk
1

Dk
1

Ak

AkAk
Ak

AkDk
1

Dk
1

 , we =

Ek1Ek1
Ak

AkAk
Ak

AkEk1
Ek1


and note that h

(3k)
α (wd) =

AkAk
Ak

 and h
(3k)
α (we) =

AkAk
Ak

.

We set convenient notation for some letters in Aσ3k : given X ∈ Aσk we define

x =

Xk

Xk

Xk

 .
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Thus for example

a =

AkAk
Ak

 .

Choose b, c ∈ Aσ3k such that a, b, c, d1, d2, e1, e2 are all distinct and such that

h
(3k)
α (aac) 6= b (this is possible since, for example, h

(3k)
α (aac) contains letters from

the original alphabet).
Define the automorphism β1 ∈ Inert(σ9k) by

β1 = σ3k (e1e1e1 ↔ aab)σ−3k

(note that this is the conjugacy by σ3k of the involution e1e1e1 ↔ aab) and let
α1 = β−11 αβ1. Then α1 ∈ N , and can be induced by a block code of range 4 on the
alphabet Aσ3k . Furthermore, we have

. . . a4
•
aba3 . . .

β1−→ . . . a3e1
•
e1e1a

3 . . .
α−→ . . .

•
e2 . . .

β−1
1−→ . . .

•
e2 . . .

and β1(pa) = pa, and so α1 satisfies conditions (i) and (ii) of (*) for the letters a, b.
Define the automorphism β2 ∈ Inert(σ9k) by β2 = σ3kβ′2σ

−3k, where β′2 is
the 0-block code involution on the alphabet Aσ3k which performs the following
permutation on symbols

(11) β′2 :


aba↔ vd

baa↔ wd

aac↔ we

aca↔ ve

and consider α2 = β−12 α1β2. Then α2 ∈ N , and still satisfies conditions (i) and (ii)
of (*). To see that it satisfies condition (iii) is a matter of checking case by case.
For example,

. . . a3a
•

baa3 . . .
β2−→ . . . a3

•
vda

3 . . .
α1−→ . . . ∗ •a . . .

β−1
2−→ . . . ∗ •a . . .

since, by (9), ∗ is some word containing D2’s. Next,

. . . a3b
•
aaa3 . . .

β2−→ . . . a3
•
wda

3 . . .
α1−→ . . . ∗ •a . . .

β−1
2−→ . . . ∗ •a . . .

since ∗ also contains some D2’s. Furthermore,

. . . a3a
•
caa3 . . .

β2−→ . . . a3
•
vea

3 . . .
α1−→ . . . ∗ •a . . .

β−1
2−→ . . . ∗ •a . . .

since, by (10), ∗ contains E2’s, and

. . . a3a
•
aca3 . . .

β2−→ . . . a3
•
wea

3 . . .
α1−→ . . . ∗ •a . . .

β−1
2−→ . . . ∗ •a . . .

since ∗ contains some E2’s. �

Combining Lemmas 5.7 and 5.8, we obtain the existence of an automorphism,
which for convenience we also denote by α, with α ∈ N , such that α satisfies the
conditions in Lemma 5.7 for some m ≥ 1. The automorphism α constructed in 5.8
also satisfies an additional property that we note for use in the sequel: there exists
some word z1 (for example, let z1 = bem−11 ) such that, with the symbol a given by

Lemma 5.8, writing α
(
am

z1

)
=
(
x
y

)
, we have x 6= am and y 6= am.
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For ease of notation, for the remainder of the section we suppress the power
m, and write σ instead of σm, and write ψ1, ψ2 for the simple automorphisms

ψ
(m)
1 , ψ

(m)
2 produced by Lemma 5.7.

It is convenient to recode the alphabet for our shift, and to do so we choose a
bijection Aσ ↔ {1, 2, . . . , n} such that 1 7→ am, and let {1, 2, . . . , n} be the alphabet
of our shift. Summarizing, we have shown:

Lemma 5.9. There exists α ∈ Inert(σ2) satisfying the following properties:

(i) α ∈ N ;
(ii) α = ψ1σψ2σ

−1, for some ψ1, ψ2 ∈ Simp(Γ(2));

(iii) α
(
1
1

)
=
(
1
1

)
;

(iv) α
(

1
u1

)
=
(
u2

1

)
for some 1 6= u1 and some u2 ∈ {1, 2, . . . , n};

(v) there exists u3 ∈ {1, 2, . . . , n} such that neither component of α
(

1
u3

)
is 1.

5.3.3. Constructing a particular subgroup K of Sym(E(2)) × Sym(E(2)). Consider
the set

(12) KN = {(φ1, φ2) ∈ Simp(Γ(2))× Simp(Γ(2)) : φ1σφ
−1
2 σ−1 ∈ N}.

Lemma 5.10. The set KN defined in (12) is a subgroup of Simp(Γ(2))×Simp(Γ(2)).

Proof. Assume φ1σφ
−1
2 σ−1, φ3σφ

−1
4 σ−1 ∈ N . Then σφ−14 σ−1φ3 ∈ N , and hence

σφ−14 σ−1φ3φ1σφ
−1
2 σ−1 ∈ N

and
φ3φ1σφ

−1
2 φ−14 σ−1 = φ3φ1σ(φ4φ2)−1σ−1 ∈ N.

Lastly, if φ1σφ
−1
2 σ−1 ∈ N , then φ−11 σφ2σ

−1 = φ−11 σφ2σ
−1φ−11 φ1 ∈ N . �

To simplify notation, for the remainder of this section we write E(m) instead of
E(m)(Γ). By definition, E(2) is the edge set of Γ(2), so there is an isomorphism

(13) H : Simp(Γ(2)) −→ Sym(E(2))

and hence an isomorphism

H×H : Simp(Γ(2))× Simp(Γ(2)) −→ Sym(E(2))× Sym(E(2)).

Define

(14) K = (H×H)(KN ),

meaning that K is the image of KN under this isomorphism. Thus we have

K ⊂ Sym(E(2))× Sym(E(2)).

Letting α ∈ Inert(σ2) be the element ofN satisfying Lemma 5.9, and maintaining
the notation of that lemma, we have α = ψ1σψ2σ

−1, for some ψ1, ψ2 ∈ Simp(Γ(2))
so

(ψ1, ψ
−1
2 ) ∈ KN .

Defining

(15) γ1 = H(ψ1), γ2 = H(ψ2),

it follows that

(16) (γ1, γ
−1
2 ) ∈ K.
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Recall we have E(2) = E(1) × E(1), and we write points in E(2) as

(
x
y

)
where

x, y ∈ E(1). We embed Sym(E(1))× Sym(E(1)) into Sym(E(2)) via the map

(17) (φ1, φ2) 7→
(
φ1
φ2

)
,

where

(
φ1
φ2

)(
x
y

)
=

(
φ1(x)
φ2(y)

)
. Define

(18) P to be the subgroup of Sym(E(2)) that is the image of this embedding.

