Arithmetic inner product formula
for unitary groups

Yifeng Liu

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2012
Abstract

Arithmetic inner product formula
for unitary groups

Yifeng Liu

We study central derivatives of L-functions of cuspidal automorphic representations for unitary groups of even variables defined over a totally real number field, and their relation with the canonical height of special cycles on Shimura varieties attached to unitary groups of the same size. We formulate a precise conjecture about an arithmetic analogue of the classical Rallis’ inner product formula, which we call arithmetic inner product formula, and confirm it for unitary groups of two variables. In particular, we calculate the Néron–Tate height of special points on Shimura curves attached to certain unitary groups of two variables.

For an irreducible cuspidal automorphic representation of a quasi-split unitary group, we can associate it an ϵ-factor, which is either 1 or -1, via the dichotomy phenomenon of local theta lifting. If such factor is -1, the central L-value of the representation always vanishes and the Rallis’ inner product formula is not interesting. Therefore, we are motivated to consider its central derivative, and propose the arithmetic inner product formula. In the course of such formulation, we prove a modularity theorem of the generating series on the level of Chow groups. We also show the cohomological triviality of the arithmetic theta lifting, which is a necessary step to consider the canonical height. As evidence, we also prove an arithmetic local Siegel–Weil formula at archimedean places for unitary groups of arbitrary sizes, which contributes as a part of the local comparison of the conjectural arithmetic inner product formula.
Contents

Table of Contents i

Acknowledgments v

1 Introduction 1

2 Doubling method and analytic kernel functions 12

2.1 Siegel–Weil formula and generalizations 13

2.1.1 Degenerate principal series and Eisenstein series 13

2.1.2 Real quasi-split unitary groups 14

2.1.3 Weil representations and theta functions 16

2.1.4 Siegel–Weil formulae 18

2.2 Doubling integrals 19

2.2.1 Decomposition of global period integrals 19

2.2.2 Local zeta integrals 23

2.3 Central special values of L-functions 25

2.3.1 Theta lifting and central L-values 25

2.3.2 Vanishing of central L-values 27

2.4 Analytic kernel functions 32

2.4.1 Regular test functions 32

2.4.2 Test functions of higher discriminant 36

2.4.3 Density of test functions 38

3 Arithmetic theta lifting and arithmetic kernel functions 41

3.1 Modularity of generating series 42

3.1.1 Shimura varieties of unitary groups 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2 Special cycles and generating series</td>
<td>43</td>
</tr>
<tr>
<td>3.1.3 Pullback formula and modularity theorem</td>
<td>45</td>
</tr>
<tr>
<td>3.2 Smooth compactification of unitary Shimura varieties</td>
<td>50</td>
</tr>
<tr>
<td>3.2.1 Compactified unitary Shimura varieties</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2 Compactified generating series</td>
<td>53</td>
</tr>
<tr>
<td>3.3 Arithmetic theta lifting</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1 Cohomological triviality</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2 Arithmetic inner product formula: the general conjecture</td>
<td>59</td>
</tr>
<tr>
<td>3.4 Arithmetic kernel functions</td>
<td>60</td>
</tr>
<tr>
<td>3.4.1 Néron–Tate height pairing on curves</td>
<td>60</td>
</tr>
<tr>
<td>3.4.2 Degree of generating series</td>
<td>62</td>
</tr>
<tr>
<td>3.4.3 Decomposition of arithmetic kernel functions</td>
<td>67</td>
</tr>
<tr>
<td>4 Comparison at infinite places</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Archimedean Whittaker integrals</td>
<td>70</td>
</tr>
<tr>
<td>4.1.1 Elementary reduction steps</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2 Analytic continuation</td>
<td>75</td>
</tr>
<tr>
<td>4.1.3 First-order derivatives</td>
<td>76</td>
</tr>
<tr>
<td>4.2 Archimedean local height</td>
<td>83</td>
</tr>
<tr>
<td>4.2.1 Green currents</td>
<td>84</td>
</tr>
<tr>
<td>4.2.2 Invariance under U(2): an exercise in Calculus</td>
<td>87</td>
</tr>
<tr>
<td>4.3 An archimedean local Siegel–Weil formula</td>
<td>95</td>
</tr>
<tr>
<td>4.3.1 Comparison on the hermitian domain</td>
<td>95</td>
</tr>
<tr>
<td>4.3.2 Proof of Lemma 4.3.2</td>
<td>97</td>
</tr>
<tr>
<td>4.3.3 Comparison on Shimura varieties</td>
<td>100</td>
</tr>
<tr>
<td>5 Comparison at finite places: good reduction</td>
<td>104</td>
</tr>
<tr>
<td>5.1 Integral models</td>
<td>106</td>
</tr>
<tr>
<td>5.1.1 Change of Shimura data</td>
<td>106</td>
</tr>
<tr>
<td>5.1.2 Moduli interpretations and integral models: minimal level</td>
<td>108</td>
</tr>
<tr>
<td>5.1.3 Basic abelian scheme</td>
<td>112</td>
</tr>
<tr>
<td>5.1.4 The nearby space</td>
<td>115</td>
</tr>
<tr>
<td>5.1.5 Integral special subschemes: minimal level</td>
<td>116</td>
</tr>
<tr>
<td>5.1.6 Remark on the case $F = \mathbb{Q}$</td>
<td>118</td>
</tr>
</tbody>
</table>
5.2 Local intersection numbers ... 119
 5.2.1 \(p\)-adic uniformization of supersingular locus 119
 5.2.2 Special formal subschemes .. 120
 5.2.3 A formula for local intersection multiplicity 121
 5.2.4 Proof of Proposition 5.2.2 ... 124
5.3 Comparison ... 130
 5.3.1 Non-archimedean Whittaker integrals .. 130
 5.3.2 Comparison on Shimura curves ... 131

6 Comparison at finite places: bad reduction ... 135
 6.1 Split case ... 136
 6.1.1 Integral models and ordinary reduction ... 136
 6.1.2 Coherence for intersection numbers ... 137
 6.2 Quasi-split case ... 139
 6.2.1 Integral models and supersingular reduction 139
 6.2.2 Coherence for intersection numbers ... 142
 6.3 Nonsplit case ... 146
 6.3.1 Integral models and Čerednik–Drinfeld uniformization: minimal level 146
 6.3.2 Integral models and Čerednik–Drinfeld uniformization: higher level 147
 6.3.3 Coherence for intersection numbers ... 149

7 Arithmetic inner product formula: the main theorem 154
 7.1 Holomorphic projection .. 155
 7.1.1 Holomorphic and quasi-holomorphic projection: generality 155
 7.1.2 Siegel–Fourier expansion of Eisenstein series on \(U(2, 2)\) 158
 7.1.3 Holomorphic projection of analytic kernel functions 161
 7.1.4 Quasi-holomorphic projection of analytic kernel functions 163
 7.2 Proof of the main theorem .. 166
 7.2.1 Difference of kernel functions ... 166
 7.2.2 The final step .. 167

Appendix ... 169
 A.1 Theta dichotomy for unitary groups .. 170
 A.2 Uniqueness of local invariant functionals .. 174
A.3 Theta correspondence of unramified representations 177

Bibliography .. 184

Index ... 189

Index of Notations ... 191
Acknowledgments

Without the advise and encouragement of many people, this work would never have come into existence. First of all, I am grateful to my advisor, Shou-Wu Zhang for introducing me this subject including the original problem, and his consistent encouragement and interest in this work. I am indebted to Xinyi Yuan, Shou-Wu Zhang and Wei Zhang who were kind enough to share with me some of the ideas in their recent joint work, which are crucial to this one. I am also thankful to Wee Teck Gan, Atsushi Ichino, Aise Johan de Jong, Luis Garcia Martinez, Frans Oort, Michael Rapoport, Mingmin Shen, Ye Tian, Chenyan Wu, Shunsuke Yamana, Tonghai Yang and Weizhe Zheng for useful conversations during the long-term preparation.

I would like to thank Stephen S. Kudla and Joachim Schwermer for inviting me to the workshop Automorphic Forms: New Directions at Mathematisches Forschungsinstitut Oberwolfach in March 2011 and to present this work there; YoungJu Choie and Sug Woo Shin for inviting me to give a mini course on this subject in the Theta Festival: The 4th ILJU School of Mathematics held at Pohang University of Science and Technology in August 2011. Without their wonderful organization and hospitality, I would have missed very good opportunities to communicate with other mathematicians on this work and related subjects.

I also deeply appreciate the Morningside Center of Mathematics, Chinese Academy of Sciences, in Beijing for providing me a perfect research environment with full hospitality during the summers of last four years. Especially in July 2008, I was able to attend a workshop on Arithmetic Geometry held at the Center, where Jianshu Li and Shou-Wu Zhang gave two talks that directly motivated me to work on this problem in the following years.

For my Ph.D. life from 2007 to 2012, I must thank all the staff, faculty and students at Department of Mathematics, Columbia University for making it enjoyable.

Last but not least, I thank my family and my friends for their everlasting encouragement and support in every aspects of my life.
Chapter 1

Introduction

A central question in Number Theory is to solve Diophantine equations, that is, to study the polynomial equations in the field of rational numbers, or more generally, in number fields. From the viewpoint of algebraic geometry, the zero locus of a set of polynomial equations in an affine or projective space defines naturally some geometric object, which is called an algebraic variety. Therefore, it is important to study geometry objects defined over number fields. Among them, there is a special class of algebraic varieties, called Shimura varieties, for which one can systematically construct a large supply of points (i.e., solutions), or more generally, cycles (i.e., families of solutions).

In this article, we study Shimura varieties associated to certain unitary groups and their special cycles. Moreover, we relate the arithmetic of such cycles to L-functions of automorphic representations, which are analytic objects. The method we use to set up such a relation is an arithmetic analogue of the theta lifting in the classical theory of automorphic representation. This is first observed by S. Kudla [Kud1997, Kud2002, Kud2003] and later developed by S. Kudla, M. Rapport and T. Yang [KRY2006]. We formulate a precise conjecture about an arithmetic analogue of the classical Rallis’ inner product formula, which we call arithmetic inner product formula, and confirm it for unitary groups of two variables. In particular, we calculate the Néron–Tate height of special points on Shimura curves attached to certain unitary groups of two variables.
Rallis’ inner product formula

Let us briefly review the Rallis’ inner product formula in the classical theory of theta lifting, which first appeared in [Ral1984]. The original formula is to calculate the Petersson inner product of two automorphic forms on an orthogonal group that are lifted from a symplectic group through theta lifting. It turns out, using the Siegel–Weil formula, that the inner product is related to a diagonal integral on the doubling symplectic group of the original automorphic forms with certain Eisenstein series. This doubling method was later generalized to other cases by S. Gelbart, I. Piatetski-Shapiro and S. Rallis [GPSR1987]. This diagonal integral is in fact Eulerian. In other words, it decomposes into so-called local zeta integrals. These local zeta integrals are directly related to the L-factors of the corresponding representations. In fact, they prove in many cases that when everything is unramified, the local zeta integral coincides with the local Langlands L-factor, modified by some Tate L-factors. Later, J. Li [Li1992] extended such results to unitary groups.

In the introduction, we only look at a special case of Rallis’ inner product formula, which is parallel to the arithmetic theory developed later. Let F be a totally real field, and E/F a totally imaginary quadratic extension. For an integer $n \geq 1$, let $H' = U(n, n)_F$ be the unique quasi-split unitary group of a skew-hermitian space over E (with respect to the Galois involution of E/F) of rank $2n$. Let H be the unitary group of a hermitian space V over E of rank $2n$. Both H' and H are reductive groups over F. We have a Weil representation ω of $H'(\mathbb{A}_F) \times H(\mathbb{A}_F)$, realizing on $S(V(\mathbb{A}_E)^n)$: the space of Schwartz functions on $V(\mathbb{A}_E)^n$. For such an element $\phi \in S(V(\mathbb{A}_E)^n)$, we have the following theta series

$$\theta(g, h; \phi) = \sum_{x \in V^n(E)} (\omega(g, h)\phi)(x),$$

which is a smooth, slowly increasing function on $H'(F) \backslash H'(\mathbb{A}_F) \times H(F) \backslash H(\mathbb{A}_F)$. Let $\pi \subset A_0(H')$ be an irreducible representation of $H'(\mathbb{A}_F)$ contained in the space of cusp forms of H'. For every $f \in \pi$ and $\phi \in S(V(\mathbb{A}_E)^n)$, we define the theta lifting to be

$$\theta^f(\phi)(h) = \int_{H'(F) \backslash H'(\mathbb{A}_F)} \theta(g, h; \phi)f(g)dg.$$

Similarly, we have θ^f for $f^\vee \in \pi^\vee = \{ f \mid f \in \pi \}$ and $\phi^\vee \in S(V(\mathbb{A}_E)^n)$, viewed as the underlying space of the contragredient representation ω^\vee. Applying a regularized Siegel–Weil formula of A. Ichino

It depends on the choice of a nontrivial additive character ψ of $F \backslash \mathbb{A}_F$, and two characters χ_α ($\alpha = 1, 2$) of $E^\times \mathbb{A}_E^\times \backslash \mathbb{A}_E^\times$. For simplicity, we will assume that χ_α are both trivial.
In [Ich2004, Ich2007], we obtain the following formula\(^2\)

\[
\langle \theta^I_\phi, \theta^I_\phi \rangle_H = \frac{L\left(\frac{1}{2}, \pi\right)}{2 \prod_{i=1}^{2n} L(i, \epsilon_{E/F})} \prod_{v \in S} Z^*(0, f_v, f_v^\vee, \phi_v \otimes \phi_v^\vee),
\]

(1.1)

where

- \(\langle -,- \rangle_H\) denotes the Petersson inner product on \(H\) (for a suitable Haar measure);
- \(S\) is a finite set of primes of \(F\) containing all archimedean places;
- \(L(s, \pi) = L_S(s, \pi)L^S(s, \pi)\) is the \(L\)-function of \(\pi\), whose unramified part \(L^S(\pi)\) is defined from the Satake parameter and the ramified part \(L_S(\pi)\) is defined in [HKS1996] as a greatest common divisor;
- \(\epsilon_{E/F}\) is the quadratic character of \(F^\times \setminus \mathbb{A}_F^\times\) associated to the quadratic extension \(E/F\); and
- \(Z^*(0, f_v, f_v^\vee, \phi_v \otimes \phi_v^\vee)\) is a (normalized) local zeta integral for a ramified place \(v \in S\).

By the theta dichotomy, for each place \(v\) of \(F\), we can define a factor \(\epsilon(\pi_v) \in \{\pm 1\}\), which is 1 if \(v \not\in S\),

and such that

\[Z^*(0, f_v, f_v^\vee, \phi_v \otimes \phi_v^\vee)\]

is not always zero if and only if \(\epsilon(\pi_v) = \eta_{E_v/F_v}(\det V_v)\).

We let \(\epsilon(\pi) = \prod_v \epsilon(\pi_v)\). There are two cases.

1. \(\epsilon(\pi) = 1\). Then we can choose a suitable hermitian space \(V\) such that the set of theta lifting \(\theta^I_\phi\)

 for \(\phi \in \mathcal{S}(V(\mathbb{A}_E)^n)\) and \(f \in \pi\) contains a nonzero function if and only if \(L\left(\frac{1}{2}, \pi\right) \neq 0\).

2. \(\epsilon(\pi) = -1\). Then whatever \(V\) we choose, all theta lifting \(\theta^I_\phi\) is trivial. In this case, Rallis’ inner product formula is not interesting. In fact, as we will see in Theorem 2.3.9, \(L\left(\frac{1}{2}, \pi\right) = 0\) for such \(\pi\).

Therefore, it is natural in case (2) to ask the information about \(L'\left(\frac{1}{2}, \pi\right)\). Parallel to the classical theory where the central value of the \(L\)-function relates to the lifting on the level of functions, we propose an arithmetic theory where the central derivative of the \(L\)-function relates to the lifting on the level of cycles. Such formulation will be elaborated in the next subsection.

Arithmetic inner product formula

We now consider the second case, that is, \(\pi\) has the factor \(\epsilon(\pi) = -1\). Therefore, \(L\left(\frac{1}{2}, \pi\right) = 0\). We also assume that the archimedean component \(\pi_\infty\) of \(\pi\) is a discrete series representation of certain type.

\(^2\)Here, we assume that \(V\) is anisotropic for simplicity to avoid the regularization process.
From such π, we can construct, instead of the hermitian space V over E, a hermitian space (or rather a hermitian module) \mathcal{V} over A_E of rank $2n$. Such \mathcal{V} is incoherent in the sense that there does not exist a hermitian space V over E making $\mathcal{V} \cong V \otimes_E A_E$, which is parallel to the fact that $\epsilon(\pi) = -1$. Moreover, by our assumption on π_{∞}, \mathcal{V} is totally positive definite. Let $H = U(\mathcal{V})$ be the group of isometry of \mathcal{V}, which is a reductive group over A_F. By the theory of Shimura variety, we attach to H (a projective system of) Shimura varieties $(\text{Sh}(H)_K)_K$ for open compact subgroups $K \subseteq H(A_{F,\text{fin}})$. They are smooth quasi-projective varieties over $\text{Spec} E$. Let $S(\mathcal{V}(A_E)^n)_{U_\infty} \subset S(\mathcal{V}(A_E)^n)$ be the subspace of those Schwartz functions whose archimedean components are essentially the Gaussian. Following S. Kudla, for $\phi \in S(\mathcal{V}(A_E)^n)_{U_\infty}$, we define the generating series $Z_{\phi}(g)$, which is a “function” on $H'(A_F)$ whose values are formal series in $\text{CH}^n(\text{Sh}(H))_{C}$, the injective limit of groups of Chow cycles (with coefficients in C) of codimension n on $\text{Sh}(H)_K$ for all K. The series $Z_{\phi}(g)$ should be viewed as the arithmetic analogue of the classical theta series $\theta(g, \bullet; \phi)$, where the later is a “function” on $H'(A_F)$ whose values are automorphic forms of H. Parallel to the automorphy property of $\theta(g, \bullet; \phi)$ (as a “function” on $H'(A_F)$), we have the following result.

Theorem (Modularity of the generating series, Theorem 3.1.6). Let l be a linear functional on $\text{CH}^n(\text{Sh}(H))_{C}$. Then

1. If $l(Z_{\phi})(g)$ is absolutely convergent, it is an automorphic form of H'.

2. If $n = 1$, $l(Z_{\phi})(g)$ is absolutely convergent for every l.

In fact, the above theorem holds for all codimensions, not just n. There is also a version in the case of symplectic-orthogonal pairs, which is proved by X. Yuan, S.-W. Zhang and W. Zhang [YZZ2009]. The proof for both cases use the induction process on the codimension, which originally comes from the idea of W. Zhang [Zha2009]. Moreover, the proof for the case where the generating series has codimension 1 reduces to the result in [YZZ2009].

Recall that in the case of classical theta lifting, we construct θ^f_{ϕ} simply by taking the inner product of f and the theta series. In view of the above theorem, we have the following parallel definition. We define the arithmetic theta lifting to be

$$\Theta^f_{\phi} = \int_{H'(F) \setminus H'(A_F)} f(g)Z_{\phi}(g)dg,$$

for $f \in \pi$. Rigorously speaking, the above integration is formal and we should justify such expression by applying a linear functional l as in the above theorem. Nevertheless, the (Betti) cohomology class $\text{cl}(\Theta^f_{\phi})$ of Θ^f_{ϕ} is always well-defined. To find an arithmetic analogue of the Petersson inner product, we
invoke the conjectural Beilinson–Bloch height paring [Bei1987, Blo1984], which is, in this particular case, a hermitian paring

\[\langle -, - \rangle_{BB} : \text{CH}^n(\text{Sh}(\mathbb{H}))^0_C \times \text{CH}^n(\text{Sh}(\mathbb{H}))^0_C \to \mathbb{C}. \]

Here, \(\text{CH}^n(\text{Sh}(\mathbb{H}))^0_C \subset \text{CH}^n(\text{Sh}(\mathbb{H}))_C \) is the kernel of the cycle class map \(\text{cl} \). Such paring is conjectured to be positive definite. Even modulo the conjectural construction, there are still two remaining issues. First, we need \(\text{Sh}(\mathbb{H})_K \) to be proper. Second, we would like to have \(\Theta^f_\phi \in \text{CH}^n(\text{Sh}(\mathbb{H}))^0_C \). The first issue will be discussed in 3.2.1, where we propose some constructions as well as some conjectures. To simplify the discussion in the introduction, we assume that \(\text{Sh}(\mathbb{H})_K \) is already proper, which is the case when, for example, \(F \neq \mathbb{Q} \). Then we have the following result concerning the second issue.

Proposition (Proposition 3.3.4). Assume that \(\text{Sh}(\mathbb{H})_K \) is proper for all \(K \). Then the cohomology class \(\text{cl}(\Theta^f_\phi) \) is trivial.

In view of the above result, we formulate the following conjecture of the arithmetic inner product formula.

Conjecture (Arithmetic inner product formula, Conjecture 3.3.6). Let \(\pi \) be an irreducible cuspidal automorphic representation of \(H'(A_F) \) as above. In particular, \(\epsilon(\pi) = -1 \). Then for every \(f \in \pi, f^\vee \in \pi^\vee \) and every \(\phi, \phi^\vee \in S(\mathbb{V}(A_E)^n)^{U_{\infty}} \), we have

\[\langle \Theta^f_\phi, \Theta^{f^\vee}_{\phi^\vee} \rangle_{BB} = \frac{L'(\frac{1}{2}, \pi)}{\prod_{i=1}^{2n} L(i, \epsilon_{E/F}^i)} \prod_{v \in S} Z^*(0, f_v, f^\vee_v, \phi_v \otimes \phi^\vee_v), \]

where \(S \) is a finite set of primes, and the local factors \(Z^* \) are same to those in the Rallis inner product formula (1.1).

The main result of the article is the following theorem, which justifies the above conjecture in the case \(n = 1 \). We point out that when \(n = 1 \), \(\text{Sh}(\mathbb{H})_K \) is a curve. Therefore, the Beilinson–Bloch height paring is simply the well-known Néron–Tate height paring, denoted by \(\langle -, - \rangle_{NT} \).

Theorem (Arithmetic inner product formula, Theorem 7.2.1). Let \(n = 1 \). Let \(\pi \) be an irreducible cuspidal automorphic representation of \(H'(A_F) \) as in the above conjecture. Then for every \(f \in \pi, f^\vee \in \pi^\vee \) and every \(\phi, \phi^\vee \in S(\mathbb{V}(A_E)^n)^{U_{\infty}} \), we have

\[\langle \Theta^f_\phi, \Theta^{f^\vee}_{\phi^\vee} \rangle_{NT} = \frac{L'(\frac{1}{2}, \pi)}{L_F(2)L(1, \epsilon_{E/F})} \prod_{v \in S} Z^*(0, f_v, f^\vee_v, \phi_v \otimes \phi^\vee_v), \]
where S is a finite set of primes, and the local factors Z^* are same to those in the Rallis inner product formula (1.1).

The first appearance of such arithmetic analogue of Rallis’ inner product formula is the main result of [KRY2006]. The authors studied the case where f is a new form of $\text{PGL}_2(\mathbb{Q})$ of weight 2 and square-free level. In particular, the corresponding Shimura curve where the height paring is taken on is the one attached to a division quaternion algebra over \mathbb{Q}. More recently, J. Bruinier and T. Yang [BY2009] studied the case where the Shimura curve is the modular curve. They obtain a formula that is very similar to ours here, and from which they deduce certain cases of the Gross–Zagier formula. In fact, the study of derivative of L-functions was initiated by Gross and Zagier about thirty years ago in the pioneer paper [GZ1986]. The recent work of X. Yuan, S.-W. Zhang and W. Zhang [YZZa] generalizes this formula in an extremely broad and conceptual form, based on the connection with the representation theory of the so-called restriction problem. As for this work, we generalize the formulas of Kudla et al. in a uniform and explicit form, by exploring the theory of local theta correspondence, as we will see in the next subsection where we outline the idea of the proof.

Outline of the proof

The proof of the main theorem consists of six parts, which occupy the following six chapters respectively. Throughout the process, we make our argument as general as possible. In other words, we deal with the problem for general n, not just 1, once we are able to do so.

In Chapter 2, we introduce analytic kernel functions that compute the derivative of L-functions. Such kernel functions are derivatives of Siegel Eisenstein series associated to degenerate principal series on the doubling unitary group. Precisely, given a pair of Schwartz functions $\phi_\alpha \in S(\mathbb{V}(\mathbb{A}_E)^n)$ ($\alpha = 1, 2$), we have a kernel function $E'(0, g, \phi_1 \otimes \phi_2)$. We show that one can choose ϕ_α carefully such that $E'(0, g, \phi_1 \otimes \phi_2)$ can be expressed as a sum of local terms indexed by (almost all) places of F that are nonsplit in E, for g in an open dense subset. Precisely, we have the following decomposition (2.22)

$$E'(0, \iota(g_1, g_2^d), \phi_1 \otimes \phi_2) = \sum_{v \in S} E_v(0, \iota(g_1, g_2^d), \phi_1 \otimes \phi_2),$$

where S is a finite set of finite places of F at which ramification occurs. To compute the actual derivative $L'(\frac{1}{2}, \pi)$, we only need to take the inner product of $E'(0, \bullet, \phi_1 \otimes \phi_2)$ with f and f'. Therefore, we should study $E_v(0, g, \phi_1 \otimes \phi_2)$. Throughout this chapter, all discussions work for general n except in 2.4.3.
We introduce the Shimura varieties attached to certain unitary groups, their special cycles and generating series in Chapter 3. Moreover, we discuss the case of non-proper Shimura varieties, where we need to compactify everything we introduce above. As mentioned previously, we prove the modularity of the generating series, and the cohomological triviality of the arithmetic theta lifting. Finally, in 3.4, where we restrict ourselves to the case \(n = 1 \), we introduce the arithmetic kernel functions \(E(g_1, g_2; \phi_1 \otimes \phi_2) \) that compute the Néron–Tate height paring of the arithmetic theta lifting. Then modulo certain volume factors and terms that are perpendicular to \(f \) and \(f^\vee \), we have the following decomposition of the arithmetic kernel function (3.15)

\[
E(g_1, g_2; \phi_1 \otimes \phi_2) = \sum_{v^o \in \Sigma^o} E_{v^o}(g_1, g_2; \phi_1 \otimes \phi_2),
\]

where \(\Sigma^o \) is the set of places of \(E \), and

\[
E_{v^o}(g_1, g_2; \phi_1 \otimes \phi_2) = \langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{v^o}
\]

is a local height paring on a certain model of the Shimura curve. It is clear that to prove the main theorem, we need to compare the analytic and arithmetic kernel functions place by place. There are three cases. First, \(v \) is an archimedean place. Second, \(v \) is a finite nonsplit place that is not in \(S \). Third, \(v \) is either finite split or in \(S \).

The first case is treated in Chapter 4. We reduce the comparison to a local question, which can be formulated for general dimensions. We prove a formula which we call the archimedean local arithmetic Siegel–Weil formula. Let \(m \geq 2 \) be an integer. Let \(T \) be a (nondegenerate) hermitian matrix in \(\text{GL}_m(\mathbb{C}) \) of signature \((m - 1, 1)\). Let \(\Phi^0 \) be the Gaussian on \(V^m \), where \(V \) is the standard positive definite complex hermitian space of dimension \(m \). On the one hand, we have the Whittaker integral \(W_T(s, e, \Phi^0) \) that is a holomorphic function in \(s \). It is not hard to see that \(W_T(0, e, \Phi^0) = 0 \). On the other hand, we define an archimedean local intersection number \(H(T)_\infty \), which is the volume of the open unit ball \(\mathbb{D} \) in \(\mathbb{C}^{m-1} \) with respect to a star product of Green currents constructed from Kudla–Millson forms. We prove the following result.

Theorem (Archimedean local arithmetic Siegel–Weil formula, Theorem 4.3.1). *Let \(T \) be a (nondegenerate) hermitian matrix in \(\text{GL}_m(\mathbb{C}) \) of signature \((m - 1, 1)\). Then we have*

\[
W_T'(0, e, \Phi^0) = C_m \exp(-2\pi \text{tr} T)H(T)_\infty,
\]
where \(C_m \) is some nonzero constant depending only on \(m \), not on \(T \).

The above theorem specified to \(m = 2 \) will pose a close relation between \(E_v(0, \iota(g_1, g_2^\wedge), \phi_1 \otimes \phi_2) \) and \(\mathbb{E}_v^\wedge(g_1, g_2; \phi_1 \otimes \phi_2) \) for an archimedean place \(v \) dividing \(v^\circ \). More precisely, they are related by the process of holomorphic projection, which we discuss in 7.1.

The second case is treated in Chapter 5. We prove that for a finite place \(v = p \) outside \(S \) that is nonsplit in \(E \), \(E_p(0, \iota(g_1, g_2^\wedge), \phi_1 \otimes \phi_2) \) and \(\mathbb{E}_p^\wedge(g_1, g_2; \phi_1 \otimes \phi_2) \) are equal, where \(p^\circ \) is the unique place of \(E \) over \(p \). This comparison is again reduced to a local question as follows. For a 2-by-2 hermitian matrix \(T \) with entries in \(\mathcal{O}_{E_p^\circ} \), the ring of integers of \(E_p^\circ \), such that its determinant has odd valuation, we define a number \(H_p(T) \) that is some intersection multiplicity on the smooth integral model of the Shimura curve at \(p^\circ \). Let \(V^+ \) be the 2-dimensional hermitian space over \(E \) with a selfdual lattice \(\Lambda^+ \), and \(\Phi^{0+} \) the characteristic function of \(\Lambda^+ \). We have a \(p \)-adic Whittaker integral \(W_T(s, e, \Phi^{0+}) \), holomorphic in \(s \). Since \(\det T \) has odd valuation, \(W_T(0, e, \Phi^{0+}) = 0 \). We prove the following result.

Theorem (Non-archimedean local arithmetic Siegel–Weil formula, Theorem 5.2.3 and Corollary 5.3.2). Let \(T \) be a 2-by-2 hermitian matrix with entries in \(\mathcal{O}_{E_p^\circ} \) such that \(\det T \) has odd valuation. Then we have

\[
W_T'(0, e, \Phi^{0+}) = C_p \cdot H_p(T),
\]

where \(C_p \) is some nonzero constant depending only on the place \(p \), not on \(T \).

In the entire chapter, we restrict ourselves to the case \(n = 1 \).

The third case is treated in Chapter 6. We prove that under careful choices of \(\phi_\alpha \) (\(\alpha = 1, 2 \)), there is no contribution of terms \(\mathbb{E}_v^\wedge(g_1, g_2; \phi_1 \otimes \phi_2) \) for a finite place \(v \) either split in \(E \) or in \(S \), after taking inner product with \(f \) and \(f^{\wedge'} \). This is compatible with the analytic side since the corresponding terms are all zero. We are only able to make such argument when \(n = 1 \). Now we come to the final stage of the proof of the main theorem, which is accomplished in Chapter 7. As we have mentioned before, we apply the holomorphic projection to the analytic kernel function to make its archimedean part coincide with the corresponding part of the arithmetic kernel function. To prove the arithmetic inner product formula in the full generality, we apply the result of multiplicity one proved in A.2. The last step is extremely crucial to make us able to avoid explicit computations at all bad places. We would like to remark that such idea originally comes from \([YZZa]\).

Conventions and notations

Convention 1.0.1. All rings will have a unit.
Notation 1.0.2.
• We denote by \(\mathbb{Z} \) the ring of (rational) integers. We let \(\mathbb{Q}, \mathbb{R} \) and \(\mathbb{C} \) be the fields of rational, real and complex numbers, respectively.

• For a \(\mathbb{Z} \)-module \(M \) and a commutative ring \(R \), we denote \(M_R = M \otimes_{\mathbb{Z}} R \) the base change \(R \)-module.

• We denote by \(\mathcal{A}_{\text{fin}} = \hat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} = \left(\lim_{\leftarrow} \mathbb{Z}/N\mathbb{Z} \right) \otimes_{\mathbb{Z}} \mathbb{Q} \) the ring of finite adèles; \(\mathcal{A} = \mathbb{R} \times \mathcal{A}_{\text{fin}} \) the ring of full adèles.

• For a number field \(K \), we let \(\mathcal{A}_K = \mathcal{A} \otimes_{\mathbb{Q}} K \), \(\mathcal{A}_{K,\text{fin}} = \mathcal{A}_{\text{fin}} \otimes_{\mathbb{Q}} K \) and \(K_\infty = \mathbb{R} \otimes_{\mathbb{Q}} K \).

• As usual, for a subset \(S \) of places, \(-S \) (resp. \(-S \)) means the \(S \)-component (resp. component away from \(S \)) for the corresponding (decomposable) adèlic object; \(-\infty \) (resp. \(-\text{fin} \)) means the infinite/archimedean (resp. finite) part.

• For a field \(K \), we fix a separable closure \(K^{\text{sep}} \) of \(K \) and denote \(\Gamma_K = \text{Gal}(K^{\text{sep}}/K) \) the Galois group of \(K \).

• The symbol \(\text{Tr} \) and \(\text{Nm} \) stand for the trace (resp. reduced trace) and norm (resp. reduced norm), respectively, if they are applied to fields or rings of adèles (resp. simple algebras). The symbol \(\text{tr} \) stands the trace for matrix and linear transforms.

Notation 1.0.3.
• For a ring \(R \) and integers \(m, n > 0 \), we denote by \(\text{Mat}_{m,n}(R) \) the ring of \(m \)-by-\(n \) matrix with entries in \(R \). We also set \(\text{Mat}_n(R) = \text{Mat}_{n,n}(R) \).

• We denote by \(1_n \) (resp. \(0_n \)) the identity (resp. zero) matrix of rank \(n \).

• We denote by \(^t g \) the transpose of a matrix \(g \).

Definition 1.0.4.
• Let \(R \) be a commutative ring and \(R' \) an étale (commutative) algebra over \(R \) of rank 2. Let \(\tau : r \mapsto r^\tau \) for \(r \in R' \) be the nontrivial automorphism of \(R' \) over \(R \). For \(n \geq 0 \), a hermitian (resp. skew-hermitian) space of rank \(n \) over \(R' \) with respect to \(\tau \) is a free module \(V \) over \(R' \) of rank \(n \) equipped with a map

\[(-,-) : V \times V \to R' \]

satisfying that

1. It is \(R' \)-linear in the first variable, i.e., for \(r \in R \) and \(v, v' \in V \), \((rv, v') = r(v, v') \).

2. It is \((R', \tau) \)-linear in the second variable, i.e., for \(r \in R \) and \(v, v' \in V \), \((v, rv') = r^\tau(v, v') \).
3. It is τ-symmetric (resp. τ-antisymmetric), i.e., for $v, v' \in V$, $(v, v') = (v', v)^\tau$ (resp. $(v, v') = -(v', v)^\tau$).

In fact, under the assumption (3), assumptions (1) and (2) imply each other.

- A hermitian or skew-hermitian space V over R' of rank n is nondegenerate if there is a basis $\{v_1, \ldots, v_n\}$ of V over R' such that the matrix $((v_i, v_j))_{1 \leq i, j \leq n}$ has determinant in $R'\times$: the group of invertible elements in R'. It is clear that this property does not depend on the choice of the basis.

- In practice, R will be a field and R'/R a (possibly split) extension of degree 2, or R the ring of adèles of a number field and R' that of a quadratic field extension. The involution τ will always be clear in the context and hence we will not say with respect τ in general.

- In the main part of the article, all hermitian spaces will be of finite rank and nondegenerate.

Notation 1.0.5. Let $r \geq 1$ be an integer, we set

$$w_r = \begin{pmatrix} 1_r \\ -1_r \end{pmatrix}.$$

For $0 \leq d \leq r$, we set

$$w_{r,d} = \begin{pmatrix} 1_d \\ & 1_{r-d} \\ & & 1_d \\ & & & -1_{r-d} \end{pmatrix}.$$

For r elements a_1, \ldots, a_r in a ring, we set

$$\text{diag}[a_1, \ldots, a_r] = \begin{pmatrix} a_1 \\ & \ddots \\ & & a_r \end{pmatrix}$$

to be the diagonal matrix.

Notation 1.0.6. Let G be a Lie group over a local field. We denote by $\lambda_G : G \to \mathbb{C}^\times$ the modulus character of G. Precisely, for $g \in G$, we have the adjoint action Ad_g on the Lie algebra $\text{Lie} G$. Take a nonzero Haar measure dx on $\text{Lie} G$. Then $\lambda_G(g) = \text{Ad}_g^* dx/dx$.

Notation 1.0.7. Let K be a field and X a scheme of finite type over $\text{Spec } K$,

- For an integer $r \geq 0$, we denote by $\text{CH}^r(X)$ the Chow cohomology group of codimension r. In practice, X will be smooth over K. Therefore, $\text{CH}^r(X)$ can be canonically identified with the abelian group of Chow cycles of X of codimension r over K.

- If $r = 1$, we set $\text{Pic}(X) = \text{CH}^1(X)$. In other words, $\text{Pic}(X)$ is the Picard group of X, which should not be understood as the Picard scheme or Picard stack of X.

Chapter 2

Doubling method and analytic kernel functions

The goal of this chapter is to introduce the analytic kernel functions. In 2.1, we review the Siegel–Weil formula and some of its generalization that are related to our problem. In 2.2, we review the theory of I. Piatetski-Shapiro and S. Rallis on the doubling method. In particular, we deduce the Rallis’ inner product formula in certain cases from the doubling method and the Siegel–Weil formula. We also introduce the (normalized) local zeta integrals that will serve as the local terms in both classical and arithmetic inner product formula. In 2.3, we introduce the L-function and the formula representing it. We show that the central L-value of an automorphic representation vanishes if its global epsilon factor equals -1. Then we introduce the analytic kernel functions that compute the L-derivatives. In 2.4, we study these analytic kernel functions. We prove that for certain nice choices of test functions, the analytic kernel function can be decomposed into terms indexed by archimedean and unramified nonsplit finite places of F.
2.1 Siegel–Weil formula and generalizations

2.1.1 Degenerate principal series and Eisenstein series

Let F be a totally real number field and E a totally imaginary quadratic extension of F. We denote by τ the nontrivial element in $\text{Gal}(E/F)$ and $\epsilon_{E/F} : \mathbb{A}_F^\times / F^\times \to \{\pm 1\}$ the quadratic character associated by the class field theory. Let Σ (resp. Σ_{fin}, Σ_{∞}) be the set of all places (resp. finite places, infinite places) of F, and Σ^0, Σ_{fin}^0, Σ_{∞}^0 those of E. We fix a nontrivial additive character ψ of \mathbb{A}_F / F, that is, a continuous character $\psi : \mathbb{A}_F \to \mathbb{C}^\times$, which is trivial on F.

For a positive integer r, we denote by W_r the standard skew-hermitian space over E with respect to the involution τ, which is equipped with a skew-hermitian form $\langle -, - \rangle$ such that there is an E-basis $\{e_1, \ldots, e_{2r}\}$ satisfying

- $\langle e_i, e_j \rangle = 0$;
- $\langle e_{r+i}, e_{r+j} \rangle = 0$;
- $\langle e_i, e_{r+j} \rangle = \delta_{ij}$ for $1 \leq i, j \leq r$.

Let $H_r = U(W_r)$ be the unitary group of W_r, which is a reductive group over F. The group $H_r(F)$, in which F can be itself or its completion at some place, is generated by the parabolic subgroup $P_r(F) = N_r(F)M_r(F)$ and the element w_r. Precisely,

$N_r(F) = \left\{ n(b) = \begin{pmatrix} 1_r & b \\ 0 & 1_r \end{pmatrix} \mid b \in \text{Her}_r(E) \right\}$;

$M_r(F) = \left\{ m(a) = \begin{pmatrix} a & t_a^{-1} \\ a^{\tau} & 1 \end{pmatrix} \mid a \in \text{GL}_r(E) \right\}$;

and

$w_r = \begin{pmatrix} 1_r \\ -1_r \end{pmatrix}$

as in Notation 1.0.5. Here, $\text{Her}_r(E) = \{ b \in \text{Mat}_r(E) \mid b^\tau = t b \}$.

We fix a place $v \in \Sigma$ and suppress it from notations. Thus $F = F_v$ is a local field of characteristic zero; $E = E_v := E \otimes_F F_v$ is a quadratic extension of F which could be split; and $H_r = H_{r,v} := H_r(F_v)$ is a reductive Lie group over the local field. We define K_r to be a maximal compact subgroup of H_r.

in the following way:

- If \(v \) is finite, then

\[
\mathcal{K}_r = H_r \cap \text{GL}(\mathcal{O}_E(e_1, \ldots, e_{2n})) \subset \text{GL}(W_r).
\]

- If \(v \) is (real) infinite, then

\[
\mathcal{K}_r = H_r \cap \text{U}(2r)_{\mathbb{R}} \subset \text{GL}(2r)_{\mathbb{C}} \cong \text{GL}(W_r)
\]

where the isomorphism is determined by the basis \(\{e_1, e_2\} \). Therefore, \(\mathcal{K}_r \) is isomorphic to \(\text{U}(r)_{\mathbb{R}} \times \text{U}(r)_{\mathbb{R}} \) (2.1).

For \(s \in \mathbb{C} \) and a character \(\chi \) of \(E \times E \), we denote by \(I_r(s, \chi) = \text{sInd}_{P_r}^{H_r}(\chi|\bullet|_{E}^{s+\frac{r}{2}}) \) the degenerate principal series representation (cf. [KS1997]) of \(H_r \), where \(\text{sInd} \) stands for the (non-normalized) smooth \(\mathcal{K}_r \)-finite induction. Precisely, it is realized on the space of smooth \(\mathcal{K}_r \)-finite functions \(\varphi_s \) on \(H_r \) satisfying

\[
\varphi_s(n(b)m(a)g) = \chi(\det a)|\det a|_{E}^{s+\frac{r}{2}} \varphi_s(g)
\]

for all \(g \in H_r, m(a) \in M_r \) and \(n(b) \in N_r \). A (holomorphic) section \(\varphi_s \) of \(I_r(s, \chi) \) is called standard if its restriction to \(\mathcal{K}_r \) is independent of \(s \). It is called unramified if it takes value 1 on \(\mathcal{K}_r \).

Now we view \(F \) and \(E \) as number fields. For a (continuous) character \(\chi \) of \(\mathbb{A}_E \) that is trivial on \(E^{\times} \), and \(s \in \mathbb{C} \), we have an admissible representation \(I_r(s, \chi) = \bigotimes_{v \in \Sigma} I_r(s, \chi_v) \) of \(H_r(\mathbb{A}_F) \), where the restriction in the restricted tensor product refers to the collection of unramified sections. For a standard section \(\varphi_s = \otimes \varphi_{s,v} \in I_r(s, \chi) \), we define the Eisenstein series

\[
E(g, \varphi_s) = \sum_{\gamma \in P_r(F) \backslash H_r(F)} \varphi_s(\gamma g).
\]

The series is absolutely convergent if \(\Re s > \frac{r}{2} \), and has a meromorphic continuation to the entire complex plane, which is holomorphic at \(s = 0 \) (cf. [Tan1999, Proposition 4.1]).