Lemma 5.11. For any

(
φ1
φ2

)
∈ P , we have

((
φ1
φ2

)
,

(
φ2
φ1

))
∈ K.

Proof. Let

(
φ̃1
φ̃2

)
∈ Simp(Γ(2)) be the automorphism induced by the permutation(

φ1
φ2

)
on the edge set E(2)(Γ). Thus

(
φ1
φ2

)
= (H×H)

(
φ̃1
φ̃2

)
. It is straightforward

to check that (
φ̃1
φ̃2

)
σ

(
φ̃2
−1

φ̃−11

)
σ−1 =

(
φ̃1
φ̃2

)(
φ̃−11

φ̃−12

)
= Id ∈ N

so ((
φ̃1
φ̃2

)
,

(
φ̃2
φ̃1

))
∈ KN . �

Define the swapping element s ∈ Sym(E(2)) by

(19) s

(
p
q

)
=

(
q
p

)
.

Recall we can identify period two points for σ with the set E(2). Then σ induces
an action on E(2), and this action agrees with the action of s on E(2).

Lemma 5.12. For the elements γ1, γ2 defined in Equation (15), we have γ−12 6=
s−1γ1s.

Proof. By Lemma (5.9), α = ψ1σψ2σ
−1 for some ψ1, ψ2 ∈ Simp(Γ(2)). If γ−12 =

s−1γ1s, then α acts on E(2) by the permutation

γ1ss
−1γ−11 ss−1 = γ1γ

−1
1 = Id.

But this contradicts Lemma 5.9, as α acts nontrivially on E(2). �

5.3.4. Completion of the proof of Lemma 5.2. To translate properties of K to sub-
groups of Sym(E(2)), we make use of the following result:

Lemma 5.13 (Goursat’s Lemma (see [25])). Let G1, G2 be groups and let H be
a subgroup of G1 × G2. Then there exist subgroups H1 ⊂ G1, H2 ⊂ G2, normal
subgroups N1 EH1, N2 EH2, and an isomorphism Ψ: H1/N1 → H2/N2 such that

H = {(x, y) ∈ H1 ×H2 : Ψ([x]) = [y]}.

Applying Goursat’s Lemma to the group K, we obtain:
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Corollary 5.14. Let K be the subgroup defined in (14). There exist H1, H2 ⊂
Sym(E(2)), normal subgroups N1EH1, N2EH2, and an isomorphism Ψ: H1/N1 →
H2/N2 such that

K = {(φ1, φ2) ∈ H1 ×H2 : Ψ([φ1]) = [φ2]}.

We turn our attention then to studying the subgroups H1, H2, N1, N2. The key
lemma regarding their structure is the following:

Lemma 5.15. Assume both subgroups N1 and N2 of Corollary 5.14 are trivial.
Then at least one of the following holds:

(i) H1 = Sym(E(2)) and H2 = Sym(E(2)).
(ii) H1 = Alt(E(2)) and H2 = Alt(E(2)).

As the proof of this lemma is lengthy and involves checking multiple cases, we
defer its proof to Section 5.4.

For use in the proof of Lemma 5.2, we recall the following classical theorem:

Theorem 5.16. Suppose |X| > 6, G is either Sym(X) or Alt(X), and Ψ: G→ G
is an automorphism. Then there exists g ∈ Sym(X) such that Ψ(h) = g−1hg for
all h ∈ G.

We have now assembled the tools to prove Lemma 5.2 (modulo the deferral of
the technical statement in Lemma 5.15):

Proof of Lemma 5.2. Let N1, N2 be the subgroups produced in Corollary 5.14 and
let Ψ: H1/N1 → H2/N2 be the isomorphism in the same result.

Assume first that N1 6= {Id}, so there is some φ1 6= Id with φ1 ∈ N1. Then
Ψ([φ1]) = Ψ([Id]) = [Id] ∈ H2/N2, so (φ1, Id) ∈ K. This implies that

H−1(φ1)σσ−1 = H−1(φ1) ∈ N.
But since H−1(φ1) ∈ Simp(Γ), the statement of Lemma 5.2 follows. Likewise, if
N2 6= {Id}, then (Id, φ2) ∈ K for some φ2 ∈ N2, and again the result follows. Thus
we are left with showing that either N1 6= {Id} or N2 6= {Id}.

We proceed by contradiction and suppose that both N1 = {Id} and N2 = {Id}.
Combining Corollary 5.14 and Lemma 5.15, we have that the isomorphism Ψ is
either

Ψ: Sym(E(2))→ Sym(E(2))

or
Ψ: Alt(E(2))→ Alt(E(2)).

By Theorem 5.16, we have that Ψ is given by Ψ(h) = g−1hg for some g ∈ Sym(E(2)).
We claim that g is the swap map s, defined in (19).

To check this claim, note that for any

(
φ1
φ2

)
∈ P , where P is defined in (18), it

follows from Lemma 5.11 that

((
φ1
φ2

)
,

(
φ2
φ1

))
∈ K. Thus

g−1
(
φ1
φ2

)
g =

(
φ2
φ1

)
and hence

(20) g−1s

(
φ2
φ1

)
s−1g =

(
φ2
φ1

)
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for all φ1, φ2 ∈ Sym(E(1)). We now check that this implies that s−1g = Id. If not,

there exists

(
x1
y1

)
,

(
x2
y2

)
∈ E(2) such that s−1g

(
x1
y1

)
=

(
x2
y2

)
and

(
x1
y1

)
6=
(
x2
y2

)
.

Either x1 6= x2 or y1 6= y2; assume x1 6= x2 (the other case is similar). Choose
z ∈ E(1) such that z 6= x1, x2 and define φ3 ∈ Sym(E(1)) to be the transposition
swapping x2 and z. Then(

φ3
Id

)
s−1g

(
φ3
Id

)−1(
x1
y1

)
=

(
φ3
Id

)(
x2
y2

)
=

(
z
y2

)
6=
(
x2
y2

)
= s−1g

(
x1
y1

)
contradicting (20), thus proving the claim.