2.1.2 Real quasi-split unitary groups

Let \(r \geq 1 \) be an integer. Let \(W_{r,\mathbb{R}} \) be a skew-hermitian space over \(\mathbb{C} \) (with respect to the quadratic extension \(\mathbb{C}/\mathbb{R} \)) of rank \(2r \) with a basis \(\{e_1, \ldots, e_r; e_{r+1}, \ldots, e_{2r}\} \), under which the skew-hermitian
The form is given by the matrix
\[w_r = \begin{pmatrix} 1_r \\ -1_r \end{pmatrix}. \]

Let \(U(r)_R \) be the subgroup of \(\text{Res}_C/R \text{GL}(W_{R,r}) \) preserving the skew-hermitian form, which is a reductive group over \(R \). We also let
\[U(r)_R = \{ g \in \text{Res}_C/R \text{GL}(W_{r}) \mid ^t g = 1_r \} \tag{2.1} \]
be a subgroup of \(\text{Res}_C/R \text{GL}(C) \). We have the following embedding
\[
U(r)_R \times U(r)_R \to U(r)_R
\]
\[
(k_1, k_2) \mapsto [k_1, k_2] := \frac{1}{2} \begin{pmatrix} k_1 + k_2 & -ik_1 + ik_2 \\ ik_1 - ik_2 & k_1 + k_2 \end{pmatrix}.
\]

Moreover, the above embedding identifies \(U(r)_R \times U(r)_R \) as a maximal compact subgroup \(K_r \) of \(U(r)_R \).

Notation 2.1.1. We introduce the following notation.

1. We let \(\iota_i \) (\(i = 1, \ldots, d \)) be all embeddings of \(F \) into \(C \), whose image is contained in \(R \), and \(\iota_i^E \), \(\iota_i^F \) those of \(E \) above \(\iota_i \). We identify \(E \otimes_{F, \iota_i} R \) with \(C \) through the embedding \(\iota_i^E \). In particular, we have identified \(H_r \times F, \iota_i R \) with \(U(r)_R \).

2. Let \(\iota \) be an archimedean place of \(F \). Let \(\chi_\iota \) be a character of \(E_{\iota}^\times \), which is identified with \(C^\times \) via \(\iota^\circ \), such that \(\chi_\iota \mid F_{\iota}^\times \cong R^\times \) equals \(\text{sgn}^m \). Here, \(\text{sgn} \) denotes the sign character and \(m \) is an integer. In particular, we can write
\[
\chi_\iota(z) = \frac{e^{z^{\chi_\iota}}}{\sqrt{|z^{\chi_\iota}|}},
\]
for a unique integer \(\chi_\iota \) that has the same parity as \(m \). If \(\chi \) is an automorphic character of \(\Lambda_F^\times \) whose restriction to \(\Lambda_E^\times \) equals \(\eta_{E/F}^m \), we set \(\chi_\iota = (\chi_\iota^1, \ldots, \chi_\iota^d) \).

Definition 2.1.2 (Weights). We define the notions of weights as follows.

1. Let \(\pi \) be an irreducible (Lie \(U(r)_R, \mathcal{K}_r \))-module (or its Casselman–Wallach globalization). Let \(a, b \) be integers. We say \(\pi \) is of weight \((a, b) \) if the minimal \(\mathcal{K}_r \)-type of \(\pi \) is the character \(\det^a \otimes \det^b \), i.e., its sends \([k_1, k_2] \) to \((\det k_1)^a (\det k_2)^b \).
2. Let π be an irreducible automorphic representation of $H_r(\mathbb{A}_F)$. For two d-tuples of integers $a = (a_1, \ldots, a_d), b = (b_1, \ldots, b_d)$, we say $\pi_\infty = \bigotimes_{i=1}^{d} \pi_{i}$ is of weight (a, b) if for every $i = 1, \ldots, d,$ π_{i} is of weight (a_i, b_i) in the sense above.

3. An automorphic form f of $H_r(\mathbb{A}_F)$ is of weight (a, b) if $f(g[k_1, i, k_2, i]) = (\det k_1, i)^{a_i}(\det k_2, i)^{b_i}f(g)$ for every $i \in \Sigma_\infty$.

2.1.3 Weil representations and theta functions

Let us review the classification of (nondegenerate) hermitian spaces. Let $m \geq 1$ be an integer and $v \in \Sigma$ be a place of F. For a hermitian space V over E_v of rank m, we define

$$\epsilon(V) = \epsilon_{E_v/F_v}\left((-1)^{\frac{m(m-1)}{2}} \det V\right) \in \{\pm 1\}.$$

There are three cases:

- If $v \in \Sigma_{\text{fin}}$ such that E is nonsplit at v, then up to isometry, there are two different hermitian spaces over E_v of dimension $m \geq 1$: V^\pm determined by $\epsilon(V^\pm) = \pm 1$.

- If $v \in \Sigma_{\text{fin}}$ such that E is split at v, then up to isometry, there is only one hermitian space V^+ over E_v of dimension m.

- If $v \in \Sigma_{\infty}$ (which is real), then up to isometry, there are $m + 1$ different hermitian spaces over E_v of dimension m: V_s with signature $(s, m - s)$ where $0 \leq s \leq m$.

In the global situation, up to isometry, all hermitian spaces V over E of dimension m are classified by signatures at infinite places and $\det V \in \mathbb{F}/\mathbb{F}$. In particular, V is determined by $V_v = V \otimes_F F_v$ for all $v \in \Sigma$.

More generally, we also need to consider nondegenerate hermitian spaces over \mathbb{A}_E of rank m. Recall in Definition 1.0.4 that in this case, a hermitian space V is nondegenerate if there is a basis under which the matrix representing the hermitian form is invertible in $\text{GL}_m(\mathbb{A}_E)$. For a place $v \in \Sigma$, we let $V_v = V \otimes_F F_v, V_{\text{fin}} = V \otimes_F \mathbb{A}_{F,\text{fin}}$; and define $\Sigma(V) = \{v \in \Sigma \mid \epsilon(V_v) = -1\}$, which is a finite set. Finally, we let $\epsilon(V) = \prod_{v \in \Sigma} \epsilon(V_v)$.

Definition 2.1.3 (Coherent/incoherent hermitian spaces). We say a (nondegenerate) hermitian space V over \mathbb{A}_E is coherent (resp. incoherent) if the cardinality of $\Sigma(V)$ is even (resp. odd), i.e., $\epsilon(V) = 1$ (resp. -1).
By the Hasse principle, there is a hermitian space V over E such that $\mathbb{V} \cong V \otimes_F \mathbb{A}_F$ if and only if \mathbb{V} is coherent. These two terminologies are inspired from the coherent/incoherent collections of local quadratic spaces introduced by S. Kudla in the orthogonal case in [KR1994, Kud1997].

We fix a place $v \in \Sigma$ and suppress it from notations. For a hermitian space V of dimension m with hermitian form $(-, -)$ and a positive integer r, we can construct a symplectic space $W = \text{Res}_{E/F} W_r \otimes_E V$ of dimension $4rm$ over F with the skew-symmetric form $\text{Tr}_{E/F} \langle - , - \rangle \otimes \langle - , - \rangle$, where Res stands for the Weil restriction. Let $\text{Sp}(W)$ be the symplectic group and $\text{Mp}(W)$ be its \mathbb{C}^\times-metaplectic cover fitting into the following exact sequence:

$$1 \to \mathbb{C}^\times \to \text{Mp}(W) \to \text{Sp}(W) \to 1.$$

We let $H = U(V)$ be the unitary group of V and $S(V^r)$ the space of Schwartz functions on V^r. Given a character χ of E^\times satisfying $\chi|_{F^\times} = \epsilon_{E/F}^m$, we have a splitting homomorphism

$$\tilde{i}_{(\chi, 1)} : H_r \times H \to \text{Mp}(W)$$

lifting the natural homomorphism $1 : H_r \times H \to \text{Sp}(W)$ (cf. [HKS1996, Section 1]). We thus have a Weil representation (with respect to ψ) $\omega_\chi = \omega_{\chi, \psi}$ of $H_r \times H$ on the space $S(V^r)$. Explicitly, for $\phi \in S(V^r)$ and $h \in H$,

- $(\omega_\chi(n(b))\phi)(x) = \psi(\text{tr} b T(x))\phi(x)$;
- $(\omega_\chi(m(a))\phi)(x) = |\det a|^2 E \chi(\det a)\phi(xa)$;
- $(\omega_\chi(w_r)\phi)(x) = \gamma_V \hat{\phi}(x)$;
- $(\omega_\chi(h)\phi)(x) = \phi(h^{-1}x)$,

where

$$T(x) = \frac{1}{2} \langle (x_i, x_j) \rangle_{1 \leq i, j \leq r}$$

is the moment matrix of x; γ_V is the Weil constant associated to the underlying quadratic space of V (and also ψ); $\hat{\phi}$ is the Fourier transform

$$\hat{\phi}(x) = \int_{V^r} \phi(y) \psi \left(\frac{1}{2} \text{Tr}_{E/F}(x, t^t y) \right) dy$$
using the selfdual measure dy on V^r with respect to ψ.

In the global situation where F is the number field, by taking the restricted tensor product over all local Weil representations, we obtain a representation of $H_r(\mathbb{A}_F) \times H(\mathbb{A}_F)$ on the space $S(V^r) := \otimes'_{\nu \in \Sigma} S(V^r_{\nu})$.

Warning 2.1.4. We abuse notation by denoting $S(V^r)$ for spaces of both local and adèlic Schwartz functions. More precisely, we should use $S(V(A_E)^r)$ in the adèlic case. We feel that there is little danger of confusion since in the adèlic case, V is always considered over a number field.

For V over E, χ a character of $\mathbb{A}_E^\times/E^\times$ such that $\chi|_{\mathbb{A}_E^\times} = e_E^m$ and $\phi \in S(V^r)$, we define the theta function

$$\theta(g, h; \phi) = \sum_{x \in V^r(E)} (\omega_\chi(g, h)\phi)(x),$$

which is a smooth, slowly increasing function on $H_r(F) \setminus H_r(\mathbb{A}_F) \times H(F) \setminus H(\mathbb{A}_F)$. Consider the integral

$$I_V(g, \phi) = \int_{H(F) \setminus H(\mathbb{A}_F)} \theta(g, h; \phi) dh,$$

if it is absolutely convergent. Here we normalize the measure dh such that $\text{Vol}(H(F) \setminus H(\mathbb{A}_F)) = 1$. It is well-known that $I_V(g, \phi)$ is absolutely convergent for all ϕ if $m > 2r$ or V is anisotropic.

2.1.4 Siegel–Weil formulae

It is immediate to see that

$$\varphi_{\phi, s}(g) = (\omega_\chi(g)\phi)(0)\lambda_{P_r}(g)^{s - \frac{m - r}{2}}$$

is a standard section in $I_r(s, \chi)$ for every $\phi \in S(V^r)$. Recall the following formula for the modulus character

$$\lambda_{P_r}(g) = \lambda_{P_r}(n(b)m(a)k) = |\det a|_{\mathbb{A}_E},$$

if $g = n(b)m(a)k$ under the Iwasawa decomposition with respect to the parabolic subgroup $P_r(\mathbb{A}_F)$. Therefore, we can define the Eisenstein series $E(s, g, \phi) = E(g, \varphi_{\phi, s})$. We have the following theorem.

Theorem 2.1.5 (Siegel–Weil formula). Let $s_0 = \frac{m - r}{2}$. Then we have
1. If $m > 2r$, $E(s_0, g, \phi)$ is absolutely convergent and

$$E(s_0, g, \phi) = I_V(g, \phi).$$

2. If $r < m \leq 2r$ and V is anisotropic, $E(s, g, \phi)$ is holomorphic at s_0 and

$$E(s, g, \phi)|_{s=s_0} = I_V(g, \phi).$$

3. If $m = r$ and V is anisotropic, $E(s, g, \phi)$ is holomorphic at $s_0 = 0$ and

$$E(s, g, \phi)|_{s=0} = 2I_V(g, \phi).$$

Proof.

1. It is the classical Siegel–Weil formula.

2. It is a generalized Siegel–Weil formula proved in [Ich2007, Theorem 1.1].

3. It is a generalized Siegel–Weil formula proved in [Ich2004, Theorem 4.2].

In what follows, we simply write $E(s_0, g, \phi)$ for $E(s, g, \phi)|_{s=s_0}$ for simplicity if the Eisenstein series is holomorphic at s_0.

Remark 2.1.6. In Theorem 2.1.5 (3), if V is isotropic, we still have a (regularized) Siegel–Weil formula. However, since the theta integral $I_V(g, \phi)$ is not necessarily convergent, a regularization process must be applied. The inner product introduced in the next section also requires a regularization process. Since the classical inner product formula is not the purpose of this article, we will always assume that V is anisotropic for simplicity, or pretend that the regularization process has been applied for general V in the following discussion.

2.2 Doubling integrals

2.2.1 Decomposition of global period integrals

Let $m = 2n$ and $r = n$ with $n \geq 1$ and suppress n from notations except that we will use H' instead of H_n; P' instead of P_n; N' instead of N_n and \mathcal{K}' instead of \mathcal{K}_n. Therefore, $\chi|_{\mathfrak{A}'} = 1$ is the trivial character. Let $\pi = \bigotimes_{v \in \Sigma} \pi_v$ be an irreducible cuspidal automorphic representation of $H'(\mathfrak{A}_F)$
contained in $A_0(H')$: the space of cuspidal automorphic forms on $H'(A_F)$. We will not distinguish π with its underlying space. Let π^\vee be the contragredient representation which is realized on the space of complex conjugation of functions in π.

We denote by $(-W)$ the skew-hermitian space over E with the skew-hermitian form $-\langle - , - \rangle$. Therefore, we have a basis $\{ e_1^-, \ldots, e_{2n}^- \}$ satisfying

- $\langle e_i^-, e_j^- \rangle = 0$;
- $\langle e_{r+i}^-, e_{r+j}^- \rangle = 0$;
- $\langle e_i^-, e_{n+j}^- \rangle = -\delta_{ij}$ for $1 \leq i \leq n$.

Let $W'' = W \oplus (-W)$ be the direct sum of the two skew-hermitian spaces. There is a natural embedding

$$\iota : H' \times H' \hookrightarrow U(W'')$$

(2.2)

which is, under the basis

- $\{ e_1, \ldots, e_{2n} \}$ of W and
- $\{ e_1, \ldots, e_n; e_1^-, \ldots, e_n^-, e_{n+1}, \ldots, e_{2n}; -e_{n+1}^-, \ldots, -e_{2n}^- \}$ of W'',

given by $\iota(g_1, g_2) = \iota_0(g_1, g_2^\vee)$ where

$$g_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}, \quad g^\vee = \begin{pmatrix} 1_n \\ -1_n \end{pmatrix} g \begin{pmatrix} 1_n \\ -1_n \end{pmatrix}^{-1}$$

and

$$\iota_0(g_1, g_2) = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \\ c_1 & d_1 \\ c_2 & d_2 \end{pmatrix}.$$

Notation 2.2.1. Let

$$W' = \text{span}_E \{ e_1, \ldots, e_n; e_1^-, \ldots, e_n^- \}$$

$$\overline{W}' = \text{span}_E \{ e_{n+1}, \ldots, e_{2n}; -e_{n+1}^-, \ldots, -e_{2n}^- \}.$$
be a pair of complimentary Lagrangian subspaces of W''. Let P be the parabolic subgroup of $U(W'')$ stabilizing W'' and N the unipotent radical of P.

For the complete polarization $W'' = W' \oplus \overline{W'}$, we can realize the Weil representation of $U(W'')$, denoted by ω'' (with respect to ψ), on the space $\mathcal{S}(V^{2n})$, such that $\iota^* \omega'' \cong \omega'' \otimes \chi \omega''$, where the latter one is realized on the space $\mathcal{S}(V^n) \otimes \mathcal{S}(V^n)$. Here we realize the contragredient representation $\omega_{\chi, \psi}$ on the space $\mathcal{S}(V^n)$ through the bilinear pairing

$$\langle \phi, \phi^{\vee} \rangle_V = \int_{V^n(\mathbb{A}_E)} \phi(x) \phi^{\vee}(x) dx$$

for $\phi, \phi^{\vee} \in \mathcal{S}(V^n)$. Then $\omega_{\chi, \psi}'$ is identified with $\omega_{\chi^{-1}, \psi^{-1}}$.

For $\phi \in \mathcal{S}(V^n)$ and $f \in \pi$, we define the theta lifting

$$\theta^f_{\phi}(h) = \int_{H'(F) \backslash H'(A_F)} \theta(g, h; \phi) f(g) dg.$$

It is a well-defined, slowly increasing function on $H(F) \backslash H(A_F)$, where $dg = \otimes_{v \in \Sigma} dg_v$ such that \mathcal{X}_v gets volume 1 for every $v \in \Sigma$. Similarly, for $\phi^{\vee} \in \mathcal{S}(V^n)$ and $f^{\vee} \in \pi^{\vee}$, we have $\theta^{f^{\vee}}_{\phi^{\vee}}$. The reader should be careful that in the contragredient side, the Weil representation used to form the theta function should also be the contragredient one, i.e., ω_{χ}^{\vee}. We have

$$\langle \theta^f_{\phi}, \theta^{f^{\vee}}_{\phi^{\vee}} \rangle_H = \int_{H(F) \backslash H(A_F)} \theta^f_{\phi}(h) \theta^{f^{\vee}}_{\phi^{\vee}}(h) dh$$

$$= \int_{H(F) \backslash H(A_F)} \int_{[H'(F) \backslash H'(A_F)]^2} \theta((g_1, g_2), h; \phi) f(g_1) \theta(g_2, h; \phi^{\vee}) f^{\vee}(g_2) dg_1 dg_2 dh$$

$$= \int_{H(F) \backslash H(A_F)} \int_{[H'(F) \backslash H'(A_F)]^2} \theta((g_1, g_2), h; \phi \otimes \phi^{\vee}) f(g_1) f^{\vee}(g_2) \chi^{-1}(\det g_2) dg_1 dg_2 dh$$

$$= \int_{[H'(F) \backslash H'(A_F)]^2} f(g_1) f^{\vee}(g_2) \chi^{-1}(\det g_2) \int_{H(F) \backslash H(A_F)} \theta((g_1, g_2), h; \phi \otimes \phi^{\vee}) dh dg_1 dg_2. \quad (2.3)$$

We assume that V is anisotropic. Then the inside integral in the last step is absolutely convergent.

By Theorem 2.1.5 (3), we have

$$\langle \theta^f_{\phi}, \theta^{f^{\vee}}_{\phi^{\vee}} \rangle_H = \frac{1}{2} \int_{[H'(F) \backslash H'(A_F)]^2} f(g_1) f^{\vee}(g_2) \chi^{-1}(\det g_2) E(0, i(g_1, g_2), \phi \otimes \phi^{\vee}) dg_1 dg_2.$$
to the parabolic subgroup P (see Notation 2.2.1), i.e.,

$$E(s, g, \Phi) = E(g, \varphi_{\Phi,s}) = \sum_{\gamma \in P(F) \setminus U(W'')(F)} \omega_x''(\gamma g) \Phi(0) \lambda_P(\gamma g)^s$$

for $g \in U(W'')(A_F)$, $\Phi \in S(V^{2n})$ and $\operatorname{Re} s > n$. The coset $P(F) \setminus U(W'')(F)$ can be canonically identified with the space of isotropic n-planes in W''. Under the right action of $H'(F) \times H'(F)$ through 1, the orbit of an n-plane Z is determined by the invariant $d = \dim Z \cap W = \dim Z \cap (-W)$. Let γ_d be a representative of the corresponding double coset where $0 \leq d \leq n$. In particular, we take

$$\gamma_0 = \begin{pmatrix} 1_n \\ 1_n \\ -1_n \\ 1_n \end{pmatrix} \quad \text{and} \quad \gamma_n = 1_{4n}$$

(cf. [KR2005]). Let St_d be the stabilizer of $P\gamma_d(H' \times H')$ in $H' \times H'$. In particular $\text{St}_0 = \Delta(H')$ is the diagonal subgroup. Therefore, for a standard section $\varphi_s \in I_{2n}(s, \chi)$ and $\operatorname{Re} s > n$,

$$\int_{[H'(F)\setminus H'(A_F)]^2} f(g_1) f^\vee(g_2) \chi^{-1}(\det g_2) E(\iota(g_1, g_2), \varphi_s) dg_1 dg_2$$

$$= \int_{[H'(F)\setminus H'(A_F)]^2} (f \otimes f^\vee \chi^{-1})(g) \sum_{\gamma \in P(F) \setminus U(W''(F))} \varphi_s(\gamma \iota(g)) dg$$

$$= \sum_{d=0}^n \int_{\text{St}_d(F) \setminus H'(A_F)^2} (f \otimes f^\vee \chi^{-1})(g) \varphi_s(\gamma_d \iota(g)) dg. \quad (2.4)$$

When $d > 0$, St_d has nontrivial unipotent radical. Since f and f^\vee are cuspidal, we have

$$\text{(2.4)} = \int_{\Delta(H'(F)) \setminus H'(A_F)^2} (f \otimes f^\vee \chi^{-1})(g) \varphi_s(\gamma_0 \iota(g)) dg$$

$$= \int_{H'(F) \setminus H'(A_F)} \int_{H'(A_F)} f(g_1 g_2) f^\vee(g_1) \chi^{-1}(\det g_1) \varphi_s(\gamma_0 \iota(g_1, g_2, g_1)) dg_1 dg_2$$

$$= \int_{H'(F) \setminus H'(A_F)} \pi(g_2) f(g_1) f^\vee(g_1) \chi^{-1}(\det g_1) \varphi_s(p(g_1) \gamma_0 \iota(g_2, 1)) dg_1 dg_2 \quad (2.5)$$

where $p(g_1) \gamma_0 = \gamma_0 \iota(g_1, g_1)$, and under the Levi decomposition $p(g_1) = n(b)m(a) \in P(A_F)$, we have
\(\det a = \det g_1 \). Therefore,

\[
(2.5) = \int_{H'(\mathbb{A}_F)} \int_{H'(\mathbb{F}) \setminus H'(\mathbb{A}_F)} \pi(g_2) f(g_1) f'(g_1) dg_1 \varphi_s(\gamma_0(g_2, 1))dg_2 \\
= \int_{H'(\mathbb{A}_F)} \langle \pi(g)f, f' \rangle \varphi_s(\gamma_0(g, 1))dg \\
= \prod_{v \in \Sigma} \int_{H'_v} \langle \pi_v(g_v)f_v, f'_v \rangle \varphi_{s,v}(\gamma_0(g_v, 1))dg_v
\]

where we assume that \(f, f' \) and \(\varphi_s \) are all decomposable. In summary, we have the following proposition.