Since (γ1, γ
−1
2 ) ∈ K (see (16))we have γ−12 = Ψ(γ1). It then follows from the

claim that γ−12 = s−1γ1s. But this contradicts Lemma 5.12, completing the proof.
�

5.4. The proof of Lemma 5.15.

5.4.1. Preliminary reductions. We are left with showing Lemma 5.15. Recall that
Corollary 5.14 gives us the existence of subgroups H1, H2 ⊂ Sym(E(2)), normal
subgroups N1 EH1, N2 EH2, and an isomorphism Ψ: H1/N1 → H2/N2 such that

K = {(φ1, φ2) ∈ H1 ×H2 : Ψ([φ1]) = [φ2]}.
The statement of Lemma 5.15 is that when both subgroups N1 and N2 are trivial,
at least one of the following holds:

(i) H1 = Sym(E(2)) and H2 = Sym(E(2)).
(ii) H1 = Alt(E(2)) and H2 = Alt(E(2)).

We start with some terminology used to study these subgroups.
For a finite set X, recall that Sym(X) denotes the group of permutations of the

set X. If K ⊂ Sym(X) is a subgroup, a nonempty subset A ⊂ X is called a K-block
if for all g ∈ K either g(A) = A or g(A) ∩ A = ∅. A subgroup K ⊂ Sym(X) is
called primitive if the only K-blocks are singletons and X. We say the subgroup
K ⊂ Sym(X) contains a p-cycle if it contains some element τ ∈ K such that τ
consists of a single p-cycle.

Theorem 5.17 (Jordan (see [37, Theorem 13.9])). Suppose K ⊂ Sym(X) is prim-
itive and contains a p-cycle for some prime p < |X| − 2. Then K = Alt(X) or
K = Sym(X).

Thus to prove Lemma 5.15, by Jordan’s Theorem, since H1, H2 ⊂ Sym(E(2)), it
suffices to show that at least one of H1, H2 is primitive and also contains a p-cycle
for some prime p < |E(2)| − 2.

We start with some technical results on subgroups of Sym(E(2)), then prove
primitivity, and then show how to generate a p-cycle for some prime p < |E(2)|− 2.

5.4.2. Subgroups of Sym(E(2)). To denote the first and second components of an

element
(
x
y

)
∈ E(2), we write (

x
y

)
1

= x,
(
x
y

)
2

= y.

We say that an element τ ∈ Sym(E(2)) is

(i) row-preserving if τ
(
x1

y1

)
1

= τ
(
x1

y2

)
1

for all y1, y2 ∈ E(1).
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(ii) column-preserving if τ
(
x1

y1

)
2

= τ
(
x2

y1

)
2

for all x1, x2 ∈ E(1).

(iii) free if τ is neither row-preserving nor column-preserving.

For any element τ ∈ Sym(E(2)), there exists a pair of functions τ1, τ2 : E(2) →
E(1) such that

τ
(
x1

y1

)
=

τ1(x1

y1

)
τ2

(
x1

y1

) .

It follows quickly from the definitions that:

(i) τ is row-preserving if and only if τ1

(
x
y

)
is independent of y,

(ii) τ is column-preserving if and only if τ2

(
x
y

)
is independent of x.

It is also easy to check that:

(i) The collection of τ ∈ Sym(E(2)) that are row-preserving forms a subgroup.
(ii) The collection of τ ∈ Sym(E(2)) that are column-preserving forms a sub-

group.
(iii) Any τ ∈ P , where P is the subgroup defined in (18), is both row-preserving

and column-preserving.

In Lemma 5.9, we showed the existence of α ∈ N of the form α = ψ1σψ2σ
−1

for some ψ1, ψ2 ∈ Simp(Γ(2)). The automorphism α acts on P2(σ), and upon
identifying P2(σ) with E(2), there is a corresponding permutation of E(2) induced
by α, which we denote by α ∈ Sym(E(2)). (Recall that we are identifying E(2) with
E(1) × E(1), and that E(1) = {1, 2, . . . , n}.)

Recall that γ1, γ2 are defined in (15) and the swap map s is defined in (19). By

Part (iii) of Lemma 5.9, we have that α(
(
1
1

)
) =

(
1
1

)
. Since the subgroup P (see (18))

acts transitively on E(2), there exists some φ ∈ P such that γ1φ
(
1
1

)
=
(
1
1

)
. Letting

φ̃ denote the automorphism in Simp(Γ(2)) corresponding to φ ∈ Sym(E(2)), we have
that

α = ψ1σψ2σ
−1 = ψ1φ̃φ̃

−1σψ2σ
−1 = ψ1φ̃σσ

−1φ̃−1σψ2σ
−1 ∈ N.

Since φ ∈ P , it is straightforward to check that σ−1φ̃−1σ ∈ Simp(Γ(2)), and hence

(ψ1φ̃, ψ
−1
2 σ−1φ̃σ) ∈ KN . Furthermore (recall that the isomorphism H is defined

in (13)),

H(σ−1φ̃σ) = s−1φs,

and it follows that (γ1φ, γ
−1
2 s−1φs) ∈ K. Abusing notation, we replace γ1 and γ−12

by γ1φ and γ−12 s−1φs, respectively. Then γ1

(
1
1

)
=
(
1
1

)
. Since α

(
1
1

)
=
(
1
1

)
and

σ
(
1
1

)
=
(
1
1

)
, it follows that γ2

(
1
1

)
=
(
1
1

)
as well.

By Part (b) of Lemma 5.7, α
(

1
u1

)
=
(
u2

1

)
for some u1 6= 1, u2 6= 1. Since

α ∈ Aut(σ), it follows that α
(
u1

1

)
=
(

1
u2

)
as well. Finally, recall in our notation

the action α of α on E(2) is given by

α = γ1sγ2s
−1.

Lemma 5.18. Either γ1 is free or γ2 is free.
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Proof. Suppose γ2 is row-preserving. Then γ2

(
1
u1

)
=
(

1
v1

)
for some v1 ∈ E(1),

v1 6= 1, since γ2 fixes
(
1
1

)
. Then:(

1
u2

)
= α

(
u1

1

)
= γ1sγ2s

−1
(
u1

1

)
= γ1sγ2

(
1
u1

)
= γ1s

(
1
v1

)
= γ1

(
v1
1

)
.

Thus γ1

(
v1
1

)
=
(

1
u2

)
. Since γ1 fixes

(
1
1

)
, it follows that γ1 is free.

Suppose instead that γ2 is column-preserving. Then, likewise, we have γ2

(
u1

1

)
=(

v2
1

)
for some v2 ∈ E(1), v2 6= 1, since γ2 fixes

(
1
1

)
. Thus, as in the first case, we

then have:(
u2

1

)
= α

(
1
u1

)
= γ1sγ2s

−1
(

1
u1

)
= γ1sγ2

(
u1

1

)
= γ1s

(
v2
1

)
= γ1

(
1
v2

)
.

Since γ1 fixes
(
1
1

)
, it again follows that γ1 is free. �

For a subgroup H ⊂ Sym(E(2)), we say H contains the arrangement

(21)


(
x1

y1

)
7→
(
x′1
y′1

)
...(
xn
yn

)
7→
(
x′n
y′n

)
if H contains an element φ such that φ maps points as in (21). Note that not
all points of E(2) may be listed, and if a point is not listed it means we make no

claim how φ acts on that point. Instead of writing
(
x1

y1

)
7→
(
x1

y1

)
, we simply write

Id on

(
x1

y1

)
.

Lemma 5.19. Suppose H is a subgroup of Sym(E(2)) and P ⊂ H, where P is the
subgroup defined in (18).

(i) Suppose there exists τ ∈ H such that τ is not row-preserving. Then at
least one of the following holds:
(a) H contains the arrangement

(22)

Id on

(
1

1

)
(
1

2

)
7→
(
2

2

)
(b) H contains the arrangement

(23)

Id on

(
1

1

)
(
2

1

)
7→
(
1

2

)
(ii) Suppose there exists τ ∈ H such that τ is not column-preserving. Then at

least one of the following holds:
(a) H contains the arrangement

(24)

Id on

(
1

1

)
(
2

1

)
7→
(
2

2

)
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(b) H contains the arrangement

(25)

Id on

(
1

1

)
(
2

1

)
7→
(
1

2

)
(iii) If H contains some τ where τ is free, then H contains the arrangement

(26)

Id on

(
1

1

)
(
1

2

)
7→
(
2

1

)
Proof. The proofs of Parts (i) and (ii) are similar, so we only prove case (ii), as-
suming that τ is not column-preserving.

Since τ is not column-preserving, there exist a1, a2, b1 ∈ E(1) such that
(
τ
(
a1
b1

))
2
6=(

τ
(
a2
b1

))
2
. The group P acts transitively on E(2), so there exists φ1 ∈ P such

that φ1τ
(
a1
b1

)
=
(
a1
b1

)
. It follows that φ1τ

(
a2
b1

)
2
6= b1. Choose φ2 ∈ P such that

φ2

(
1
1

)
=
(
a1
b1

)
, let φ3 = φ−12 φ1τφ2, and let

(
a3
1

)
= φ−12

(
a2
b1

)
. Note that a3 6= 1. We

have φ3

(
1
1

)
=
(
1
1

)
, and setting k = φ3

(
a3
1

)
2
, we have k 6= 1 (since φ1τ

(
a2
b1

)
2
6= b1).

Letting φ4 =
(

Id
k ↔ 2

)
φ3, it follows that φ4

(
a3
1

)
2

= 2. Finally, let φ5 = φ4

(
2↔ a3

Id

)
,

so that φ5

(
2
1

)
=
(
t
2

)
for some t. Note that we still have φ5

(
1
1

)
=
(
1
1

)
. If t = 1,

then φ5 gives arrangement (25). If t > 1 then letting φ6 =
(
t↔ 2
Id

)
φ5, φ6 gives

arrangement (24).
Turning to Part (iii), suppose τ ∈ H and τ is free. By Parts (i) and (ii), either

H contains the arrangement

(27)

Id on

(
1

1

)
(
2

1

)
7→
(
1

2

)
in which case (upon taking an inverse) we are done, or H contains both arrange-
ments

(28)

Id on

(
1

1

)
(
2

1

)
7→
(
2

2

) and

Id on

(
1

1

)
(
1

2

)
7→
(
2

2

)
.

In the latter case, if φ1, φ2 implement these arrangements, then φ−11 φ2 implements
the arrangement

(29)

Id on

(
1

1

)
(
1

2

)
7→
(
2

1

)
.

�

5.4.3. Structures in the subgroups H1, H2. We use pictures to depict the action of
elements of Sym(E(2)). Since E(2) = E(1) × E(1), we consider E(2) as a grid of
points. When we say φ ∈ Sym(E(2)) acts by
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x x

x

x

x

x x

x x
...

. . .

we mean that φ acts on E(2) as drawn in the picture, with the following conventions:

(i) A dot associated with no arrow represents a point fixed by φ.
(ii) An x means the point could be mapped anywhere, i.e. we make no as-

sumption on how that point is mapped by φ.
(iii) Ellipses indicate the type of action continues in that direction, and so the

use of ellipses following x’s means that we make no assumption on how φ
acts on points in that direction.

(iv) When no ellipses are present, φ acts by the identity on any unrepresented
points (i.e. points in E(2) which do not appear in the picture).

Definition 5.20. We say a subgroup H ⊂ Sym(E(2)) is substantial if it contains
both of the following:

(i) A free element.
(ii) An involution implementing at least one of the following arrangements:

x x

x

x

x x

x

x

x
...

. . .

x x

x

x

x

x x

x x
...

. . .

Arrangement (a) Arrangement (b)

Lemma 5.21. At least one of the subgroups H1, H2 in Sym(E(2)) is substantial.

Before the proof, we introduce some notation. Define

(30) CR =
{(

x
y

)
∈ E(2) : either x = 1 or y = 1

}
(thus CR is the union of row one and column one in E(2)), and define

(31) IS = E(2) \ CR.

Proof. First suppose H is a subgroup of Sym(E(2)) with P ⊂ H and suppose φ ∈ H
satisfies both of the following:

(i) φ
(
1
1

)
=
(
1
1

)
.

(ii) φ
(
x1

y1

)
∈ IS for some

(
x1

y1

)
∈ CR,

(
x1

y1

)
6=
(
1
1

)
.
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We prove that H contains an involution implementing at least one of the arrange-
ments in Part (ii) of Definition 5.20. Thus suppose that we have such a φ and some(
1
1

)
6=
(
x1

y1

)
∈ CR with φ

(
x1

y1

)
=
(
x2

y2

)
∈ IS. Suppose first that

(
x1

y1

)
is in column one

(so y1 = 1 and x1 > 1, since
(
x1

y1

)
6=
(
1
1

)
). By replacing φ by

(
2↔ x1

id

)−1
φ
(
2↔ x1

id

)
,

we may assume that x1 = 2. Set

L1 = {
(
x
y

)
∈ E(2) : x > 2 and y > 1}.

Since n is large, there exists some
(
x3

y3

)
∈ L1 such that φ

(
x3

y3

)
∈ IS. Choose some

involution τ1 ∈ P such that τ1

(
1
1

)
=
(
1
1

)
and τ1φ

(
x3

y3

)
=
(
x2

y2

)
. Then

φ−1τ1φ
(
x3

y3

)
= φ−1

(
x2

y2

)
=
(
x1

y1

)
=
(
2
1

)
.