Proposition 2.2.2. Let \(f, f' \) and \(\varphi_s \) be as above. Then for \(\text{Re} \, s > n \), the integral

\[
\int_{[H'(\mathbb{F}) \setminus H'(\mathbb{A}_F)]^2} f(g_1) f'(g_2) \chi^{-1}(\det g_2) E(\nu(g_1, g_2), \varphi_s) dg_1 dg_2
\]

\[
= \prod_{v \in \Sigma} \int_{H'_v} \langle \pi_v(g_v)f_v, f'_v \rangle \varphi_{s,v}(\gamma_0(g_v, 1))dg_v
\]

defines an element in the space

\[
\text{Hom}_{H'(\mathbb{A}_F) \times H'(\mathbb{A}_F)}(I_{2n}(s, \chi), \pi^\vee \boxtimes \chi \pi) = \bigotimes_{v \in \Sigma} \text{Hom}_{H'_v \times H'_v}(I_{2n}(s, \chi_v), \pi_v^\vee \boxtimes \chi_v \pi_v).
\]

2.2.2 Local zeta integrals

We study the local functionals obtained in 2.2.1.

Fix a finite place \(v \) of \(F \) and suppress it from notations. For \(f \in \pi, f' \in \pi^\vee \) and a holomorphic section \(\varphi_s \in I_{2n}(s, \chi) \), define the **local zeta integral**

\[
Z(\chi, f, f', \varphi_s) = \int_{H'} \langle \pi(g)f, f' \rangle \varphi_s(\gamma_0(g, 1))dg,
\]

which is absolutely convergent when \(\text{Re} \, s > 2n \). In [HKS1996, Section 6], the family of **good sections** is introduced. For every good section \(\varphi_s \), the zeta integral \(Z(\chi, f, f', \varphi_s) \) is a rational function in \(q^{-s} \), where \(q \) is the cardinality of the residue field of \(F \). In particular, it has a meromorphic continuation to the entire complex plane. Consider the family of zeta integrals

\[
\{ Z(\chi, f, f', \varphi_s) \mid f \in \pi, f' \in \pi^\vee, \varphi_s \text{ is good} \}
\]

and the fractional ideal \(\mathcal{I} \) of the ring \(\mathbb{C}[q^s, q^{-s}] \) in its fraction field generated by the above family. In
fact, \(J \) is generated by \(P(q^{-s})^{-1} \), for a unique polynomial \(P(X) \in \mathbb{C}[X] \) such that \(P(0) = 1 \). We let

\[
L(s + \frac{1}{2}, \pi, \chi) = \frac{1}{P(q^{-s})}
\]

be the local doubling \(L \)-series of Piatetski-Shapiro and Rallis. Same construction can also be applied to the archimedean case.

Now suppose \(E/F \) is unramified (including split) at \(v \) and \(\psi, \chi, \pi \) are also unramified. Let \(f_0 \in \pi^{\kappa'}, f'_0 \in (\pi^\vee)^{\kappa'} \) such that \(\langle f_0, f'_0 \rangle = 1 \), and \(\varphi^0_s \) be the unramified standard section. Then the calculation in [GPSR1987] and [Li1992] (see [Li1992, Theorem 3.1]) shows that

\[
Z(\chi, f_0, f'_0, \varphi^0_s) = \frac{L(s + \frac{1}{2}, \BC(\pi) \otimes \chi)}{b_{2n}(s)}
\]

where

\[
b_m(s) = \prod_{i=0}^{m-1} L(2s + m - i, \epsilon_{E/F})
\]

is a product of local Tate factors. For the general case,

\[
\frac{b_{2n}(s)Z(\chi, f, f'_0, \varphi^0_s)}{L(s + \frac{1}{2}, \pi, \chi)}
\]

admits a meromorphic extension to the entire complex plane which is holomorphic at \(s = 0 \). Moreover, the normalized zeta integral

\[
Z^*(\chi, f, f'_0, \varphi_s) = \frac{b_{2n}(s)Z(\chi, f, f'_0, \varphi_s)|_{s=0}}{L(s + \frac{1}{2}, \pi, \chi)}
\]

defines a nonzero element in \(\text{Hom}_{H' \times H'}(J_{2n}(0, \chi), \pi^\vee \boxtimes \chi \pi) \) (cf. [HKS1996, Proof of Theorem 4.3 (1)])

Remark 2.2.3. It is conjectured (cf. e.g., [HKS1996]) that for all irreducible admissible representations \(\pi \) of \(H' \) and characters \(\chi \) of \(E^\times \), we have

\[
L(s, \pi, \chi) = L(s, \BC(\pi) \otimes \chi).
\]

This is known when \(E/F, \chi \) and \(\pi \) are all unramified due to (the same method of) Kudla–Rallis [KR2005, Section 5]. It is also known when \(n = 1 \) due to [Har1993].

For further discussion, we need to recall a result on degenerate principal series. In what follows, we
will use the notation H'' instead of $U(W'')$ for short, and recall our embedding $i: H' \times H' \hookrightarrow H''$. Let V be a hermitian space of dimension $2n$ over E. Then $\varphi_\phi(g) = \omega_\chi(g)\phi(0)$ defines an H''-intertwining map $\mathcal{S}(V^{2n}) \to I_{2n}(0, \chi)$ whose image $R(V, \chi)$ is isomorphic to $\mathcal{S}(V^{2n})_H$. Recall in 2.1.3 that we denote by V^\pm the two non-isometric hermitian spaces of dimension $2n$ when v is finite nonsplit; V^+ the only hermitian space (up to isometry) of dimension $2n$ when v is finite split; and V_s ($0 \leq s \leq 2n$) the $2n + 1$ non-isometric hermitian spaces of dimension $2n$ when v is infinite.

Proposition 2.2.4. Let notations be as above. We have

1. If v is finite nonsplit, then $R(V^+, \chi)$ and $R(V^-, \chi)$ are irreducible, inequivalent, and $I_{2n}(0, \chi) = R(V^+, \chi) \oplus R(V^-, \chi)$.

2. If v is finite split, then $R(V, \chi)$ is irreducible, and $I_{2n}(0, \chi) = R(V^+, \chi)$.

3. If v is infinite, then $R(V_s, \chi)$ are irreducible, inequivalent, and $I_{2n}(0, \chi) = \bigoplus_{s=0}^{2n} R(V_s, \chi)$.

Proof.

1. It is [KS1997, Theorem 1.2].

2. It is [KS1997, Theorem 1.3].

3. It is [Lee1994, Section 6, Proposition 6.11].

\[\Box \]

2.3 Central special values of L-functions

2.3.1 Theta lifting and central L-values

We study the relation between the theta lifting θ_ϕ^f defined in 2.2.1 and the central special value of the L-function of the representation π.

Recall that we have an irreducible unitary cuspidal automorphic representation π of $H' = H_n$ and a hermitian space V over E of dimension $2n$. One key question in the theory of theta lifting is whether θ_ϕ^f is nonvanishing. A sufficient condition is to look at the local invariant functional as follows. We have the following proposition, which is usually referred as theta dichotomy.

Proposition 2.3.1. For every nonsplit place $v \in \Sigma$, $\text{Hom}_{H'_n \times H'_n}(R(V_v, \chi_v), \pi_v \boxtimes \chi_v \pi_v) \neq 0$ for exactly one hermitian space V_v (up to isometry) over E_v of dimension $2n$.

Such V_v will be denoted as $V(\pi_v, \chi_v)$.
Proof. If \(v \) is (real) archimedean, it is due to [Pau1998, Theorem 2.9]. If \(v \) is non-archimedean, it is due to Proposition A.1.1 or [GG2011, Theorem 2.10], and the nonvanishing of \(Z^* \).

In Proposition 2.3.1, if we let \(\varphi_s = \varphi_{\phi \otimes \phi^\vee, s} \) and set

\[
Z^*(s, \chi, f, f^\vee, \phi_v \otimes \phi^\vee_v) = Z^*(\chi, f, f^\vee, \varphi_{\phi_v \otimes \phi^\vee_v, s}),
\]

then both sides have meromorphic continuation to the entire complex plane, which are holomorphic at the point \(s = 0 \). Namely, we have

\[
\langle \theta_f, \theta_{f^\vee} \rangle_H = \frac{L(\frac{1}{2}, \pi, \chi)}{2 \prod_{i=1}^{2n} L(i, \epsilon_{E/F})} \prod_{v \in S} Z^*(0, \chi, f, f^\vee, \phi_v \otimes \phi^\vee_v), \tag{2.8}
\]

in which the product of normalized zeta integrals can actually be taken over a finite set \(S \) by the unramified calculation. In particular, for \(v \not\in S \), \(V_v \cong V(\pi_v, \chi_v) \). Then one necessary condition for \(\theta_f^I \) to be nonvanishing for some \(f \) and \(\phi \) is that each local (normalized) zeta integral is not identically zero.

In other words, we should have \(V_v \cong V(\pi_v, \chi_v) \) for all \(v \in \Sigma \). Let \(W(\pi, \chi) \) be the hermitian space over \(A_F \) such that \(W(\pi, \chi)_v \cong V(\pi_v, \chi_v) \), and let \(\epsilon(\pi_v, \chi_v) = \epsilon(V(\pi_v, \chi_v)) \), \(\epsilon(\pi, \chi) = \prod_{v \in \Sigma} \epsilon(\pi_v, \chi_v) \). If \(\epsilon(\pi, \chi) = -1 \), then \(W(\pi, \chi) \) is incoherent, and hence for every \(V \), the theta lifting \(\theta_f^I \) always vanishes. If \(\epsilon(\pi, \chi) = 1 \), then \(W(\pi, \chi) \cong V(\pi, \chi) \otimes_F A_F \) for a unique hermitian space \(V(\pi, \chi) \) (up to isometry) over \(E \). Assume that \(V(\pi, \chi) \) is anisotropic. Then there exist some \(f \in \pi \) and \(\phi \in \mathcal{S}(V(\pi, \chi)^n) \) such that \(\theta_f^I \neq 0 \) if and only if \(L(\frac{1}{2}, \pi, \chi) \neq 0 \).

We would like to give another interpretation of the formula (2.8) when \(\epsilon(\pi, \chi) = 1 \), which is heuristic for the arithmetic case. For this purpose, let us assume the following conjecture proposed by S. Kudla and S. Rallis (in the symplectic-orthogonal case).

Conjecture 2.3.2 ([HKS1996]). We have

\[
\dim \text{Hom}_{H_v^\vee \times H_v^\vee}(I_{2n}(0, \chi_v), \pi_v^\vee \boxtimes \chi_v \pi_v) = 1 \tag{2.9}
\]

for every irreducible admissible representation \(\pi_v \) of \(H_v^\vee \).

Remark 2.3.3. 1. When \(n = 1 \), the above conjecture is proved as Proposition A.2.1.

2. In general, the above conjecture follows from the multiplicity preservation (cf. [LST2011, Theorem A]) and the Local Howe Duality Conjecture.

3. The multiplicity preservation has been proved by Waldspurger [Wal1990] when \(v \) is non-archimedean.
and has odd residue characteristic; by Li–Sun–Tian [LST2011] for every non-archimedean place \(v \); and by Howe [How1989] for every archimedean place \(v \).

4. The Local Howe Duality Conjecture has been proved by Waldspurger [Wal1990] when \(v \) is non-archimedean and has odd residue characteristic; by Minguez [Mín2008] for every non-archimedean place \(v \); and by Howe [How1989] for every archimedean place \(v \).

5. In particular, the above conjecture is known if \(v \) does not have residue characteristic 2; or \(v \) has residue characteristic 2 but is split in \(E \).

Let \(V = V(\pi, \chi) \) and \(R(V, \chi) = \bigotimes R(V_v, \chi_v) \). On the one hand, the functional

\[
\beta(f, f^\vee, \phi, \phi^\vee) = \langle \theta^f, \theta^{f^\vee} \rangle_H
\]

defines an element in

\[
\text{Hom}_{H'(A_F) \times H'(A_F)}(R(V, \chi), \pi^\vee) = \bigotimes_{v \in \Sigma} \text{Hom}_{H'_v \times H'_v}(R(V_v, \chi_v), \pi_v^\vee \boxtimes \chi_v \phi_v).
\]

On the other hand, the functional

\[
\alpha(f, f^\vee, \phi, \phi^\vee) = \prod_{v \in \Sigma} Z^*(0, \chi_v, f_v, f_v^\vee, \phi_v, \phi_v^\vee)
\] (2.10)

(when everything is decomposable, otherwise we take the linear combination) defines also an element in \(\bigotimes_{v \in \Sigma} \text{Hom}_{H'_v \times H'_v}(R(V_v, \chi_v), \pi_v^\vee) \boxtimes \chi_v \phi_v \), which is nonzero. However, by (2.9), the space \(\text{Hom}_{H'_v \times H'_v}(R(V_v, \chi_v), \pi_v^\vee \boxtimes \chi_v \phi_v) \) is of dimension one. Therefore, \(\beta \) is a constant multiple of \(\alpha \). This constant, by (2.8), is equal to

\[
\frac{\beta}{\alpha} = \frac{L(\frac{1}{2}, \pi, \chi)}{2 \prod_{i=1}^{2n} L(i, \epsilon_{E/F})}.
\]

In other words, vanishing of \(L(\frac{1}{2}, \pi, \chi) \) is the obstruction for \(\beta \) to be a nontrivial global invariant functional. This kind of formulation is first observed by X. Yuan, S.-W. Zhang and W. Zhang in [YZZa,YZZb].

2.3.2 Vanishing of central \(L \)-values

We prove that the central \(L \)-value \(L(\frac{1}{2}, \pi, \chi) \) vanishes when \(\epsilon(\pi, \chi) = -1 \).
By Proposition 2.2.4, we have a decomposition of $H''(\mathbb{A}_F)$-admissible representation

$$I_{2n}(0, \chi) = \bigoplus_{\mathfrak{V}} R(\mathfrak{V}, \chi) = \bigoplus_{\mathfrak{V}} \bigotimes_{v \in \Sigma} R(\mathfrak{V}_v, \chi_v),$$

where the direct sum is taken over all (isometry classes of) hermitian spaces over \mathbb{A}_E of rank $2n$.

We note that each $R(\mathfrak{V}, \chi)$ is irreducible. Recall the group $H'' = U(W'')$ and its standard parabolic subgroup P with is unipotent radical N as in Notation 2.2.1. First, we need some lemmas on local representations.

Fix a place v and suppress it from notations. For $T \in \text{Her}_{2n}(E)$, let $O_T = \{ x \in V_{2n} | T(x) = T \}$.

Define a character ψ_T of $N \sim = \text{Her}_{2n}(E)$ by $\psi_T(n(b)) = \psi(\text{tr} T b)$.

Lemma 2.3.4. Let notations be as above. We have

1. Suppose v is finite. Let $S(V_{2n})_{N, \psi_T}$ (resp. $R(V, \chi)_{N, \psi_T}$) be the twisted Jacquet module of $S(V_{2n})$ (resp. $R(V, \chi)$) associated to N and the character ψ_T. Then

 (a) The quotient map $S(V_{2n}) \rightarrow S(V_{2n})_{N, \psi_T}$ can be realized by the restriction $S(V_{2n}) \rightarrow S(O_T)$.

 (b) If T is nonsingular, then

$$\dim R(V, \chi)_{N, \psi_T} = \begin{cases} 1 & \text{if } O_T \neq \emptyset; \\ 0 & \text{otherwise.} \end{cases}$$

2. Suppose v is infinite, i.e., $E/F = \mathbb{C}/\mathbb{R}$ and T is nonsingular. The space of H-invariant tempered distribution T on $S(V_{2n})$ such that

$$T(\omega_{\chi}(X)\Phi) = d\psi_T(X)T(\Phi)$$

for $X \in \text{Lie } N$ is of dimension 1 (resp. 0) if $O_T \neq \emptyset$ (resp. $O_T = \emptyset$).

Proof.

1. It is [Ral1987, Lemma 4.2].

2. It is [Ral1987, Lemma 4.2] and [KR1994, Proposition 2.9].

We now construct the twisted Jacquet module $R(V, \chi)_{N, \psi_T}$ or the invariant distribution explicitly.
if it is not trivial. For a standard section \(\varphi_s \in I_{2n}(s, \chi) \), define the Whittaker integral

\[
W_T(g, \varphi_s) = \int_N \varphi_s(wng)\psi_T(n)^{-1}dn,
\]

where \(w = w_{2n} \) and \(dn \) is selfdual with respect to \(\psi \). The integral \(W_T(g, \varphi_s) \) is absolutely convergent when \(\Re s > n \). It is easy to see that \(W_T(e, \bullet) : I_{2n}(s, \chi) \to \mathbb{C}_{N, \psi_T} \) is an \(N \)-intertwining map. Let \(W_T(s, g, \Phi) = W_T(g, \varphi_{\Phi, s}) \) for \(\Phi \in S(V^{2n}) \). We have the following lemmas.

Lemma 2.3.5. Assume that \(T \) is nonsingular. Then

1. \(W_T(g, \varphi_s) \) is entire.
2. The map \(\Phi \mapsto W_T(0, e, \Phi) \) realizes the surjective \(N \)-intertwining map \(S(V^{2n}) \to R(V, \chi) \to R(V, \chi)_{N, \psi_T} \) or the invariant distribution in Lemma 2.3.4 (2).

Proof. 1. It is [Kar1979, Corollary 3.6.1] for \(v \) finite and [Wal1988, Theorem 8.1] for \(v \) infinite.

2. It is [KR1994, Proposition 2.7].

Lemma 2.3.6. Assume that \(v \) is a finite place; \(E/F \), \(\psi \) and \(\chi \) are all unramified; and \(V = V^+ \). Let \(\Phi^0 \) be the characteristic function of \((\Lambda^+)_{2n} \) for a selfdual \(\mathcal{O}_E \)-lattice \(\Lambda^+ \), and \(T \in \text{Her}_{2n}(\mathcal{O}_F) \) with \(\det T \in \mathcal{O}_F^\times \). Then we have

\[
W_T(s, e, \Phi^0) = b_{2n}(s)^{-1}.
\]

Proof. This is [Tan1999, Proposition 3.2].

Now suppose we are in the global situation. We denote by \(\mathcal{A}(G) \) the space of automorphic forms of \(G \) for a reductive group \(G \). For \(T \in \text{Her}_{2n}(F) \), define the \(T \)-th Fourier coefficient of \(f(g) \in \mathcal{A}(H'') \) as

\[
W_T(g, f) = \int_{N(F) \backslash N(A_F)} f(ng)\psi_T(n)^{-1}dn.
\]

For a hermitian space \(\mathbb{V} \) over \(A_E \) of rank \(2n \), we have a family of linear maps

\[
\delta_a : R(\mathbb{V}, \chi) \to \mathcal{A}(H'')
\]

\[
\Phi \mapsto E(s, g, \Phi) = E(g, \varphi_{\Phi, a})
\]

(2.11)
for \(s \) near 0. It is an \(H''(A) \)-intertwining map exactly when \(s = 0 \). Then for \(T \) nonsingular (and \(s \) near 0), we have

\[
E_T(s, g, \Phi) := W_T(g, \delta_s(\Phi)) = \prod_{v \in \Sigma} W_T(s, g_v, \Phi_v).
\]

(2.12)

Lemma 2.3.7. For every \(H''(A) \)-intertwining map \(\delta : R(\mathbb{V}, c) \to \mathcal{A}(H'') \), if \(W_T(g, \bullet) \circ \delta \) vanishes for all nonsingular \(T \), then \(\delta = 0 \).

Proof. Fix a finite place \(v \), by Lemma 2.3.4 (1), we can find a section \(\Phi_0 = \Phi_{v,0} \Phi^v \in S(\mathbb{V}_v^{2n}) \) with nonzero projection in \(R(\mathbb{V}, c) \) such that \(\Phi_{v,0} \in S(\mathbb{V}_v^{2n})_{\text{reg}} \) (cf. Definition 2.4.1).