Thus φ−1τ1φ is an involution in H fixing
(
1
1

)
which satisfies φ−1τ1φ

(
2
1

)
=
(
x3

y3

)
∈

L1, and we may choose another involution τ2 ∈ P such that τ2 fixes
(
1
1

)
, and

τ2

(
x3

y3

)
=
(
3
2

)
. Now the involution τ−12 φ−1τ1φτ2 is in H, and implements the first

arrangement. The case that
(
x1

y1

)
is in row one is similar, and produces an involution

in H implementing the second arrangement. This completes the proof of the claim.

Recall we have γ1 ∈ H1, γ
−1
2 ∈ H2 (see (15)) and both γ1 and γ2 fix

(
1
1

)
. By

Lemmma 5.18, either γ1 is free or γ2 is free. Suppose then that γ1 is free. If γ1

maps any point (necessarily not
(
1
1

)
) in CR into IS, then H1 satisfies both parts

of Definition 5.20 by the claim above. Suppose then that γ1 leaves CR invariant.

Then γ1s leaves CR invariant, and fixes
(
1
1

)
. By condition (v) of Lemma 5.9,

α = γ1sγ2s
−1 maps the points

(
1
u3

)
and

(
u3

1

)
into IS. Since s leaves CR and

hence IS invariant, this means γ2 maps both
(

1
u3

)
and

(
u3

1

)
into IS. Since γ2 fixes(

1
1

)
, this implies γ2 is neither row-preserving nor column-preserving, and so is free.

Furthermore, γ2 maps a point in CR (specifically,
(

1
u3

)
) into IS. By the claim, this

implies H2 satisfies both conditions (i) and (ii) of Definition 5.20.
A similar argument shows that if γ2 is free and preserves CR, then H1 satisfies

both conditions (i) and (ii) of Definition 5.20, finishing the proof. �

5.4.4. Primitivity. Our goal now is to show that any substantial subgroup of Sym(E(2))
which contains P is primitive.

We make use of the following lemma from [13].

Lemma 5.22 (See [13, page 735]). Suppose X is a finite set, K ⊂ Sym(X) is
transitive, and x ∈ X. Then K is primitive if the only blocks which contain x are
{x} and X.

Lemma 5.23. Suppose H ⊂ Sym(E(2)) is a subgroup which contains P and is
substantial. Then H is primitive.

Proof. Since the subgroup P (see (18)) acts transitively on E(2) and P ⊂ H, the
subgroup H also acts transitively on E(2). By Lemma 5.22, it suffices to show that
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if A is any H-block containing
(
1
1

)
and at least one other point, then A must be

all of E(2).

Let A be an H-block containing
(
1
1

)
and some other point

(
x1

y1

)
. We claim that

if A contains a point in IS (recall that the set IS is defined in (31)), then A = E(2).

To check this, suppose A contains
(
u1

v1

)
∈ IS. If

(
u2

v2

)
is any other point in IS, then

there exists φ ∈ P such that

φ :

Id on

(
1

1

)
(
u1

v1

)
7→
(
u2

v2

)
It follows that A contains IS. Now

(
Id

1↔ 2

)
A ∩ A 6= ∅ and

(
Id

1↔ 2

)
A contains all

of column 1 except
(
1
1

)
, so A contains all of column 1 (since A already contained(

1
1

)
). Likewise,

(
1↔ 2
Id

)
A ∩ A 6= ∅ so A must contain all of row 1. Thus A must

contain all of E(2), proving the claim.
To finish the proof of the lemma, it suffices then to show that A contains some

point in IS. By assumption, A contains some point
(
x1

y1

)
6=
(
1
1

)
. The only remaining

cases then are that either
(
x1

y1

)
lies in row 1 or

(
x1

y1

)
lies in column 1. We prove the

first case; the second case is analogous.

Assume x1 = 1. Then for any 1 6= z ∈ E(1),
(

Id
z ↔ y1

)
A ∩ A contains

(
1
1

)
, so A

contains
(
1
z

)
for all such z, and A contains row 1. Let ρ ∈ Sym(E(1)) denote the

3-cycle mapping 3 7→ 2, 2 7→ 1, 1 7→ 3. Since H is substantial, it contains a free
element. Thus by part (iii) of Lemma 5.19 there is some γ̃ ∈ H such that

γ̃ :

Id on

(
1

1

)
(
1

2

)
7→
(
2

1

)
.

Then
(

Id

ρ−1

)
γ̃
(
Id
ρ

)
∈ H and

(
Id

ρ−1

)
γ̃
(
Id
ρ

)
:

Id on

(
1

2

)
(
1

3

)
7→
(
2

2

)
.

Since A contains row 1, it contains
(
1
2

)
, so this implies that A contains

(
2
2

)
, com-

pleting the proof. �

5.4.5. Obtaining a p-cycle. The main goal of this subsection is to prove the following
lemma.

Lemma 5.24. Let H ⊂ Sym(E(2)) be a subgroup which contains P and is substan-
tial. Then H contains a p-cycle for some prime p < |E(2)| − 2.

We start with some notation to aid in describing the arrangements. Define

(32) Ri.j =
{(

i
y

)
: y ∈ E(1)(Γ)

}
∪
{(

j
y

)
: y ∈ E(1)(Γ)

}
,
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and

(33) Ci,j =
{(

x
i

)
: x ∈ E(1)(Γ)

}
∪
{(

x
j

)
: x ∈ E(1)(Γ)

}
.

Thus Ri,j denotes the set of points in E(2) which belong to either row i or j, and

Ci,j denotes the set of points in E(2) which belong to either column i or j.
Given 1 ≤ i, j ≤ n, let φCi,j denote the involution in P swapping columns i

and j and let φRi,j denote the involution in P swapping rows i and j. Given any

φ1, φ2 ∈ H1 we let φφ1

2 = φ−11 φ2φ1, and for τ, φ ∈ H1, define

τ ? φ =
(
τφ
)−1

τ = φ−1τ−1φτ.

(While τ ? φ is usually denoted by [φ, τ ], we find the ? notation to be more
readable.)

We frequently use the following observation: if c is a cycle whose support does
not intersect Ci,j (respectively, Ri,j), then c ? φCi,j = Id (c ? φRi,j = Id, respectively).

Let us briefly outline the proof of Lemma 5.24. Suppose H is a substantial
subgroup of Sym(E(2)) which contains P . To show H contains a p-cycle, we begin
by letting γ3 denote some element of H which acts by one of the arrangements
in Definition 5.20; say Arrangement (a). Letting γ4 = γ3 ? φ

R
1,2, by passing from

γ3 to this γ4, any 2-cycles in γ3 whose support were disjoint from rows one and
two vanish. Moreover, the element γ4 has a distinguished 3-cycle whose support

consists of the points
(
1
1

)
,
(
2
1

)
,
(
3
2

)
, and we use this distinguished cycle to reduce

to a collection of cases, which we then handle. The proof of this occupies the
remainder of this section.