For every \(g^v \in c_v H''(A_v) \), the functional \(\Phi_v \mapsto W_T(0, g^v, \Phi_v \Phi^v) \) factors through the twisted Jacquet module \(S(\mathbb{V}_v^{2n})_{\mathcal{N}_v \mathcal{P}_v} \). If \(T \) is singular, then by our choice of \(\Phi_{v,0} \) and Lemma 2.3.4 (1-a), \(W_T(0, g^v, \Phi_{v,0} \Phi^v) = 0 \). Similarly, \(W_T(0, g, \Phi_{v,0} \Phi^v) = 0 \) for all \(g \in P_v H''(A_v) \) since the action of \(P_v \) stabilizes the subspace \(S(\mathbb{V}_v^{2n})_{\text{reg}} \). For \(T \) nonsingular, \(W_T \equiv 0 \) by the assumption. Therefore, \(\delta(\Phi_0)(g) = 0 \) for \(g \in P_v H''(A_v) \). It follows that \(\delta(\Phi_0) = 0 \). Therefore, \(\delta = 0 \) by our choice of \(\Phi_0 \) and the irreducibility of \(R(\mathbb{V}, c) \).

Proposition 2.3.8. We have

1. If \(\mathbb{V} \) is incoherent, then \(\dim \text{Hom}_{H''(A)}(R(\mathbb{V}, c), \mathcal{A}(H'')) = 0 \).

2. If \(\mathbb{V} \) is coherent, then \(\dim \text{Hom}_{H''(A)}(R(\mathbb{V}, c), \mathcal{A}(H'')) = 1 \) and \(\delta_0 \) (2.11) is a basis.

Proof.

1. Assume that \(\delta \) is a nontrivial intertwining map. Then by Lemma 2.3.7, there is a nonsingular \(T \in \text{Her}_{2n}(F) \) such that \(W_T(g, \bullet) \circ \delta \) does not vanish. By Lemma 2.3.4 (1-b) and (2), \(T \) is representable by \(\mathbb{V}_v \) for every \(v \in \Sigma \), i.e., \(\mathbb{O}_T \neq \emptyset \). However, \(\mathbb{V} \) will be coherent, which is a contradiction.

2. Assume that \(\delta \) and \(\delta' \) are both nontrivial intertwining maps. By Lemma 2.3.7, there is a nonsingular \(T \) such that \(W_T(g, \bullet) \circ \delta \) does not vanish. By Lemma 2.3.4 (1-b)(2), there exists \(c \in \mathbb{C} \) such that \(W_T(g, \bullet) \circ \delta' = c W_T(g, \bullet) \circ \delta \). Furthermore, \(c \) is independent of nonsingular \(T \) since all of those that can be represented by \(\mathbb{V} \) are in a single \(M(F) \)-orbit under the conjugation action on \(N(F) \). By Lemma 2.3.7, \(\delta' - c\delta = 0 \), i.e., \(\dim \text{Hom}_{H''(A)}(R(\mathbb{V}, c), \mathcal{A}(H'')) \leq 1 \).

For the rest, we need to prove that \(\delta_0 \) is actually nontrivial. Since \(\mathbb{V} \) is coherent, we can choose a nonsingular \(T \in \text{Her}_{2n}(F) \) that is representable by \(\mathbb{V} \). By (2.12), Lemma 2.3.5 (2) and Lemma 2.3.6, we can find a suitable \(\Phi \) such that \(W_T(0, c, \Phi) \neq 0 \). Therefore, \(\delta_0 \neq 0 \).

\[\square\]
Now we can state the following main result.

Theorem 2.3.9. If \(\epsilon(\pi, \chi) = -1 \), then \(L(\frac{1}{2}, \pi, \chi) = 0 \).

Proof. Let \(V = V(\pi, \chi) \). Then it is incoherent. We can choose suitable \(f_v, f'_v, \phi_v \) and \(\phi'_v \) when some \(E, \psi, \chi, \pi \) is ramified at \(v \), such that \(Z^*(0, \chi_v, f_v, f'_v, \phi_v \otimes \phi'_v) \neq 0 \). Let \(f, f', \phi \) and \(\phi' \) be adelic vectors with these sublocal components and unramified ones at the places where \(E, \psi, \chi, \pi \) are unramified. From Proposition 2.2.2 (after analytic continuation), we have

\[
\int_{[H'(F) \setminus H'(A_F)]^2} f(g_1)f'(g_2)\chi^{-1}(\det g_2)E(0, i(g_1, g_2), \phi \otimes \phi')dg_1dg_2 = \frac{L(\frac{1}{2}, \pi, \chi)}{\prod_{i=1}^{2n} L(i, \epsilon_{E/F})} \prod_{v \in S} Z^*(0, \chi_v, f_v, f'_v, \phi_v \otimes \phi'_v).
\]

However, \(\delta_0 \) is zero on \(R(V, \chi) \) by Proposition 2.3.8 (1). We have \(E(0, i(g_1, g_2), \phi \otimes \phi') \equiv 0 \). Therefore, \(L(\frac{1}{2}, \pi, \chi) = 0 \) by our choices and the fact that the Tate \(L \)-values appearing above are finite. \(\square \)

Since \(L(\frac{1}{2}, \pi, \chi) = 0 \), it motivates us to consider its derivative at \(\frac{1}{2} \). In fact, we have

\[
\frac{d}{ds} \bigg|_{s=0} \int_{[H'(F) \setminus H'(A_F)]^2} f(g_1)f'(g_2)\chi^{-1}(\det g_2)d_s E(s, i(g_1, g_2), \phi \otimes \phi')dg_1dg_2
\]

\[
= \frac{d}{ds} \bigg|_{s=0} \frac{L(s + \frac{1}{2}, \pi, \chi)}{\prod_{i=1}^{2n} L(2s + i, \epsilon_{E/F})} \prod_{v \in S} Z^*(s, \chi_v, f_v, f'_v, \phi_v \otimes \phi'_v)
\]

\[
= \frac{L'(\frac{1}{2}, \pi, \chi)}{\prod_{i=1}^{2n} L(i, \epsilon_{E/F})} \prod_{v \in S} Z^*(0, \chi_v, f_v, f'_v, \phi_v \otimes \phi'_v) + \frac{L(\frac{1}{2}, \pi, \chi)}{\prod_{i=1}^{2n} L(2s + i, \epsilon_{E/F})} \frac{d}{ds} \bigg|_{s=0} \prod_{v \in S} Z^*(s, \chi_v, f_v, f'_v, \phi_v \otimes \phi'_v)
\]

\[
= \frac{L'(\frac{1}{2}, \pi, \chi)}{\prod_{i=1}^{2n} L(i, \epsilon_{E/F})} \prod_{v \in S} Z^*(0, \chi_v, f_v, f'_v, \phi_v \otimes \phi'_v). \tag{2.13}
\]

Definition 2.3.10 (Analytic kernel functions). We call \(E'(0, g, \Phi) = \frac{d}{ds} \bigg|_{s=0} E(s, g, \Phi) \) the analytic kernel function associated to the test function \(\Phi \in S(V^{2n}) \).

Recall that for \(T \in \text{Her}_{2n}(F) \), we let

\[
E_T(s, g, \Phi) = W_T(g, \mathcal{O}_s(\Phi))
\]

for \(s \) near 0. If \(T \) is nonsingular, then

\[
W_T(g, \mathcal{O}_s(\Phi)) = \prod_{v \in S} W_T(s, g_v, \Phi_v)
\]
if $\Phi = \bigotimes \Phi_v$ is decomposable. Therefore,

$$E(s, g, \Phi) = \sum_{T \text{ sing.}} E_T(s, g, \Phi) + \sum_{T \text{ non-sing.}, v \in \Sigma} \prod_{v'} W_T(s, g_v, \Phi_v).$$

Taking derivative at $s = 0$, we have

$$E'(0, g, \Phi) = \sum_{T \text{ sing.}} E'_T(0, g, \Phi) + \sum_{T \text{ non-sing.}, v \in \Sigma} \prod_{v' \neq v} W'_T(0, g_v, \Phi_v) + \sum_{T \text{ non-sing.}, v \in \Sigma} \prod_{v' \neq v} W'_T(0, g_v, \Phi_v).$$

However, $\prod_{v' \neq v} W_T(0, g_v, \Phi_v) \neq 0$ only if $\mathbb{V}_{v'}$ represents T for all $v' \neq v$ by Lemma 2.3.4 (1-b). Since \mathbb{V} is incoherent, \mathbb{V}_v can not represent T. For T non-singular, there are only finitely many $v \in \Sigma$ such that T is not represented by \mathbb{V}_v, i.e., there does not exist $x_1, \ldots, x_{2n} \in \mathbb{V}_v$ whose moment matrix is T. We denote the set of such v by $\text{Diff}(T, \mathbb{V})$. Then

$$E'(0, g, \Phi) = \sum_{T \text{ sing.}} E'_T(0, g, \Phi) + \sum_{v \in \Sigma} E_v(0, g, \Phi),$$

where

$$E_v(0, g, \Phi) = \sum_{\text{Diff}(T, \mathbb{V}) = \{v\}} W'_T(0, g_v, \Phi_v) \prod_{v' \neq v} W_T(0, g_v, \Phi_v). \quad (2.14)$$

In fact, the summation in (2.14) is taken only over those v that are non-split in E.

2.4 Analytic kernel functions

2.4.1 Regular test functions

We prove that the summation of $E'_T(0, g, \Phi)$ over singular T’s vanishes for certain choice of Φ, and g in a suitable subset of $H''(\Lambda_F)$. We follow the idea in [YZZb].

Definition 2.4.1 (Regular test functions). Let v be a place and V a hermitian space over E_v. A test function $\phi \in S(V^r)$ is **regular**, if $\phi(x) = 0$ for x with degenerate moment matrix, i.e., $\det(T)(x) = 0$. We denote by $S(V^r)_\text{reg} \subset S(V^r)$ the subspace of regular test functions.

Fix a finite subset $S \subset \Sigma_{\text{fin}}$ with $|S| = k > 0$ and let $S(\mathbb{V}_S^{2n})_{\text{reg}} = \bigotimes_{v \in S} S(\mathbb{V}_v^{2n})_{\text{reg}}$. We have the following proposition.
Proposition 2.4.2. For $\Phi = \Phi_S \Phi^S \in S(\mathbb{V}^{2n}_S)_{\text{reg}} \otimes S(\mathbb{V}^{S,2n})$, $\text{ord}_s E_T(s,g,\Phi) \geq k$ for T singular and $g \in P(A_{F,S})H^\prime\prime(A_{F,S})$.

We can assume that $\Phi = \otimes_{v \in \Sigma} \Phi_v$ is decomposable with $\Phi_v \in S(\mathbb{V}_{v})_{\text{reg}}$ for $v \in S$ and rank $T = 2n - r < 2n$. Choose $a \in \text{GL}_{2n}(E)$ such that

$$aT^t a^{-1} = \begin{pmatrix} 0_r & \tilde{T} \\ \tilde{T} & T \end{pmatrix}$$

(2.15)

with $\tilde{T} \in \text{Her}_{2n-r}(E)$. Then

$$E_T(s,g,\Phi) = E_{aT^t a^{-1}}(s,m(a)g,\Phi).$$

Therefore, we can assume that T is of the form (2.15).

First, we need a more explicit formula for the singular coefficient E_T. By definition, for $\text{Re} s > n$

$$E_T(s,g,\Phi) = \int_{N(F) \backslash N(A_F)} \sum_{\gamma \in P(F) \backslash H^\prime\prime(F)} \varphi_{\Phi,s}(\gamma ng) \psi_T(n)^{-1} dn$$

(2.16)

where $r(g)$ standards for the action of $H^\prime\prime$ on $I_{2n}(s,\chi)$ by right translation. We need to unfold this summation. Recall that for $0 \leq d \leq 2n$,

$$w_{2n,d} = \begin{pmatrix} 1_d & \mathbf{1}_{2n-d} \\ \mathbf{1}_d & -1_{2n-d} \end{pmatrix}$$

(2.17)

in Notation 1.0.5. Then $\{w_{2n,d} \mid 0 \leq d \leq 2n\}$ is a set of representatives of the double coset $W_{P/N} \backslash W_{H^\prime\prime} / W_{P/N}$ of Weyl groups. In particular, $w_{2n,0} = w_{2n} = w$. We have a Bruhat decomposition

$$H^\prime\prime(F) = \prod_{d=0}^{2n} P(F)w_{2n,d}P(F),$$

where F can be a global field or its local completions.

Lemma 2.4.3. For $v \in S$ and $g_v \in P_v$, the support of $r(g_v)\varphi_{\Phi_v,s}$ is contained in $P(F_v)w N(F_v)$.
Proof. It suffices to prove that \(\varphi_{v,s}(g) \) vanishes on \(P(F_v)w_{2n,d}P(F_v) \) for \(d > 0 \) since \(g_v \in P(F_v) \). For \(g = n(b_1)m(a_1)w_{2n,d}m(b_2)m(a_2) \in P(F_v)w_{2n,d}P(F_v) \), we have

\[
\varphi_{v,s}(g) = (\omega_{\chi_v}(g)\Phi(0)\lambda(g))^s
= \chi_v(\det a_1 a_2)|\det a_1 a_2|^{\frac{n}{d}}\lambda(g)^s \int_{\mathbb{V}^{2n-d}_v} \psi_{b_2}(T(x))\Phi_v(xa_2)dx
\]

where \(\mathbb{V}^{2n-d}_v \) is viewed as a subset of \(\mathbb{V}^{2n}_v \) by the map \((x_1, \ldots, x_{2n-d}) \mapsto (0, 0, x_1, \ldots, x_{2n-d}) \). Since \(\Phi_v \) is regular and \(d > 0 \), \(\Phi_v(xa_2) = 0 \) for \(x \in \mathbb{V}^{2n-d}_v \). Therefore, the lemma follows. \(\square \)

By the above lemma, we have for \(g \in P(\mathbb{A}_F,\mathbb{S})H'(\mathbb{A}_F^\Sigma) \),

\[
(2.16) = \int_{N(F)\backslash N(\mathbb{A}_F)} \sum_{\gamma \in P(F)\backslash P(F),wP(F)} (r(g)\varphi_{\mathbb{S},s})(\gamma n)\psi_T(n)^{-1}dn
= \int_{N(F)\backslash N(\mathbb{A}_F)} \sum_{\gamma \in uN(F)} (r(g)\varphi_{\mathbb{S},s})(\gamma n)\psi_T(n)^{-1}dn
= \int_{N(\mathbb{A}_F)} (r(g)\varphi_{\mathbb{S},s})(wn)\psi_T(n)^{-1}dn
= \int_{N(\mathbb{A}_F)} \varphi_s(wn)\psi_T(n)^{-1}dn
= \prod_{v \in \Sigma} \int_{N_v} \varphi_{v,s}(wn_v)\psi_T(n_v)^{-1}dn_v
(2.18)
\]

where we denote by \(\varphi_s \) instead of \(r(g)\varphi_{\mathbb{S},s} \) for simplicity. Let \(S' \subset \Sigma \) be a finite subset containing all infinite places such that for all \(v \notin S', v, \chi_v \) and \(\psi_v \) are unramified; \(\varphi_{v,s} \) is the (unique) unramified section in \(I_{2n}(s,\chi_v) \) (hence \(S' \supset S \)) and \(\det \tilde{T} \in \mathcal{O}_{E,F}^\times \). Then

\[
(2.18) = \left(\prod_{v \in S'} W_T(e,\varphi_{v,s}) \right) W_T(e,\varphi_{\mathbb{S},s}^S).
(2.19)
\]

By [KR1994, Page 36] and [Tan1999, Proposition 3.2],

\[
W_T(e,\varphi_{\mathbb{S},s}^S) = \frac{a_{2n}^S(s)}{a_{2n-E,F}^S(s-w)}\frac{\sqrt{2}}{\psi}\frac{a_{2n}^S(s)}{a_{2n-E,F}^S(s-w)}
\]

where

\[
a_{m,v}(s) = \prod_{i=0}^{m-1} L_v(2s + i - m + 1, \epsilon_{E/F})
\]
and

\[b_{m,v}(s) = \prod_{i=0}^{m-1} L_v(2s + m - i, \epsilon_{E/F}^i) \]

as (2.6). Therefore, \(W_T(e, \varphi_{v}^{S'}) \) has a meromorphic continuation to the entire complex plane. For \(v \in S' \), we normalize the Whittaker integral to be

\[W_T^*(e, \varphi_{v,s}) = \frac{a_{2n-r,v}(s - \frac{r}{2})b_{2n,v}(s)}{a_{2n,v}(s)} W_T(e, \varphi_{v,s}). \]

From the argument (and also notations) in [KR1994, Page 35],

\[W_T(e, \varphi_{v,s}) = \tilde{W}_T(e, \iota^* \circ U_{r,v}(s)\varphi_{v,s}). \]

By [PSR1987, Section 4], the (local) intertwining operator \(U_{r,v}(s) \) has a meromorphic continuation to the entire complex plane. By Lemma 2.3.5 (1), \(W_T(e, \varphi_{v,s}) \) and hence \(W_T^*(e, \varphi_{v,s}) \) have meromorphic continuation to the entire complex plane. Together with the meromorphic continuation of \(W_T \) away from \(S' \) and \(W_T^* \) in \(S' \), (2.19) has a meromorphic continuation which equals

\[\frac{a_{2n}(s)}{a_{2n-r}(s - \frac{r}{2})b_{2n}(s)} \prod_{v \in S'} W_T^*(e, \varphi_{v,s}). \]

Proof of Proposition 2.4.2. At the point \(s = 0 \), we have \(b_{2n}(0) = \prod_{i=1}^{2n} L(i, \epsilon_{E/F}^i) \in \mathbb{C}^\times \) and

\[\frac{a_{2n}(0)}{a_{2n-r}(-\frac{r}{2})} = \prod_{i=0}^{r-1} L(-i, \epsilon_{E/F}^{i+1}) \in \mathbb{C}^\times. \]

Let \(\kappa_v = \text{ord}_{s=0} W_T^*(e, \bullet) \) be the order of the functional at \(s = 0 \) for \(v \in S' \) and

\[\kappa'_v = \text{ord}_{s=0} W_T^*(s, e, \bullet)_{|S(V_v^2n)^\text{reg}} \]

for \(v \in S \). Since \(E_T(e, \varphi_{\Phi}) = 0 \) if \(\Phi = \otimes \Phi_v \) for at least one \(\Phi_v \) regular, by (2.19) and the proof of Lemma 2.3.7, we have \(\kappa'_v + \sum_{v_0 \neq v \in S} \kappa_v \geq 1 \) for every \(v_0 \) in \(S \). Also by the definition of \(W_T \), we see that

\[\varphi_{v,0} \mapsto s^{-\kappa_v} W_T^*(e, \varphi_{v,s})_{|s=0} \]
is a nontrivial \(N \)-intertwining map from \(I_{2n}(0, \chi) \) to \(\mathbb{C}_{N, \psi_T} \). Now if \(v \in S \), \(\varphi_{v,0} = \varphi_{\Phi_v,0} \) for a regular test function \(\Phi_v \in S(V_{\chi}^{2n})_{\text{reg}} \). By Lemma 2.3.4 (1-a), \(\varphi_{v,0} \) goes to 0 under the above map, \(i.e., \kappa'_v \geq \kappa_v + 1 \) for \(v \in S \). Therefore,

\[
\text{ord}_{s=0} \prod_{v \in S'} W'_T(e, \varphi_{v,s}) \geq \sum_{v \in S} \kappa'_v + \sum_{v \in S' \setminus S} \kappa_v \geq k - 1 + \kappa'_{v_0} + \sum_{v_0 \neq v \in S'} \kappa_v \geq k.
\]

The proposition follows.

In conclusion, if we choose \(S \) such that \(|S| \geq 2 \), and \(\Phi = \Phi_S \Phi^S \in S(V_{\chi}^{2n})_{\text{reg}} \otimes S(V_{\chi}^{S,2n}) \) which is decomposable, then for \(g \in P(A_{F,S}) \mathcal{H}'(A_{F,S}) \), we have

\[
E'(0, g, \Phi) = \sum_{v \in \Sigma} E_v(0, g, \Phi).
\] (2.20)

2.4.2 Test functions of higher discriminant

We show that if we have a finer choice of \(\Phi_v \) for \(v \in S \), we can even make \(W'_T(0, e, \Phi_v) = 0 \) for all nonsingular \(T \) that are not representable by \(V_v \).

Since the issue is local, we fix a nonsplit place \(v \in S \) and suppress it from notations in this subsection. Let \(V \) be one of \(V^\pm \) and \(V' \) the other one which is not isometric to \(V \). Let

\[
\text{Her}_{2n}^0(E) = \{ T \in \text{Her}_{2n}(E) \mid \det T \neq 0 \};
\]

\[
\mathcal{H} = \{ b \in \text{Her}_{2n}^0(E) \mid b = T(x) \text{ for some } x \in V^{2n} \};
\]

\[
\mathcal{H}' = \{ b' \in \text{Her}_{2n}^0(E) \mid b' = T(x') \text{ for some } x' \in V'^{2n} \};
\]

\[
\mathcal{H}'_d = \{ b' + b'' \mid b' \in \mathcal{H}' \text{ and } b'' \in \text{Her}_{2n}(p_E^{-d}) \} \cap \text{Her}_{2n}^0(E), \quad d \in \mathbb{Z},
\]

where \(p_E \) is the maximal ideal of \(\mathcal{O}_E \). Then

- \(\text{Her}_{2n}^0(E) = \mathcal{H} \bigsqcup \mathcal{H}' \);
- \(\cdots \subseteq \mathcal{H}_{-1}' \subseteq \mathcal{H}_0' \subseteq \mathcal{H}_1' \subseteq \cdots \);
- \(\bigcap_d \mathcal{H}'_d = \mathcal{H}' \);
- \(\bigcup_d \mathcal{H}'_d = \text{Her}_{2n}^0(E) \).