Lemma 5.25. Suppose H is a subgroup of Sym(E(2)) which contains P and any
of the following arrangements:

Arrangement (1) Arrangement (4)

Arrangement (2) Arrangement (5)
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Arrangement (3) Arrangement (6)

Then H contains a 3-cycle.

Proof. We prove the lemma for arrangements (1), (2), (3); the proofs for arrange-
ments (4), (5), (6) are similar.

Suppose the arrangement (1) is implemented by the involution γ3. Then

γ4 =

(
γ
φR2,3
3

)
γ3

acts by the arrangement

and γ3γ
φC1,3
4 acts by the arrangement

Squaring now produces a 3-cycle.

Suppose now the arrangement (2) is implemented by some γ3. Then γ4 = γ
φR3,5
3

acts by the arrangement

Setting γ5 =

(
γ
φR2,3
4

)
γ4, the element

(
γ4γ

φC1,3
5

)2

consists of a single 3-cycle.

Suppose now the arrangement (3) is implemented by some γ3. Then γ4 =(
γ
φR3,4
3

)
γ3 acts by the arrangement
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and γ5 = γ
φR2,4
4 acts by the arrangement

But this is exactly the arrangement in case (2), so the result follows for the same
reason. �

Lemma 5.26. Suppose H is a subgroup of Sym(E(2)) which contains P , and sup-
pose H contains an involution τ1 which satisfies the following:

(i) τ1 is supported in rows 1, 2, 3, 4, and consists of an even number of 2-cycles
di, i = 1, . . . , 2q for some q ≥ 1.

(ii) Each 2-cycle in τ1 has support containing a point in R1,2 and a point in
R3,4.

(iii) Each 2-cycle in τ1 has a companion 2-cycle, meaning that for each 2-cycle

di, we have di+q mod 2q = d
φR1,2φ

R
3,4

i .

(iv) τ1 has a pair of 2-cycles d1, dq+1 such that d1 =
((

1
1

)
,
(
4
2

))
and dq+1 =((

2
1

)
,
(
3
2

))
.

Then H contains a p-cycle for some prime p < |E(2)| − 2.

Proof. We proceed by cases (recall that C1,2 is defined in (33)):

Case 1. Suppose τ1 leaves C1,2 invariant and acts nontrivially on C1 ∩ R3,4 (and
hence, given the setup, also nontrivially on C2 ∩ R1,2). Then one of the following
two cases occurs:

Case 1a. Suppose τ1 acts by the arrangement

x

x

x

x

. . .

on C1,2. Then τ1 ? φ
C
1,2 acts by arrangement (2) of Lemma 5.25, and the result

follows.
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Case 1b: Suppose τ1 acts by the arrangement

x

x

x

x

. . .

on C1,2. We then split this into two further subcases.

Subcase 1b.1. Suppose that τ1 leaves some column j invariant. If τ1 acts by the

identity on column j, we set τ2 = τ
φR2,4
1 and τ3 = τ2?φ

C
2,j . Then, setting τ4 = τ3?φ

R
2,5,

τ4 consists of one 3-cycle and one 5-cycle. Thus τ34 consists of a single 5-cycle.
Suppose instead τ1 acts nontrivially on column j. Let τ2 = τ1 ? φ

C
2,j . Then τ2

acts by one of the following:

x x

x x

. . .

x

x

j

1b.1 (i)

or

x x

x x

. . .

x

x

j

1b.1 (ii)

In the first case, setting τ3 = τ2 ? φ
R
2,5, we have that τ33 consists of a single

5-cycle and the result follows. In the second case, first let τ3 = τ2 ? φ
R
2,5, then

define τ4 = τ
φCj,3
3 , and τ5 = τ

φC3,4
4 τ4. Finally, letting τ6 = τ5 ? φ

R
2,3, τ7 = τ

φC2,4
6 , and

τ8 = τ
φR1,3
7 , then τ8 acts by arrangement (5) in Lemma 5.25 and the result follows.

Subcase 1b.2. Suppose τ1 leaves no column invariant. Then we may assume that
τ1 maps points in column 3 into some columns j1, j2. We may assume at least one
of j1, j2 is not equal to 3, since if not, we are in subcase 1b.1. Thus without loss of
generality, we can suppose that j1 6= 3.

Suppose first that j2 6= 3. Then letting τ2 = τ1 ? φ
C
2,3, τ2 acts by one of the

following arrangements:
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. . .

j1 j2

1b.2 (i)

or

. . .

j1 j2

1b.2 (ii)

Note that while we have drawn these arrangements as if j1 6= j2, we could also
have j1 = j2 and the proof is the same. Thus for arrangement 1b.2 (i), we set

τ3 = τ2 ? φ
R
1,5, and then τ4 = τ

φR2,5
3 , τ5 = τ

φC4,j2
4 , τ6 = τ

φC1,3
5 , τ7 = τ6 ? φ

C
2,5, and

τ8 = τ
φC3,5
7 , τ8 acts by arrangement (6) of Lemma 5.25. For the arrangement 1b.2

(ii), set τ3 = τ2 ?φ
R
4,5 and then τ4 = τ33 , τ5 = τ

φC1,3
4 , and τ6 = τ

φR1,4φ
R
2,5

5 . Then τ6 acts
by the arrangement (4) in Lemma 5.25.

Suppose instead that j2 = 3. Then τ1 fixes two points in column 3. Set τ2 =
τ1 ?φ

C
2,3 and τ3 = τ32 . Then setting τ4 = τ3 ?

(
φR1,3φ

R
2,4

)
, we have that τ4 acts by one

of the two arrangements 1b.2 (i) or 1b.2 (ii) above, and we proceed as when j2 6= 3.

Case 2. Suppose C1,2 is invariant under τ1 and τ1 acts by the identity on
(
1
2

)
,
(
2
2

)
,
(
3
1

)
,
(
4
1

)
.

Then τ1 acts by the arrangement
x

x

x

x

...

. . .

Setting τ2 = τ1 ? φ
C
1,2, we have reduced to Case 1b, and the result follows.

Case 3. Suppose C1,2 is not invariant under τ1. Again we split the analysis into
cases.

Subcase 3a. Suppose τ1 acts nontrivially on
(
4
1

)
, and hence also on

(
3
1

)
. Then τ1

maps
(
4
1

)
into some column j, and by assumption, we must have j 6= 1, 2. It follows

from the setup that τ1 also maps
(
3
1

)
into column j. We split the analysis into two

subcases.

Subcase 3a.1. Suppose τ1 fixes both
(
1
2

)
and

(
2
2

)
, so τ1 acts by one of the following

arrangements:
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x

x

x

x

. . .
x

x

j

or
x

x

x

x

. . .
x

x

j

In either case, setting τ2 = τ1 ? φ
C
1,2 and τ3 = τ2 ? φ

R
4,5, we have that τ3 consists of

a 7-cycle.

Subcase 3a2: Suppose τ1 maps
(
1
2

)
into column i where i 6= 1, 2 (it follows from

the setup that τ1 also maps
(
2
2

)
into column i). Let τ2 = τ1 ? φ

C
1,2. Then τ2 acts

by one of the following arrangements:

x x

x x
. . . . . .

x

x

ji

or

x x

x x
. . . . . .

x

x

ji

For the first case, set τ3 = τ2 ? φ
R
2,5. Then τ4 = τ33 consists of a single 5-cycle.

The second case proceeds analogous to Subcase 1b.1, as illustrated in Figure 1b.1
(ii).

Subcase 3b. Suppose τ1 fixes both
(
4
1

)
and

(
3
1

)
. Then by assumption, τ1 maps

(
1
2

)
and

(
2
2

)
into some column j 6= 1, 2. Letting τ2 = τ

φC1,2
1 and τ3 = τ

φR1,3φ
R
2,4

2 , we are

back in Subcase 3a.1. �

We now prove Lemma 5.24

Proof of Lemma 5.24. Since H is substantial, it satisfies both conditions (i) and (ii)
of Definition 5.20. Thus H contains an involution implementing either arrangement
(a) or (b) of Definition 5.20. First we note that the subgroup H contains a p-cycle
for some prime p < |E(2)|−2 if and only if the subgroup s−1Hs does. Moreover, H
contains an involution implementing arrangement (b) if and only if s−1Hs contains
an involution implementing arrangement (a). It follows that it suffices to consider
the case that there is an involution γ3 ∈ H implementing arrangement (a), and we
call this arrangement IC:
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x x

x

x

x x

x

x

x
...

. . .

Figure 1. Arrangement IC

Set γ4 = γ3 ? φ
R
1,2. Then γ4 acts by the arrangement

x

x

x

x

x

x

x

x

x

c1

...

. . .

and we label the distinguished 3-cycle as c1.
We claim that any cycle in γ4 whose support does not intersect R1,2 (see (32))

must be a 2-cycle. To see this, note that γ
φR1,2
4 = γ3γ

φR1,2
3 = γ−14 . If c is a cycle in γ4

whose support does not intersect R1,2, then cφ
R
1,2 = c, and it follows that c is equal

to its inverse, and hence order two, proving the claim.
Thus, we may choose a large m1 ∈ N which is relatively prime to 3 such that

γ5 = γm1
4 consists of cycles ci, i = 1, . . . , L, each cycle of length 3ki for some ki ≥ 1,

and such that each of these ci has support which intersects R1,2. Note that L ≥ 1
since γ5 still contains the cycle c1 (or its inverse). Define

I = {i ∈ {1, . . . , L} : the support of ci is not contained in R1,2}.

We adopt the following notation: if c is a cycle whose support intersects E(2)\R1,2

in exactly one point, we denote this point by ω(c).
Observe that for each i ∈ I, ci has support with at most one point not in R1,2

(since each ci satisfies c
φR1,2
i = c−1i and each cycle ci is of odd length). Thus for

i ∈ I, ω(ci) is well-defined. We also note that

(34)
∑
i∈I

(|ci| − 1) ≤ 2n,

where |ci| denotes the length of a cycle ci. In particular, in the case that all the
ci’s are 3-cycles, we have |I| ≤ n. We also have 1 ≤ |I| since 1 ∈ I (the cycle c1 has
support not contained in R1,2).

We now analyze the cases that arise:
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Case 1. Suppose ki = 1 for all i ∈ {1, . . . , L} (recall this means each cycle ci has
length 3ki). Thus γ5 consists of a collection of 3-cycles, and since we have the cycle
c1 in the arrangement, it follows that 1 ≤ |I| ≤ n. We split into two subcases.

Subcase 1a. Suppose there exists j ≥ 3 such that γ5 fixes
(
j
2

)
. Set γ6 =

(
γ
φR3,j
5

)
γ5.

Then γ6 consists of cycles determined by the following:

(i) Let i ∈ I be an index such that, writing ω(ci) =
(
xi
yi

)
, either of the

following occur:

(a) xi = 3 and
(
j
yi

)
= ω(cl) for some l ∈ I.

(b) xi = j and
(

3
yi

)
= ω(cl) for some l ∈ I.

Then γ6 contains a pair of 3-cycles supported in the union of the supports
of ci and cl.

(ii) Let i ∈ I be an index such that, writing ω(ci) =
(
xi
yi

)
, either of the

following occur:

(a) xi = 3 and γ5 fixes
(
j
yi

)
.

(b) xi = j and γ5 fixes
(

3
yi

)
.

Then γ6 contains a pair of 2-cycles whose support is contained in the set

(ci ∩R1,2) ∪
{(

3
yi

)
,
(
j
yi

)}
.

Note that the index 1 ∈ I falls into the second case. Set γ7 = γ36 and set γ8 =

γ
φR4,j
7 . Then either γ8 or γ

φR1,2
8 satisfies the hypotheses of Lemma 5.26, completing

this case.

Subcase 1b. Suppose there is no j ≥ 3 such that γ5 fixes
(
j
2

)
. This means that for

all j ≥ 3, there exists some i(j) ∈ I such that the cycle ci(j) intersects column two,

meaning that ω(ci(j)) lies in column two. Since |I| ≤ n, there exist at most two
other cycles, call them c`1 , c`2 , such that ω(c`1) lies in some column L1 and ω(c`2)
lies in some column L2, with L1 6= 2 and L2 6= 2. The analysis of this splits into
three subcases.

Subcase 1b.1. Suppose the support of c`1 is not contained entirely in column L1, so
the support of c`1 also intersects some column L3 6= L1. By assumption, ω(c`1) lies

in column L1, so we may write ω(c`1) =
(
x1

L1

)
. Furthermore, it also follows from

our assumptions that there must exist some j ≥ 3 such that γ5 fixes
(
j
L1

)
. Setting

γ6 = γ
φCL3,1

5 , γ7 = γ
φRx1,3

φCL1,2

6 , it follows that γ7 acts by the arrangement

x

x

x

x

x

x

x

x

x
...

. . .
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so γ7 again consists of 3-cycles all of whose supports intersect R1,2. Moreover, γ7
has a distinguished 3-cycle which matches c1 (or its inverse), and also acts by the

identity on some
(
j
2

)
for some j ≥ 3, so we can apply Subcase 1a.

Subcase 1b.2: If the support of c`2 is not entirely contained in column L2, the
argument proceeds exactly as in Subcase 1b.1.