We say a test function \(\Phi \in S(V^{2n}) \) is of discriminant \(d \) if

\[
\{ T(x) \mid x \in \text{Supp}(\Phi) \} \cap \mathcal{H}'_d = \emptyset,
\]
and denote by $S(V^{2n})_d$ the space of such functions. Set $S(V^{2n})_{\text{reg},d} = S(V^{2n})_{\text{reg}} \cap S(V^{2n})_d$.

Lemma 2.4.4. For every $d \in \mathbb{Z}$, $S(V^{2n})_{\text{reg},d}$ is not empty.

Proof. Fix an element $d \in \mathbb{Z}$. We only need to prove that there exists $T \notin \mathcal{H}'_d$ such that $\det T \neq 0$. Then $(T + \text{Her}_{2n}(p^d_E)) \cap \mathcal{H}' = \emptyset$. Any test function with support whose elements have moment matrices contained in $(T + \text{Her}_{2n}(p^d_E)) \cap \text{Her}^0_{2n}(E)$, which is open, will be in $S(V^{2n})_{\text{reg},d}$. Now we want to find such a T. Take an element $T_1 \in \mathcal{H}$ with $\det T_1 \neq 0$. Since \mathcal{H} is open, we can find a neighborhood $T_1 + \text{Her}_{2n}(p^d_E) \subset \mathcal{H}$ for some $\nu \in \mathbb{Z}$. If $\nu \leq -d$, then we are done. Otherwise, let ϖ be the uniformizer of F. Then $\varpi^{-\nu-d}(T_1 + \text{Her}_{2n}(p^\nu_E)) \subset \mathcal{H}$. However, $\varpi^{-\nu-d}(T_1 + \text{Her}_{2n}(p^\nu_E)) = (\varpi^{-\nu-d}T_1 + \text{Her}_{2n}(p^d_E))$. Therefore, $T = \varpi^{-\nu-d}T_1$ will serve for our purpose. \hfill \Box

Since ψ is nontrivial, we can define its *discriminant* d_ψ to be the largest integer d such that the character ψ_T is trivial on $N(\mathcal{O}_F) \cong \text{Her}_{2n}(\mathcal{O}_E)$ for all $T \in \text{Her}_{2n}(p^d_E)$. We slightly abuse notation since d_ψ depends also on $2n$. We also need to mention that this is not the usual discriminant or different of a p-adic additive character. However, the difference between them depends only on n and the ramification of E/F. We have the following proposition.

Proposition 2.4.5. Let $d \geq d_\psi$ be an integer and $\Phi \in S(V^{2n})_{\text{reg},d}$. Then $W_T(s, e, \Phi) \equiv 0$ for $T \in \mathcal{H}'$ nonsingular.

Proof. For $\text{Re } s > n$,

$$W_T(s, e, \Phi) = \int_N \langle \omega(wn)\Phi(0)\rangle (s)\lambda(wn)^s\psi_T(n)^{-1}dn$$

is absolutely convergent. Therefore, it equals

$$\int_{\text{Her}_{2n}(E)} \left(\int_{V^{2n}} \psi(\text{tr } bT(x))\Phi(x)dx \right) \lambda(wn(b))^s\psi(-\text{tr } Tb)db$$

$$= \int_{V^{2n}} \Phi(x)dx \int_{\text{Her}_{2n}(E)} \lambda(wn(b))^s\psi(\text{tr } (T(x) - T)b)db$$

$$= \int_{V^{2n}} \Phi(x)dx \int_{\text{Her}_{2n}(E)} \lambda(wn(b))^s\psi_{T(x)-T}(n(b))db. \tag{2.21}$$

Since $\lambda(wn(b)n(b_1)) = \lambda(wn(b))$ for $b_1 \in \text{Her}_{2n}(\mathcal{O}_E)$,

$$(2.21) = \int_{V^{2n}} \Phi(x)dx \int_{\text{Her}_{2n}(E)/\text{Her}_{2n}(\mathcal{O}_E)} \lambda(wn(b))^s\psi_{T(x)-T}(n(b))db \int_{\text{Her}_{2n}(\mathcal{O}_E)} \psi_{T(x)-T}(n(b_1))db_1,$$
in which the last integral is zero for all \(x \in \text{Supp}(\Phi) \) by our assumption on \(\Phi \). Therefore, \(W_T(s,e,\Phi) \equiv 0 \) after continuation. In particular, \(W'_T(0,e,\Phi) = 0 \).

Remark 2.4.6. Obviously, it is not necessary to assume the dimension of \(V \) to be even. All definitions and results above can be applied to arbitrary dimensions.

In conclusion, let \(S \) be a finite subset of \(\Sigma_{2n} \) with \(|S| \geq 2 \), and \(\Phi = \otimes \Phi_v \in S(\mathbb{A}^{2n}) \) with \(\Phi_v \in S(\mathbb{A}^{2n}_{\text{reg}}) \) for \(v \in S \) and \(\Phi_v \in S(\mathbb{A}^{2n}_{\text{reg},d_v}) \) for \(v \in S \) nonsplit with \(d_v \geq d_{\psi_v} \). Then combining (2.20), we have

\[
E'(0,g,\Phi) = \sum_{v \notin S} E_v(0,g,\Phi)
\]

(2.22)

for \(g \in e_S H''(\mathbb{A}^S_F) \).

2.4.3 Density of test functions

We have made particular choices of test functions to simplify the formula of the analytic kernel function. However, for our proof of the main theorem, not arbitrary choices will work. We now show that there are “sufficiently many” test functions satisfying these choices we have made, in the sense of Proposition 2.4.10. We follow the idea in [YZZa].

We keep our notations in 2.4.1 and 2.4.2. In particular, \(v \) will be a place in \(S \) and suppressed from notations. Recall that we have an \(H'' \)-intertwining map

\[
S(V^{2n}) \to S(V^{2n})_H \cong R(V,\chi) \hookrightarrow I_{2n}(0,\chi)
\]

through the Weil representation \(\omega''_\chi \). Therefore, we obtain an \(H' \times H' \) admissible representation on \(S(V^{2n}) \) through the embedding \(i (2.2) \).

Lemma 2.4.7. If \(v \) is nonsplit, then for every \(d \in \mathbb{Z} \) we have

\[
S(V^{2n})_{\text{reg}} = \omega''_\chi(m(F^x 1_{2n}))S(V^{2n})_{\text{reg},d}.
\]

Proof. Fix an element \(d \in \mathbb{Z} \). For every function \(\Phi \in S(V^{2n})_{\text{reg}} \), \(\text{Supp}(\Phi) \) is a compact subset of \(\mathcal{H} \). Since \(\text{Her}^0_{2n}(E) \backslash \mathcal{H}'_d \) is open and

\[
\bigcup_d \left(\text{Her}^0_{2n}(E) \backslash \mathcal{H}'_d \right) = \text{Her}^0_{2n}(E) \backslash \bigcap_d \mathcal{H}'_d = \text{Her}^0_{2n}(E) \backslash \mathcal{H}' = \mathcal{H},
\]

the proof follows.

the family \((\text{Her}_{2n}^0(E) \backslash \mathcal{H}_d')_{d \in \mathbb{Z}}\) is an open covering of \(\text{Supp}(\Phi)\), hence has a finite subcover. Therefore, there exists \(d_0 \in \mathbb{Z}\) such that \(\text{Supp}(\Phi) \cap \mathcal{H}_{d_0}' = \emptyset\). If \(d_0 \geq d\), we are done. Otherwise, consider
\[
\Phi' = \omega_x^\omega(m(2^{d_0} - 1_{2n})) \Phi.
\]
Then \(\text{Supp}(\Phi') \cap \mathcal{H}_d' = \emptyset\). The lemma follows.

In the rest of this subsection, let \(n = 1\). Then \(H' = \text{U}(W_1)\).

Lemma 2.4.8. Let \(\pi\) be an irreducible admissible representation of \(H'\) which is not of dimension \(1\) and \(A : S(V) \rightarrow \pi\) a surjective \(H'\)-intertwining map, where \(H'\) acts on \(S(V)\) through a Weil representation \(\omega\). Then for every \(\phi\) with \(A(\phi) \neq 0\), there is \(\phi' \in S(V)_{\text{reg}}\) such that \(A(\phi') \neq 0\) and \(\text{Supp}(\phi') \subseteq \text{Supp}(\phi)\).

Proof. Let \(f = A(\phi)\), if there exists \(n \in N'\) such that \(\pi(n)f \neq f\), then

\[
A(\omega(n)\phi - \phi) = \pi(n)f - f \neq 0,
\]

However,

\[
(\omega(n)\phi)(x) - \phi(x) = (\psi(bT(x)) - 1)\phi(x)
\]

where \(n = n(b)\). We see that \(\phi' = \omega(n)\phi - \phi \in S(V)_{\text{reg}}\) and \(\text{Supp}(\phi') \subseteq \text{Supp}(\phi)\). If for every \(n \in N'\), \(\pi(n)f = f\), then \(f\) will be fixed by an open subgroup of \(H'\) containing \(N\) since \(\pi\) is smooth. However, any such subgroup will contain \(\text{SU}(W_1)\). Therefore, \(\pi\) factors through \(H'/\text{SU}(W_1) = \text{U}(W_1)/\text{SU}(W_1) \cong E^{x,1}\), which contradicts the assumption on \(\pi\).

Lemma 2.4.9. Let \(\pi_1\) and \(\pi_2\) be two two irreducible admissible representations of \(H'\) which are not of dimension \(1\). Then for every surjective \(H' \times H'\)-intertwining map \(B : S(V) \otimes S(V) = S(V^2) \rightarrow \pi_1 \boxtimes \pi_2\) where \(H' \times H'\) acts on \(S(V) \otimes S(V)\) by a pair of Weil representations \(\omega_1 \boxtimes \omega_2\), there is an element \(\Phi = \phi_1 \otimes \phi_2 \in S(V^2)_{\text{reg}}\) such that \(\phi_\alpha \in S(V)_{\text{reg}}\) (\(\alpha = 1, 2\)) and \(B(\Phi) \neq 0\).

Proof. Let \(\Phi' \in S(V^2)\) be an element such that \(B(\Phi') \neq 0\), write \(\Phi' = \sum \phi_{1,1} \otimes \phi_{1,2}\) as an element in \(S(V) \otimes S(V)\). Therefore, we can assume that there is \(\phi_1 \otimes \phi_2\) such that \(B(\phi_1 \otimes \phi_2) \neq 0\). By Lemma 2.4.8, we can also assume that \(\phi_1 \in S(V)_{\text{reg}}\). For \(x \in \text{Supp}(\phi_1)\), let \(V_x\) be the subspace of \(V\) generated by \(x\) and \(V^x\) its orthogonal complement. They are both nondegenerate hermitian spaces of dimension \(1\). As \(H'\)-representation, \(S(V) = S(V_x) \otimes S(V^x)\). Write \(\phi_2 = \sum \phi_{i,x} \otimes \phi_i^x\) according to this decomposition. We can assume that there is one \(\phi_x \otimes \phi^x\) such that \(B(\phi_1 \otimes (\phi_x \otimes \phi^x)) \neq 0\). Since as \(H'\)-representation, \(S(V^x)\) is generated by the subspace \(S(V^x)_{\text{reg}}\). We can then write

\[
\phi_x \otimes \phi^x = \sum \omega_2(g_j) \left(\omega_2^{-1}(g_j)\phi_x \otimes \phi^x_j\right)
\]
with \(\phi^x \in S(V^x)_{\text{reg}} \). So we can further assume that \(B(\phi_1 \otimes (\phi_x \otimes \phi^x)) \neq 0 \) with \(\phi^x \in S(V^x)_{\text{reg}} \), i.e., \(\text{Supp}(\phi_x \otimes \phi^x) \cap V_x = \emptyset \). Applying Lemma 2.4.8 again, we can further assume that there exists \(\phi_2(x) \in S(V)_{\text{reg}} \) such that \(\text{Supp}(\phi_2(x)) \subset \text{Supp}(\phi_x \otimes \phi^x) \) and \(B(\phi_1 \otimes \phi_2(x)) \neq 0 \). The condition that \(\text{Supp}(\phi_2) \cap V_x = \emptyset \) is open for \(x \). Therefore, we can find a neighborhood \(U_x \) of \(x \) such that \((\phi_1 | U_x) \otimes \phi_2(x) \in S(V^2)_{\text{reg}} \). Since \(\text{Supp}(\phi_1) \) is compact, we can find \(\Phi \) of this kind such that \(B(\Phi) \neq 0 \).

Recall the (normalized) zeta integrals (2.7), and that for \(\Phi \in S(V^{2n}) \), we set \(Z^*(s, \chi, f, f^\vee, \Phi) = Z^*(\chi, f, f^\vee, \varphi_{\Phi, s}) \). Combining Lemma 2.4.7 and Lemma 2.4.9, we have the following proposition.

Proposition 2.4.10. Let \(n = 1, v \in \Sigma_{\text{fin}} \), \(\pi \) be an irreducible cuspidal automorphic representation of \(H' \) and \(V_v = V(\pi_v, \chi_v) \). For every \(d \in \mathbb{Z} \), we can find \(f_v \in \pi_v \), \(f_v^\vee \in \pi_v^\vee \) and \(\phi_\alpha \in S(V)_{\text{reg}} \) (\(\alpha = 1, 2 \)) with the property that \(\phi_{1,v} \otimes \phi_{2,v} \in S(V^2_v)_{\text{reg},d} \) (resp. \(S(V^2_v)_{\text{reg}} \)) if \(v \) is nonsplit (resp. split) in \(E \), such that the (normalized) zeta integral \(Z^*(0, \chi_v, f_v, f_v^\vee, \phi_{1,v} \otimes \phi_{2,v}) \neq 0 \).
Chapter 3

Arithmetic theta lifting and arithmetic kernel functions

In this chapter, we study the geometric part of the arithmetic inner product. In 3.1, we introduce the Shimura varieties of unitary groups which we work with, and on them the special cycles and generating series. We prove the theorem of modularity of the generating series. For the case where Shimura varieties are not proper, we need to consider their compactifications, which will be discussed in 3.2. In 3.3, we define the arithmetic theta lifting and prove its cohomological triviality, which enable us to formulate the explicit conjecture of the arithmetic inner product formula. Finally, we restrict ourselves to the situation where $n = 1$ and hence the Shimura varieties are unitary Shimura curves, in 3.4. We review the theory of Néron–Tate height paring, based on which we define the arithmetic kernel functions and decompose them into local terms.

We fix an additive character $\psi : F \\backslash A_F \to \mathbb{C}^\times$ such that ψ_i is the standard one, i.e., $t \mapsto \exp(2\pi it)$ ($t \in F_i = \mathbb{R}$) for any $\iota \in \Sigma_\infty$ until the end of this article.
3.1 Modularity of generating series

3.1.1 Shimura varieties of unitary groups

We recall the notion attached to Shimura varieties of unitary groups. Let \(m \geq 2 \) and \(1 \leq r < m \) be integers. Let \(V \) be a totally positive definite incoherent hermitian space over \(\mathbb{A}_E \) of rank \(m \). Let \(H = \text{Res}_{\mathbb{A}_F/\mathbb{A}} \U(V) \) be the unitary group which is a reductive group over \(\mathbb{A} \), and \(\mathbb{H}_{\text{der}} = \text{Res}_{\mathbb{A}_F/\mathbb{A}} \U(V) \) its derived subgroup. Let \(\mathbb{T} \cong \text{Res}_{\mathbb{A}_F/\mathbb{A}} \U(V) \) be the maximal abelian quotient of \(\mathbb{H} \), which is also isomorphic to the center of \(\mathbb{H} \). Let \(T \) be the unique (up to isomorphism) \(\mathbb{Q} \)-torus such that \(T \times \mathbb{Q} \mathbb{A} \cong \mathbb{T} \). Then \(T \) has the property that \(T(\mathbb{Q}) \) is discrete in \(T(\mathbb{A}_{\text{fin}}) \). For every open compact subgroup \(\mathbb{K} \) of \(\mathbb{H}(\mathbb{A}_{\text{fin}}) \), there is a Shimura variety \(\text{Sh}_\mathbb{K}(\mathbb{H}) \) of dimension \(m - 1 \) defined over the reflex field \(E \). For every embedding \(\iota : E \hookrightarrow \mathbb{C} \) over \(\iota \in \Sigma_\infty \), we have the following \(\iota \)-adic uniformization

\[
\text{Sh}_\mathbb{K}(\mathbb{H})^\text{an}_{\iota} \cong H^{(i)}(\mathbb{Q}) \backslash \left(\mathbb{D}^{(i)} \times \mathbb{H}(\mathbb{A})/\mathbb{K} \right).
\]

We briefly explain the notations and meanings above:

- \(\text{Sh}_\mathbb{K}(\mathbb{H})^\text{an}_{\iota} \) denotes the complex analytification of \(\text{Sh}_\mathbb{K}(\mathbb{H}) \) via \(\iota \).

- Let \(V^{(i)} \) be the nearby \(E \)-hermitian space of \(V \) at \(\iota \), i.e., \(V^{(i)} \) is the unique \(E \)-hermitian space (up to isometry) such that \(V^{(i)}_v \cong V_v \) for \(v \neq \iota \) but \(V^{(i)}_{\iota} \) is of signature \((m - 1, 1)\). Then \(H^{(i)} = \text{Res}_{\mathbb{F}/\mathbb{Q}} \U(V^{(i)}) \).

- \(\mathbb{D}^{(i)} \) is the symmetric hermitian domain consisting of all negative \(\mathbb{C} \)-lines in \(V^{(i)}_{\iota} \) whose complex structure is given by the action of \(\mathbb{F}_\iota \otimes \mathbb{E} \to \mathbb{R} \otimes \mathbb{R} \mathbb{C} \cong \mathbb{C} \).

- The group \(H^{(i)}(\mathbb{Q}) \) diagonally acts on \(\mathbb{D}^{(i)} \) by conjugation, and on \(\mathbb{H}(\mathbb{A})/\mathbb{K} \) by identifying \(H^{(i)}(\mathbb{A}) \) and \(\mathbb{H}(\mathbb{A}) \) through the corresponding hermitian spaces.

In fact, the underlying real symmetric domain of \(\mathbb{D}^{(i)} \) can be identified with the \(H^{(i)}(\mathbb{R}) \)-conjugacy class of the Hodge map \(h^{(i)} : \mathbb{S} = \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{m,c} \to H^{(i)}_{\mathbb{R}} \cong \U(m - 1, 1)_\mathbb{R} \times U(m, 0)^{d-1}_\mathbb{R} \) given by

\[
h^{(i)}(z) = \begin{pmatrix} 1_{m-1} & 0 \\ \overline{z} / z & 1_{m} \end{pmatrix}, 1_m, \ldots, 1_m.
\]

Assumption 3.1.1. From now on, we will assume that \(\mathbb{K} \) is sufficiently small, e.g., contained in the principal congruence subgroup for \(N \geq 3 \) for the natural embedding into the general linear group.

Then \(\text{Sh}_\mathbb{K}(\mathbb{H}) \) is a quasi-projective nonsingular \(E \)-scheme. It is proper if and only if
1. $F \neq \mathbb{Q}$; or

2. $F = \mathbb{Q}$, $m = 2$ and $\Sigma(\mathbb{V}) \supseteq \Sigma_{\infty}$.

The set of geometric connected components of $\text{Sh}_{K}(\mathbb{H})$ can be identified with $T(\mathbb{Q}) \backslash T(\mathbb{A}_{\text{fin}})/\text{det } K$. For every other open compact subgroup $K' \subset K$, we have an étale covering map

$$\pi_{K'}^{K} : \text{Sh}_{K'}(\mathbb{H}) \rightarrow \text{Sh}_{K}(\mathbb{H}).$$

Let $\text{Sh}(\mathbb{H})$ be the projective system $\{\text{Sh}_{K}(\mathbb{H})\}_{K}$. On each $\text{Sh}_{K}(\mathbb{H})$, we have a Hodge bundle $L_{K} \in \text{Pic}(\text{Sh}_{K}(\mathbb{H}))_{\mathbb{Q}}$ which is ample. They are compatible under the pullback of $\pi_{K'}^{K}$, hence define an element

$$\mathcal{L} \in \text{Pic}(\text{Sh}(\mathbb{H}))_{\mathbb{Q}} := \lim_{\rightarrow} \text{Pic}(\text{Sh}_{K}(\mathbb{H}))_{\mathbb{Q}}.$$

3.1.2 Special cycles and generating series

Let V_{1} be an E-subspace of \mathbb{V}_{fin}, we say V_{1} is admissible if $(-,-)|_{V_{1}}$ takes values in E and for every nonzero $x \in V_{1}$, (x,x) is totally positive. We have the following lemma.

Lemma 3.1.2. The E-subspace V_{1} is admissible if and only if for every $\iota \in \Sigma_{\infty}$, there is an element $h \in \mathbb{H}_{\text{der}}(\mathbb{A}_{\text{fin}})$ such that $hV_{1} \subset V^{(\iota)} \subset \mathbb{V}_{\text{fin}}$ and is totally positive definite.

Proof. The “if” direction is obvious. For the “only if” direction, let us assume that V_{1} is admissible and fix arbitrary ι. Take $v_{1} \in V_{1}$ with nonzero norm. Then $q(v_{1}) = \frac{1}{2}(v_{1},v_{1})$ is locally a norm for the hermitian form on $V^{(\iota)}$ by the definition of admissibility and the signatures of \mathbb{V} and $V^{(\iota)}$. Thus it is a norm for some $v \in V^{(\iota)}$ by Hasse–Minkowski Theorem. Now we apply Witt Theorem to find an element $h_{1} \in U(\mathbb{V}_{\text{fin}}) = \mathbb{H}(\mathbb{A}_{\text{fin}})$ such that $h_{1}v_{1} = v$ as elements in \mathbb{V}_{fin}. Choose a vector $v' \in \langle v \rangle_{\perp} \subset V^{(\iota)}$ with nonzero norm. Let $h' \in \mathbb{H}(\mathbb{A}_{\text{fin}})$ which stabilizes $\langle v' \rangle_{\perp}$ and act on the $\mathbb{A}_{\text{fin},E}$-line spanned by v' through the multiplication by $(\text{det } h_{1})^{-1}$. Then $h'h_{1}v_{1} = h'v = v$ for $h = h'h_{1} \in \text{SU}(\mathbb{V}_{\text{fin}}) = \mathbb{H}_{\text{der}}(\mathbb{A}_{\text{fin}})$.

Replacing V_{1} by hV_{1}, we can assume that $v_{1} = v \in \mathbb{V}_{\text{fin}}$. Since $\dim V_{1} < m$, we can use induction on r by considering the orthogonal complement of v in V_{1} and $V^{(\iota)}$ to find an element $h \in \mathbb{H}_{\text{der}}(\mathbb{A}_{\text{fin}})$ such that $hV_{1} \subset V^{(\iota)} \subset \mathbb{V}_{\text{fin}}$. □

For admissible V_{1}, let \mathbb{V}_{1} be a totally positive definite (incoherent) hermitian space over \mathbb{A}_{E} such that $\mathbb{V}_{1,\text{fin}} \cong V_{1}^{\perp} \subset \mathbb{V}_{\text{fin}}$. Let \mathcal{H}_{1} be the corresponding unitary group, we have a finite morphism of
Shimura varieties

\[\zeta^{V_1} : \text{Sh}_{K_1}(\mathbb{H}_1) \to \text{Sh}_K(\mathbb{H}) \]

(3.2)

where \(K_1 = K \cap H_1(\mathbb{A}_{\text{fin}}) \), such that the image of the map is represented, under the uniformization at some \(\iota^0 \), by the points \((z, h_1 h) \in \mathcal{D}(\iota^x) \times \mathbb{H}(\mathbb{A}_{\text{fin}})\) where

- \(h \) is as in Lemma 3.1.2 (with respect to the \(\iota \) dividing \(\iota^o \));
- \(z \perp h V_1 \);
- \(h_1 \) fixes all elements in \(h V_1 \).

The image defines a special cycle \(Z(V_1)_{K} \in \text{CH}'(\text{Sh}_K(\mathbb{H}))_\mathbb{Q} \). It depends only on the class \(K V_1 \).

For \(x \in \mathbb{V}_\text{fin}' \), let \(V_x \) be the \(E \)-subspace of \(\mathbb{V}_\text{fin}' \) generated by the components of \(x \). We define

\[
Z(x)_K = \begin{cases}
Z(V_x)_{K} c_1(\mathcal{L}^{\vee}_K)^{r-dim \mathcal{E} V_x} & \text{if } V_x \text{ is admissible} \\
0 & \text{otherwise.}
\end{cases}
\]

To introduce the generating series, we need a restriction on the space \(S(\mathbb{V}_r') \) of the Weil representation when \(\iota \) is infinite.

We define a subspace \(S(\mathbb{V}_r')_{U} \subset S(\mathbb{V}_r') \) consisting of functions of the form

\[P(T(x)) \exp(-2\pi \text{ tr } T(x)) \]

where \(P \) is a polynomial function on \(\text{Her}_r(\mathbb{C}) \). If we view \(S(\mathbb{V}_r') \) as the corresponding \((\text{Lie } H_{r,\iota}, K_{r,\iota}) \)-module, then \(S(\mathbb{V}_r')_{U} \) is the submodule generated by the Gaussian

\[\phi^0_{\infty}(x) = \exp(-2\pi \text{ tr } T(x)). \]

Let

\[
S(\mathbb{V}_r')_{U,\infty} = \bigotimes_{\iota \in \Sigma_{\infty}} S(\mathbb{V}_r')_{U,\iota} \otimes S(\mathbb{V}_\text{fin}'_{\iota}); \quad S(\mathbb{V}_r')_{U,\infty} K = \bigotimes_{\iota \in \Sigma_{\infty}} S(\mathbb{V}_r')_{U,\iota} \otimes S(\mathbb{V}_\text{fin}'_{\iota}) K
\]

for an open compact subgroup \(K \) of \(\mathbb{H}(\mathbb{A}_{\text{fin}}) \).
For $\phi \in S(\mathbb{V}^r)_{U_{\infty}^K}$, we define the generating series to be

$$Z_{\phi}(g) = \sum_{x \in K \backslash V_{\text{fin}}} (\omega_{\chi}(g)\phi(T(x),x)Z(x)_K$$

as a formal series with values in $CH^r(Sh_K(\mathbb{H}))_C$ for $g \in H_r(\mathbb{A}_F)$. Here for $\phi = \phi_{\infty} \phi_{\text{fin}}$, we denote $\phi(T(x),x) = \phi_{\infty}(y)\phi_{\text{fin}}(x)$ for every $y \in W_{\mathbb{Q}}$ with $T(y) = T(x)$, whose value does not depend on the choice of y. This makes sense since $Z(x)_K \neq 0$ only for V_z admissible and hence $T(x)$ is totally semi-positive definite. It is easy to see that $Z_{\phi}(g)$ is compatible under the pullback of $\pi_K^{K'}$, hence defines a series with values in $CH^r(Sh(\mathbb{H}))_C := \lim_K CH^r(Sh_K(\mathbb{H}))_C$.

3.1.3 Pullback formula and modularity theorem

We briefly recall the notion of Shimura varieties attached to orthogonal groups. The \mathbb{A}_F-module \mathbb{V} is also a totally positive definite quadratic space over \mathbb{A}_F of rank $2m$ with the quadratic form $Tr_{\mathbb{A}_K/\mathbb{A}_F}(-,-)$. Then it is incoherent with discriminant in $F^\times/F_{\times}^2 \subset \mathbb{A}_F^\times/\mathbb{A}_F^{\times}$. Let $\mathcal{G} = Res_{\mathbb{A}_F/\mathbb{A}} GSpin(\mathbb{V})$ be the special Clifford group of \mathbb{V} with the adjoint (quotient) group $\mathcal{G}_{\text{adj}} = Res_{\mathbb{A}_F/\mathbb{A}} SO(\mathbb{V})$ and the derived subgroup $\mathcal{G}_{\text{der}} = Res_{\mathbb{A}_F/\mathbb{A}} Spin(\mathbb{V})$. For every open compact subgroup K' of $\mathcal{G}(\mathbb{A}_{\text{fin}})$, there is a Shimura variety $Sh_{K'}(\mathcal{G})$ defined over the reflex field F such that for every embedding $\iota : F \hookrightarrow \mathbb{C}$, we have the following ι-adic uniformization

$$Sh_{K'}(\mathcal{G})_{\iota}^{an} \cong G^{(\iota)}(\mathbb{Q}) \backslash (\mathbb{D}^{(\iota)} \times \mathcal{G}(\mathbb{A}_{\text{fin}})/K')$$

We briefly explain the notations and meanings above:

- $Sh_{K'}(\mathcal{G})_{\iota}^{an}$ denotes the complex analytification of $Sh_{K'}(\mathcal{G})$ via ι.

- Let $V^{(\iota)}$ be the nearby F-quadratic space of \mathbb{V} at ι, i.e., $V^{(\iota)}$ is the unique F-quadratic space (up to isometry) such that $V^{(\iota)}_v \cong \mathbb{W}_v$ for $v \neq \iota$ but $V^{(\iota)}_\iota$ is of signature $(2m-2,2)$. Then $G^{(\iota)} = Res_{\mathcal{F}/\mathbb{Q}} GSpin(V^{(\iota)})$.

- $\mathbb{D}^{(\iota)}$ is the symmetric hermitian domain consisting of all oriented negative definite 2-dimensional subspaces of $V^{(\iota)}_\iota$.

- The group $G^{(\iota)}(\mathbb{Q})$ diagonally acts on $\mathbb{D}^{(\iota)}$ by conjugation, and on $\mathcal{G}(\mathbb{A}_{\text{fin}})/K'$ by identifying $G^{(\iota)}(\mathbb{A}_{\text{fin}})$ and $\mathcal{G}(\mathbb{A}_{\text{fin}})$ through the corresponding quadratic spaces.

We have similar notations of Hodge bundles, special cycles, and generating series on $Sh_{K'}(\mathcal{G})$, which are denoted by $L_{K'}^{(\iota)}$, $Z_{x}(x)_K^{(\iota)}$ for $x \in V_{\text{fin}}^{(\iota)}$, and $Z_{\phi}^{(\iota)}(g')$ for $\phi \in S(\mathbb{V}^r)_{U_{\infty}^K}$ and $g' \in G_r(\mathbb{A}_{\text{fin}})$.
respectively (cf. [YZZ2009]). Here we introduce the standard symplectic F-space W'_r (comparing to the space W_r in 2.1.1) which has the basis $\{e_1, \ldots, e_{2r}\}$ with the symplectic form

- $\langle e_i, e_j \rangle = 0$;
- $\langle e_{r+i}, e_{r+j} \rangle = 0$;
- $\langle e_i, e_{r+j} \rangle = \delta_{ij}$ for $1 \leq i, j \leq r$.

The group $G_r = \text{Sp}(W'_r)$ is an F-reductive group. Similarly, when defining the generating series, we use the Weil representation ω (with respect to ψ) of $G_r(\mathbb{A}_F) \times G(\mathbb{A})$ on $S(\mathbb{V}^r)$.

Now we fix an embedding $i^\circ : E \hookrightarrow \mathbb{C}$ over ι and suppress them from the notations of nearby objects like $V = V^{(\iota)}$, $H = H^{(\iota)}$, $D = D^{(\iota^*)}$, etc. Therefore, we have the usual notion of Shimura variety $\text{Sh}_K(H, X)$ (resp. $\text{Sh}_K'(G, X')$) with a connected component X^+ of X' which is defined over $i^\circ(E)$ (resp. $i(F)$). Its neutral component is the connected Shimura variety $\text{Sh}_K^0(H_{\text{der}}, X)$ (resp. $\text{Sh}_K'^0(G_{\text{der}}, X')$) attached to the connected Shimura datum (H_{der}, X) (resp. (G_{der}, X')), which is defined over E_K (resp. $E_{K'}$): a finite abelian extension of $i(F)$ in \mathbb{C}. The canonical embedding $H_{\text{der}} \hookrightarrow G_{\text{der}}$ (cf. Remark 3.1.4 (1) below) of reductive groups and the embedding $D \hookrightarrow D'$ by forgetting the E-action define an injective map of connected Shimura data $(H_{\text{der}}, X) \hookrightarrow (G_{\text{der}}, X')$ which gives an embedding

$$i_{K'} : \text{Sh}_K^0(H_{\text{der}}, X) \hookrightarrow \text{Sh}_K'^0(G_{\text{der}}, X')$$

which is defined over E_K providing that $K \cap H_{\text{der}}(\mathbb{A}_{\text{fin}}) = K' \cap H_{\text{der}}(\mathbb{A}_{\text{fin}})$ and K' is sufficiently small.

Let $Z(x)^\circ_K$ (resp. $Z'(x)^\circ_{K'}$, $Z_{\phi}(g)^\circ$, $Z_{\phi}'(g')^\circ$) be the restriction of $Z(x)_K$ (resp. $Z'(x)_{K'}$, $Z_{\phi}(g)$, $Z_{\phi}'(g')$) to the neutral component.

Proposition 3.1.3. Assume that K' is sufficiently small and $K \cap H_{\text{der}}(\mathbb{A}_{\text{fin}}) = K' \cap H_{\text{der}}(\mathbb{A}_{\text{fin}})$. Then for $x \in \mathbb{V}_{\text{fin}}$, the pullback of the special divisor $i^*_{K'} Z'(x)^\circ_{K'}$ is the sum of $Z(x_1)^\circ_K$ indexed by the classes x_1 in $K \setminus K'x$, both considered as elements in Chow groups.

Proof. If $x = 0$, then the only class in $K \setminus K'x$ is $x_1 = 0$; the proposition follows from the compatibility of Hodge bundles under pullbacks induced by maps of (connected) Shimura data.

Now we assume that $\langle x, x \rangle \in E$ and is totally positive. Suppose that $(z, h) \in D \times H_{\text{der}}(\mathbb{A}_{\text{fin}})$ represents a \mathbb{C}-point in the scheme-theoretic intersection $\text{Sh}_K^0(H_{\text{der}}, X) \cap Z'(x_1)^\circ_{K'}$ for some $x_1 \in K'x$. Let $g \in G(\mathbb{A}_{\text{fin}})$ such that $gx_1 = x'_1 \in V \subset \mathbb{V}_{\text{fin}}$. Then $z \perp \gamma x'_1$ for some $\gamma \in G(\mathbb{Q})$ and $h \in \gamma G(\mathbb{A}_{\text{fin}}) x'_1 g k'$ for some $k' \in K'$, where $G(\mathbb{A}_{\text{fin}}) x'_1$ is the subgroup of $G(\mathbb{A}_{\text{fin}})$ fixing x'_1. We now show that $\gamma G(\mathbb{A}_{\text{fin}}) x'_1 g k' \cap H_{\text{der}}(\mathbb{A}_{\text{fin}}) = G(\mathbb{A}_{\text{fin}}) x'_1 g k' \cap H_{\text{der}}(\mathbb{A}_{\text{fin}}) \neq \emptyset$, i.e., $G(\mathbb{A}_{\text{fin}}) x'_1 \cap
$H_{\text{der}}(A_{\text{fin}})k'^{-1}g^{-1}\gamma^{-1} \neq \emptyset$, which is true by Lemma 3.1.2. Therefore, (z, h) represents a C-point in the special cycle $Z(h^{-1}E(\gamma gx_1))_{\overline{K}}$ of $\text{Sh}_{K}(H_{\text{der}}, X)$. If we write $h = g_1\gamma gk'$ with some $g_1 \in G(A_{\text{fin}})\gamma x_1'$, then

$$h^{-1}E(\gamma gx_1) = E(h^{-1}\gamma gx_1) = E(k'^{-1}g^{-1}\gamma^{-1}g_1^{-1}\gamma gx_1) = E(k'^{-1}x_1).$$

Therefore, the scheme-theoretic intersection is indexed by the classes x_1 in $K\backslash K'x$. This also holds on the level of Chow groups since the intersection is proper.

Remark 3.1.4. We have the following two remarks.

1. The canonical embedding $H_{\text{der}} \hookrightarrow G_{\text{der}}$ is given by the following way. First, we have an embedding $H_{\text{der}} \hookrightarrow H \hookrightarrow G_{\text{adj}}$ by forgetting the E-action on $V = V^{(i)}$. Since H_{der} is simply connected, we have a canonical lifting $H_{\text{der}} \hookrightarrow G$. Since H_{der} has no nontrivial abelian quotient, the image is actually contained in G_{der}.

2. In the proof of Proposition 3.1.3, we can still use the adelic description of the C-points of $\text{Sh}_{K}(H_{\text{der}}, X)$ (resp. $\text{Sh}_{K'}(G_{\text{der}}, X')$) which is compatible with that of $\text{Sh}_{K}(H)$ (resp. $\text{Sh}_{K'}(G)$) since H_{der} (resp. G_{der}) is semisimple, of noncompact type and simply-connected.

The group G_r is canonically embedded in H_r by identifying the bases $\langle e_1, \ldots, e_{2r} \rangle$ of W'_r and W_r. Therefore, $\omega_{\chi}|_{G_r} = \omega$. From Proposition 3.1.3, we have the following corollary.

Corollary 3.1.5. Let $r = 1$ and K, K' be as in Proposition 3.1.3. Then $i_{K'}^{*}Z_{\phi}(g')^o = Z_{\phi}(g')^o$ for $g' \in G_1(A_F)$ and $\phi \in S(V)^{\infty}$. For a linear functional $l \in CH^r(\text{Sh}(H))^\vee_{\overline{C}}$, we have a complex valued series

$$l(Z_{\phi})(g) = \sum_{x \in K \backslash V'_{\text{fin}}} (\omega_{\chi}(g)\phi)(T(x), x)l(Z(x)_K)$$

for every K such that ϕ is invariant under K (which is of course independent of such choice). The following is the main theorem.

Theorem 3.1.6 (Modularity of the generating series). We have

1. If $l(Z_{\phi})(g)$ is absolutely convergent, then it is an automorphic form of H_r. Moreover, the archimedean component of (the representation generated by) $l(Z_{\phi})$ is a discrete series representation of weight $(\frac{m+\chi}{2}, \frac{m-\chi}{2})$ (cf. Definition 2.1.2 and Notation 2.1.1).
2. If $r = 1$, then $l(Z_\phi)(g)$ is absolutely convergent for every l.

Proof. 1. We proceed as in [YZZ2009, Section 4]. First, we can assume that $\phi = \phi_\infty \otimes \phi_f$ since other cases will follow from the (Lie $H_{r,\xi}, \mathcal{K}_{r,\xi}$)-action. Assuming the absolute convergence of $l(Z_\phi)(g)$, we only need to check the automorphy, i.e., invariance under left translation of $H_r(F)$. The weight part is clear.

It is easy to check the invariance under $n(b)$ and $m(a)$. For $b \in \text{Her}_r(E)$, the matrix $bT(x)$ is F-rational if $Z(x)K \neq 0$. Therefore, $l(Z_\phi)(n(b)g) = l(Z_\phi)(g)$ for all $g \in H_r(A_F)$. For $a \in \text{GL}_r(E)$, we have $Z(xa)_K = Z(x)_K$, which implies that $l(Z_\phi)(m(a)g) = l(Z_\phi)(g)$.

Since $H_r(F)$ is generated by $n(b)$, $m(a)$ and $w_{r,-1}$, we only need to check that $l(Z_\phi)(w_{r,-1}g) = l(Z_\phi)(g)$ for all $g \in H_r(A_F)$. Assuming this for $r = 1$ (cf. Lemma 3.1.7 below), we now prove for general $r > 1$, following [YZZ2009] and [Zha2009].

We suppress l from notations for simplicity. Then for K sufficiently small, we have

$$Z_\phi(w_{r,-1}g) = \sum_{x \in K \setminus \mathcal{V}_\text{fin}^r} (\omega_\chi(w_{r,-1}g) \phi)(T(x), x) Z(x)_K$$

$$= \sum_{x \in K \setminus \mathcal{V}_\text{fin}^r} \sum_{y \in K \setminus \mathcal{V}_\text{fin}^r} (\omega_\chi(w_{r,-1}g) \phi)(T(x, y_1 + y_2), (x, y_1 + y_2)) Z((x, y_1 + y_2))_K, \quad (3.3)$$

where K_x is the stabilizer of x in K. Then

$$(3.3) = \sum_{x \in K \setminus \mathcal{V}_\text{fin}^r} \sum_{y \in K \setminus \mathcal{V}_\text{fin}^r} \sum_{y_z \in V_x} (\omega_\chi(w_{r,-1}g) \phi)(T(x, y_1 + y_2), (x, y_1 + y_2)) Z((x, y_1 + y_2))_K,$$

$$(3.4)$$

where \mathcal{V}_fin is the orthogonal complement of $V_x = E(x)$ in \mathcal{V}_fin. Recalling the morphism ς^{V_x} in (3.2), we have

$$(3.4) = \sum_{x \in K \setminus \mathcal{V}_\text{fin}^r} \sum_{y \in K \setminus \mathcal{V}_\text{fin}^r} \sum_{y_z \in V_x} (\omega_\chi(w_{r,-1})(\omega_\chi(g) \phi))(T(x, y_1 + y_2), (x, y_1 + y_2)) \varsigma^{V_x} Z(y_1)_K,$$

$$(3.5)$$

Applying the case $r = 1$ to the special cycle $Z(V_x)_K_x$, we have

$$(3.5) = \sum_{x \in K \setminus \mathcal{V}_\text{fin}^r} \sum_{y \in K \setminus \mathcal{V}_\text{fin}^r} \sum_{y_z \in V_x} (\omega_\chi(w_{r,-1})(\omega_\chi(g) \phi)^{y_1})(T(x, y_1 + y_2), (x, y_1 + y_2)) \varsigma^{V_x} Z(y_1)_K,$$

$$(3.6)$$
where the superscript y_1 means taking the partial Fourier transformation along the y_1 direction.

Applying the Poisson Summation Formula (recall that $\phi_\infty = \phi_\infty^0$ is the Gaussian), we have

$$
(3.6) = \sum_{x \in K \setminus \mathcal{V}_1} \sum_{y \in K \setminus \mathcal{V}_2} \sum_{z \in V} \left(\omega_x(w_{r,r-1}) \omega_z(g) \phi_{y_1,y_2} \right) (T(x,y_1 + y_2), (x,y_1 + y_2)) \chi^1 x \overline{Z}(y_1)_K
$$

$$
= \sum_{x \in K \setminus \mathcal{V}_1} \sum_{y \in K \setminus \mathcal{V}_2} \sum_{z \in V} \left(\omega_x(w_{r,r-1}) \omega_z(g) \phi_{y} \right) (T(x,y_1 + y_2), (x,y_1 + y_2)) \chi^1 x \overline{Z}(y_1)_K
$$

$$
= \sum_{x \in K \setminus \mathcal{V}_1} \sum_{y \in K \setminus \mathcal{V}_2} \sum_{z \in V} \omega_x(g) \phi (T(x,y_1 + y_2), (x,y_1 + y_2)) \chi^1 x \overline{Z}(y_1)_K
$$

$$
= \sum_{x \in K \setminus \mathcal{V}_1} \omega_x(g) \phi(T(x),x) \overline{Z}(x)_K
$$

$$
= Z_\phi(g).
$$

2. It follows from the argument in Lemma 3.1.7, Corollary 3.1.5 and [YZZ2009, Theorem 1.3], which uses the result in [KM1990].

\[\square\]

Lemma 3.1.7. If $r = 1$, then $l(Z_\phi(w_1 g)) = l(Z_\phi(g))$ for all $g \in H_1(A_F)$.