Subcase 1b.3: The remaining case is that the support of c`1 is entirely contained in
L1 and the support of c`2 is entirely contained in L2 (note that if neither c`1 nor
c`2 exist, their supports are viewed as empty, and so this scenario is covered by this

Subcase). There exists some cycle cm such that ω(cm) =
(
J1
2

)
and the support of

cm intersects some column J2 6= 2. Set γ6 = γ5 ? φ
R
3,J1

. Then, after conjugating by

φR1,2 if necessary, γ6 acts by one of the following:

. . . . . .. . .

...

x

x

x

x x

x

x

x
L2L1J2

J1

or

. . . . . .. . .

x

x

x

x x

x

x

x
L2L1J2

J1

In either case, there exists some column J3 on which γ6 acts by the identity, and
setting γ7 = γ6 ? φ

C
2,J3

, γ7 acts by

. . .

J3

We may then conjugate γ7 to move this pair of 2-cycles into case (1) of Lemma 5.25.

Case 2. Suppose there exists a cycle ci with ki ≥ 2 (recall this means the cycle
ci has length 3ki and note that this i may not be in I). Let k′ = maxi ki, let

I1 ⊂ {1, . . . , L} be the set of indices for which ki = k′, and set γ6 = γ3
k′−1

5 . Then

γ6 is order 3 and contains 3k
′−1|I1| 3-cycles di, each of whose support intersect

R1,2. We proceed by analyzing two subcases.

Subcase 2a. Suppose every di has support entirely contained in R1,2. Note that we

still have γ
φR1,2
6 = γ−16 . As a result, any cycle di = (z1, z2, z3) in γ6 has a companion

cycle di′ = (z3 + 1 mod 2, z2 + 1 mod 2, z1 + 1 mod 2) in γ6. Moreover, for each
cycle di = (z1, z2, z3) in γ6, we must have z1, z2, and z3 lying in distinct columns.

We further note γ6 acts by the identity on
(
1
1

)
,
(
2
1

)
. Among all the cycles di,

there are two companion cycles, call them dj and dj′ , whose supports intersect a
column, say column J , which is furthest to the left. Thus we have that J < J ′
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for any other column J ′ hit by cycles in the list di. Consider γ7 = γ
φC1,J
6 γ6. Then

γ7 consists of four 2-cycles, two of which intersect column one; call these e1, e2.
Due to the structure of the companion cycles dj , dj′ , it follows that e1 and e2 also
intersect some distinct columns J1 < J2. Choose a column J3 6= 1, J1, J2, and set
γ8 = γ7 ? φ

C
1,J3

. Then γ8 consists of two 3-cycles, e′1, e
′
2, whose support columns

consist of 1, J1, J3 and 1, J2, J3, respectively. Since n is large (n ≥ 7), we may find

yet another column J4 6= 1, J1, J2, J3, and let γ9 = γ
φCJ1,J4
8 γ8. Then γ9 consists of

two 2-cycles, whose supports intersect four distinct columns. Choosing again a new

column J5, we have γ
φCJ4,J5
9 γ9 consists of only one 3-cycle, and we are done.

Subcase 2b. Suppose there exists a cycle di whose support is not contained in R1,2.

Then I1 ∩ I 6= ∅ and we can consider the nonempty set of indices

J = {j : the support of dj is not contained in R1,2}.

Recall γ6 = γ3
k′−1

5 and that 2 ≤ k′ = maxi ki. Since each cycle in γ5 has at most

one point not in R1,2, each cycle of length 3k
′

in γ5 contributes one cycle of length

3 in γ6 whose support is not contained in R1,2. Thus it follows that |J | = |I1 ∩ I|,
and that, since the support of the cycles of length 3k

′
in γ5 have at least 8 points

in R1,2, we must have

(35) |J | ≤ n

4
.

Thus the collection {ω(dj) : j ∈ J} has at most n
4 points, and we may choose some

k ∈ J such that, upon writing ω(dk) =
(
xk
yk

)
, there exists some 3 ≤ ` ≤ n such that

γ6 fixes the point
(
`
yk

)
. Consider

γ7 = γ
φRxk,`
6 γ6.

Then γ7 contains cycles determined by the following:

(i) A pair of 3-cycles corresponding to each (un-ordered) pair of indices j1, j2 ∈
J such that ω(dj1) ∈ Rxk , ω(dj2) ∈ R`, and ω(dj1), ω(dj2) lie in the same
column.

(ii) A pair of 2-cycles corresponding to each index j ∈ J such that either(
xk
yj

)
= ω(dj) ∈ Rxk and γ6 fixes

(
`
yj

)
, or

(
`
yj

)
= ωdj ∈ R` and γ6 fixes(

xk
yj

)
.

The 2-cycles which arise in case (ii) have support intersecting rows 1, 2, xk, `. More-
over since k ∈ J satisfies case (ii), we have at least one pair of 2-cycles; suppose
this pair has support contained in columns yk, y

′
k (note we could have yk = y′k).

Setting γ8 = γ37 , we have that γ8 consists of only pairs of 2-cycles corresponding to

each j ∈ J satisfying case (ii). Setting γ9 = γ
φRxk,3

φR`,4
8 , γ9 is an involution satisfying

the first three conditions of Lemma 5.26.
Now by (35), there exists a column F1 such that γ9 acts by the identity on

the column F1. Suppose yk = y′k. Then

(
γ
φCyk,F1

9

)−1
γ9 consists of two pairs of

2-cycles, supported in rows 1, 2, 3, 4,; upon conjugating and moving these cycles if
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necessary, we can apply Lemma 5.25. If yk 6= y′k, then setting γ10 = γ
φC1,yk

φC
2,y′

k
9 ,

and if necessary replacing γ10 with γ11 = γ
φR1,2
10 , γ10 is an involution satisfying all

four conditions of Lemma 5.26, and the result follows. �

We have now assembled all the ingredients to complete the proof of the technical
lemma:

Proof of Lemma 5.15. Our goal is to show that at least one of

(i) H1 = Sym(E(2)) and H2 = Sym(E(2)).
(ii) H1 = Alt(E(2)) and H2 = Alt(E(2))

holds. Since both N1 and N2 are trivial by assumption, and H1 and H2 are iso-
morphic by assumption, it suffices to show that at least one of H1 or H2 is either
Sym(E(2)) or Alt(E(2)). By Jordan’s Theorem, it then suffices to show that at least
one of H1, H2 is primitive and also contains a p-cycle for some prime p < |E(2)|−2.
By Lemma 5.21, at least one of H1 or H2 is substantial. Since both H1 and H2

contain P , combining Lemma 5.23 and Lemma 5.24 gives that at least one of H1

or H2 satisfies the hypotheses of Jordan’s Theorem, and hence is either Sym(E(2))
or Alt(E(2)), as desired. �
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