Proof. We suppress l from notations. Further, we fix an element $\iota \in \Sigma_\infty$ over $\iota \in \Sigma_\infty$ and suppress them as in the previous discussion. It is clear that we only need to prove $Z_\phi(w_1 g) = Z_\phi(g)$ for $g \in G_1(A_F)$ since $G_1(A_\infty,F)K_{1,\infty} = H_1(A_\infty,F)$. As before, we assume that ϕ_∞ is the Gaussian and K is sufficiently small. Recall that $\pi_0(\text{Sh}_K(H,X),C) \cong T(\mathbb{Q})/T(A_{\text{fin}})/\det(K)$. We have the following inclusion

$$
\text{CH}^1(\text{Sh}_K(H,X),C) \hookrightarrow \bigoplus_{t \in T(\mathbb{Q})/T(A_{\text{fin}})/\det(K)} \text{CH}^1(\text{Sh}_K(H,X),t,C)
$$

(3.7)

where $\text{Sh}_K(H,X)_t$ is the (canonical model of the) corresponding (geometric) connected component. Let $h \in H(A_{\text{fin}})$ such that $\det(h) \in t$ and T_h be the Hecke operator. Then $T_h : \text{Sh}_K^\circ(H,X) \to \text{Sh}_K(H,X)$ induces

$$
T_h^\circ : \text{Sh}_K^\circ(H_{\text{der}},\overline{X}) = \text{Sh}_K^\circ(H,X)_1 \sim \text{Sh}_K(H,X)_t \hookrightarrow \text{Sh}_K(H,X),
$$

where $K^h = hKh^{-1}$. We have $T_h^\circ Z_\phi(g) = Z_\phi(g)^\circ$ which is the image of (3.7) composed with the projection to $\text{CH}^1(\text{Sh}_K(H,X),t,C)$. Here, $Z_\phi(g)^\circ$ is the generating series on $\text{Sh}_K^\circ(H_{\text{der}},\overline{X})$. Now shrinking K^h if necessary such that we can apply Corollary 3.1.5, we have $Z_\phi(g)^\circ = i_K^* Z_\phi(g)^\circ$ for $g \in$
Applying [YZZ2009, Theorem 1.2 or Theorem 1.3], we conclude that $Z_\phi(w_1g)^\circ = Z_\phi(g)^\circ$. The lemma follows by (3.7).

\section{Smooth compactification of unitary Shimura varieties}

We introduce the canonical smooth compactification of the unitary Shimura varieties if they are not proper, and the compactified generating series on them.

\subsection{Compactified unitary Shimura varieties}

Let $m \geq 2$ be an integer, $E = \mathbb{Q}(j) \subset \mathbb{C}$ with $\text{Im} \ j > 0$ and $j^2 = -D$ for some square-free positive integer D, \mathcal{O}_E its ring of integers and τ the nontrivial Galois involution on E. Let $(V, (-,-))$ be a hermitian space of dimension m over E of signature $(m - 1, 1)$. If $m = 2$, we further assume that $\det V \in \text{Nm} E^\times$. Let $H = U(V)$ be the unitary group, we have the Hodge map $h : S \to H_\mathbb{R} \cong U(m - 1, 1)_\mathbb{R}$ given by

$$h(z) = \begin{pmatrix} 1 & \cdots & 1 \\ & \ddots & \\ & & 1 \\ \frac{z}{\overline{z}} & & & \end{pmatrix}.$$

Then we have the notion of Shimura variety $\text{Sh}_K(H, h)$ for every open compact subgroup K of $H(\mathbb{A}_{\text{fin}})$. For K sufficiently small, it is smooth, quasi-projective but non-proper over E of dimension $m - 1$. Therefore, we need to construct a smooth compactification of $\text{Sh}_K(H, h)$ to do height paring. When $m = 2$, it is easy since we only need to add cusps. When $m = 3$ and H is quasi-split, a canonical smooth compactification (even of the integral model) has been constructed in [Lar1992]. In fact, the same construction works in more general cases (just for compactification of the canonical model), namely for every H as above. We should mention that, if the signature of V is (a, b) such that $a \geq b > 1$ or V is over a totally real field but not \mathbb{Q} and indefinite at every archimedean place, then we are not clear whether there exists a canonical smooth compactification (in a suitable sense).

Now let us assume that $m > 2$. In order to use modular interpretations, we should work with the group of unitary similitude. For every $v, w \in V$, the paring

$$(v, w)' = \text{Tr}_{E/\mathbb{Q}}(j(v, w))$$
defines a symplectic form of V satisfying $(ev, w)' = (v, e^\tau w)'$ for every $e \in E$. Let $GH = GU(V)$ such that for every \mathbb{Q}-algebra R,

$$GH(R) = \{ h \in \text{GL}_m(E \otimes \mathbb{Q} R) \mid (hv, hw)' = \lambda(h)(v, w)' \text{ for some } \lambda(h) \in R^* \}$$

and the Hodge map $Gh : S \rightarrow GH_R \cong GU(m-1,1)_R$ is given by

$$Gh(z) = \begin{pmatrix} z & \ldots & 0 \\ \\ 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots \\ 0 & \ldots & z \end{pmatrix}.$$

For every sufficiently small open compact subgroup K of $GH(A_{\text{fin}})$, we have the Shimura variety $\text{Sh}_K(GH, Gh)$ which is smooth, quasi-projective but non-proper over E of dimension $m-1$. Although we do not have a map of Shimura data, $\text{Sh}_K(GH, h)$ and $\text{Sh}_K(GH, Gh)$ have the same neutral component for sufficiently small K. Therefore, it is same to give a canonical smooth compactification of $\text{Sh}_K(GH, Gh)$ instead of the original one. In fact, $\text{Sh}_K(GH, Gh)$ is the moduli space of abelian varieties of certain PEL type. We fix a lattice V_Z of V such that $V_Z \subset V_Z^\perp \mathbb{Z}$ and let $V_Z = V_Z \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}$. Then $(\text{Sh}_K(GH, Gh), Gh)$ represents the following functor in the category of locally noetherian E-schemes:

for every such scheme S, $\text{Sh}_K(GH, Gh)(S)$ is the set of isomorphism classes of quadruples $(A, \theta, i, \bar{\eta})$, where

- A is an abelian scheme over S of dimension m.
- $\theta : A \rightarrow A^\vee$ is a polarization.
- $i : O_E \hookrightarrow \text{End}_S(A)$ is a monomorphism of rings with units, such that $\text{tr}(i(e); \text{Lie}_S(A)) = (m-1)e + e^\tau$ and $\theta \circ i(e) = i(e^\tau)^\vee \circ \theta$ for all $e \in O_E$. Here, we view $(m-1)e + e^\tau$ as a constant section of \mathcal{O}_S via the structure map $E \rightarrow \mathcal{O}_S$.
- $\bar{\eta}$ is a K-level structure, that is, for chosen geometric point s on each connected component of S, $\bar{\eta}$ is a $\pi_1(S, s)$-invariant K-class of $O_E \otimes_{\mathbb{Z}} \hat{\mathbb{Z}}$-linear symplectic similitude $\eta : V_Z \rightarrow H^q_1(A_s, \hat{\mathbb{Z}})$, where the pairing on the latter space is the θ-Weil paring (hence the degree of θ is $[V_Z^\perp : V_Z]$).

In fact, such data is independent of the geometric point s we choose.

In the theory of toroidal compactification (cf. [AMRT2010]), we need to choose a rational polyhedral cone decomposition. However, in our case, we have only one choice, namely the torus in a line.
We claim that there is a scheme $\text{Sh}_{\tilde{K}}(GH, Gh)$ such that

- $\text{Sh}_{\tilde{K}}(GH, Gh)$ is smooth and proper over E.

- $\tilde{i}_K : \text{Sh}_K(GH, Gh) \hookrightarrow \text{Sh}_{\tilde{K}}(GH, Gh)$ is an open immersion.

- For $K' \subset K$, there is a morphism $\tilde{\pi}_{K'}$ such that the following diagram commutes

$$
\begin{array}{c}
\text{Sh}_{K'}(GH, Gh) \\
\pi_{K'} \\
\text{Sh}_{K}(GH, Gh)
\end{array}
\xymatrix{
\ar[r]^{\tilde{i}_{K'}} & \\
\ar[r]_{\tilde{\pi}_{K'}} & \\
\ar[r]_{\tilde{i}_K} & \text{Sh}_{\tilde{K}}(GH, Gh).
}
$$

- The boundary $GY_K := \text{Sh}_{\tilde{K}}(GH, Gh) - \text{Sh}_K(GH, Gh)$ is a smooth divisor defined over E and each geometric component is isomorphic to an extension of an abelian variety of dimension $m - 2$ by a finite group.

The boundary part GY_K parameterizes the degeneration of abelian varieties with above PEL data. We consider a semiabelian variety G over an algebraically closed field of characteristic 0 with $i : \mathcal{O}_E \hookrightarrow \text{End}(G)$ such that $\text{tr}(i(e); \text{Lie}(G)) = (m - 1)e + e^\tau$. For every $e \in \mathcal{O}_E$, we have following commutative diagram

$$
\begin{array}{c}
0 \\
\ar[r] & \mathcal{T} \\
\ar[r]^{t} & G \\
\ar[r]^{\alpha} & A \\
\ar[r] & 0
\end{array}
\quad
\begin{array}{c}
0 \\
\ar[r] & \mathcal{T} \\
\ar[r]^{t} & G \\
\ar[r]^{\alpha} & A \\
\ar[r] & 0
\end{array}
$$

Then the composition $\alpha \circ i(e) \circ t$ is trivial. Thus i induces actions of \mathcal{O}_E on both torus part T and abelian variety part A. Suppose $X(T) \cong \mathbb{Z}^r$ with $r > 0$. Then r is even since E is quadratic imaginary. Further assuming that $\text{tr}(i(e); \text{Lie}(T)) = ae + be^\tau$, then $a + b = r$ and $a = b$. Therefore, there is only one possibility, namely $a = b = 1$ and $r = 2$. Then T is of rank 2 and A is an abelian variety of dimension $m - 2$ such that \mathcal{O}_E acts on A and $\text{tr}(i(e); \text{Lie}(A)) = (m - 2)e$. Let A_1 be an elliptic curve of CM type $(\mathcal{O}_E, e \mapsto e)$. Each geometric point s of GY_K corresponds to a semiabelian variety $G_s = (T_s \xrightarrow{} G_s \xrightarrow{} A_s)$ as above with certain level structure which will be defined later. For two geometric points s, s' in the same geometric connected component, the abelian variety part $A_s \cong A_{s'}$ and the rank 1 \mathcal{O}_E-modules $X(T_s)$ and $X(T_{s'})$ are isomorphic. It is easy to see that if A and T are fixed, then the set of such G, up to isomorphism, is parameterized by $X(T) \otimes_{\mathcal{O}_E} A$ which is an abelian variety of dimension $m - 2$.

To include the level structure, we consider only one geometric component since it is same for others. This means that we fix \(T \) and \(A \) with \(\mathcal{O}_E \)-actions but, of course, not \(G \). Let us fix a maximal isotropic subspace \(W \) of \(V \). Then \(W \) is of rank 1. We have a filtration \(0 \subset W \subset W^\perp \subset V \). Let \(B_W \) be the subgroup of \(H(\mathcal{A}_{\text{fin}}) \) that preserves this filtration, \(N_W \subset B_W \) that acts trivially on the associated graded modules, \(U_W \subset N_W \) that acts trivially on \(W^\perp \) and \(V_W = N_W/U_W \). We fix also a generator \(w \) of \(W \). On the other hand, we fix an \(\mathcal{O}_E \otimes \hat{\mathbb{Z}} \) generator \(w_T \) of \(H^1(\mathcal{G}, \hat{\mathbb{Z}}) \) and a polarization \(\theta_A : A \to A^\vee \) such that there exists a symplectic similitude of \(H^1(\mathcal{G}, \hat{\mathbb{Z}}) \) and \(V_W \otimes \hat{\mathbb{Z}} \). For a sufficiently small open compact subgroup \(K \subset H(\mathcal{A}_{\text{fin}}) \), let \(N_{W,K} = N_W \cap K, U_{W,K} = U_W \cap K \) and \(V_{W,K} = N_{W,K}/U_{W,K} \). Then the level structure of \((G, T \hookrightarrow G \to A) \) with respect to \(K \) is a \(V_{W,K} \)-class of isomorphisms \(W^\perp \otimes \hat{\mathbb{Z}} \to H^1(\mathcal{G}, \hat{\mathbb{Z}}) \) which sends \(w \) to \(w_T \) and induces a symplectic similitude of \(V_W \otimes \hat{\mathbb{Z}} \) and \(H^1(\mathcal{G}, \hat{\mathbb{Z}})/\mathcal{O}_E \cdot w_T \). We conclude that every geometric component of \(GY_K \) is isomorphic to (a connected component of) an extension of \(X(T) \otimes \mathcal{O}_E A \) by \(V_W/V_WH \) for some \(T \) and \(A \) as above. There is a universal object \(\pi : \mathcal{G} \to \text{Sh}\mathcal{K}(GH, Gh) \) which is a semiabelian scheme of relative dimension \(m \).

3.2.2 Compactified generating series

We come back to the Shimura variety \(\text{Sh}_K := \text{Sh}_K(H, h) \). The above canonical smooth compactification induces a canonical smooth compactification for \(\text{Sh}_K \) which we will denote by \(\text{Sh}_K^\sim \) and \(Y_K = \text{Sh}_K^\sim - \text{Sh}_K \). They have the same properties as above. We apply the above notations also to the trivial case \(m = 2 \). Let \(\mathcal{L}_K^\sim \) be the line bundle on \(\text{Sh}_K^\sim \) induced from \(\bigwedge^m \pi_* \Omega_{\mathcal{G}/\text{Sh}_K(GH,Gh)} \) on \(\text{Sh}_K(GH, Gh) \) which is an extension of the Hodge bundle \(\mathcal{L}_K \) on \(\text{Sh}_K \). By the canonicality of the compactification, \((\mathcal{L}_K^\sim)_K \) defines an element in \(\text{Pic}(\text{Sh}^\sim) := \varprojlim K \text{Pic}(\text{Sh}_K^\sim) \). We also need to extend special cycles and the generating series. For \(1 \leq r < m \) and \(x \in V_{\text{fin}}^r := V \otimes \mathbb{Q} \mathcal{A}_{\text{fin}} \), we define the \textit{compactified special cycle} to be

\[
Z(x)^\sim_K = \begin{cases}
Z(V_x)^\sim_K c_1((\mathcal{L}_K^\sim)^{\vee})^{r - \dim E V_x} & \text{if } V_x \text{ is admissible} \\
0 & \text{otherwise}
\end{cases}
\]
where \(\tilde{Z}(V_x)^{\sim}_K \) is just the Zariski closure of \(Z(V_x)_K \) in \(\text{Sh}^\sim_K \). We define the compactified generating series to be

\[
Z^\sim_{\phi}(g) = \begin{cases}
\sum_{x \in K \setminus V_{\text{fin}}^r} (\omega_\chi(g) \phi)(T(x), x) Z(x)^{\sim}_K & m > 2; \\
\sum_{x \in K \setminus V_{\text{fin}}^r} (\omega_\chi(g) \phi)(T(x), x) Z(x)^{\sim}_K + W_0(\frac{1}{2}, g, \phi) c(\mathcal{Z}^\sim_K) & r = 1, m = 2,
\end{cases}
\]

for \(g \in H_r(\mathbb{A}) \) and \(\phi \in S(\mathbb{V}^r)^{\sim}_\infty \). It is a formal series in \(\text{CH}^r(\text{Sh}^\sim)_C := \lim_{\rightarrow} \text{CH}^r(\text{Sh}^\sim_K)_C \). Here, \(W_0(s, g, \phi) = \prod_v W_0(s, g_v, \phi_v) \) which is holomorphic at \(s = \frac{1}{2} \). Moreover, we define the following positive partial compactified generating series as

\[
Z^{\sim, +}_{\phi}(g) = \sum_{x \in K \setminus V_{\text{fin}}^r \atop T(x) \gg 0} (\omega_\chi(g) \phi)(T(x), x) Z(x)^{\sim}_K,
\]

where the sum is taken over all \(x \) such that \(T(x) \) is totally positive definite. We would like to propose the following conjecture on the modularity of the compactified generating series.

Conjecture 3.2.1. Let \(l \) be a linear functional on \(\text{CH}^r(\text{Sh}^\sim)_C \) such that \(l(Z^\sim_{\phi})(g) \) is absolutely convergent. Then

1. If \(1 \leq r \leq m - 2 \), \(l(Z^\sim_{\phi})(g) \) is a holomorphic automorphic form of \(H_r(\mathbb{A}_F) \).

2. If \(r = 1, m = 2 \), \(l(Z^\sim_{\phi})(g) \) is an automorphic form of \(H_1(\mathbb{A}_F) \), not necessarily holomorphic.

3. In general, if \(r = m - 1 \), \(l(Z^{\sim, +}_{\phi})(g) \) is the sum of the positive definite Fourier coefficients of an automorphic form of \(H_{m-1}(\mathbb{A}_F) \).

The case (2) will be proved in Corollary 3.4.2 and is actually not far from Theorem 3.1.6 as we point out there.

Fix a rational prime \(\ell \), there are class maps

\[
\text{cl}_K : \text{CH}^r(\text{Sh}^\sim)_C \rightarrow H^{2r}_{\text{ét}}(\text{Sh}^\sim_K \times E^{ac}, \mathbb{Z}_\ell(r))^{\Gamma \cap E} \otimes_{\mathbb{Z}_\ell} \mathbb{C},
\]

that are compatible under \(\tilde{\pi}_K^r \). They induce

\[
\text{cl} : \text{CH}^r(\text{Sh}^\sim)_C \rightarrow H^{2r}_{\text{ét}}(\tilde{\text{Sh}}^\sim \times E^{ac}, \mathbb{Z}_\ell(r))^{\Gamma \cap E} \otimes_{\mathbb{Z}_\ell} \mathbb{C} \subset H^{2r}_{\text{ét}}(\tilde{\text{Sh}}^\sim, \mathbb{C}),
\]
where
\[
H^2_{\text{et}}(\text{Sh}^\sim \times_E E^{ac}, \mathbb{Z}_\ell(\bullet)) = \lim_K H^2_{\text{et}}(\text{Sh}^\sim_K \times_E E^{ac}, \mathbb{Z}_\ell(\bullet));
\]

and the latter one is the Betti cohomology. Let
\[
H^\bullet_{\text{Bet}}(\text{Sh}^\sim, \mathbb{C}) = \lim_K H^\bullet_{\text{Bet}}(\text{Sh}^\sim_K(\mathbb{C}), \mathbb{C}),
\]

be the inductive limit of cohomology groups with support in Y_K as K varies. Then since Y is a smooth divisor, we have
\[
H^\bullet_Y(\text{Sh}^\sim, \mathbb{C}) \cong H^{\bullet-2}_{\text{Bet}}(Y, \mathbb{C}) := \lim_K H^{\bullet-2}_{\text{Bet}}(Y_K(\mathbb{C}), \mathbb{C}).
\]

Let us denote by $\text{Sh}^\#_K$ the Baily–Borel compactification of Sh_K. Therefore, we have the following commutative diagram

\[
\begin{array}{ccc}
\text{Sh}^\sim_K & \xrightarrow{j_K} & \text{Sh}^\#_K, \\
\downarrow{i_K} & & \downarrow{i^\#_K} \\
\text{Sh}_K & & \\
\end{array}
\]

which is compatible and more importantly, Hecke equivariant when K varies. We denote also by
\[
H^\bullet(\text{Sh}^\#, \mathbb{C}) = \lim_K H^\bullet(\text{Sh}^\#_K(\mathbb{C}), \mathbb{C})
\]

the inductive limit of the intersection cohomology groups. Then by [BBD1982, Théorème 6.2.5], we have the following exact sequence
\[
H^\bullet_Y(\text{Sh}^\sim, \mathbb{C}) \xrightarrow{j^*} H^\bullet_{\text{Bet}}(\text{Sh}^\sim, \mathbb{C}) \xrightarrow{j_*} H^\bullet(\text{Sh}^\#, \mathbb{C}) \rightarrow 0. \tag{3.8}
\]

Let $H^\bullet_D(\text{Sh}^\sim)$ be the image of the first map, which is isomorphic to a quotient of $H^{\bullet-2}_{\text{Bet}}(Y, \mathbb{C})$.

3.3 Arithmetic theta lifting

We assume Conjecture 3.2.1 and the following assumptions on A-packets, which are a certain part of the Langlands–Arthur conjecture (see [Art1984, Art1989]).

- A-packets are defined for all unitary groups $U(m)$ defined by a hermitian space over E of rank m.
We denote by $\text{AP}(U(m)_{\mathbb{A}_F})$ the set of A-packets of $U(m)$ and $\text{AP}(U(m)_{\mathbb{A}_F})_{\text{disc}} \subset \text{AP}(U(m)_{\mathbb{A}_F})$ the subset of discrete A-packets.

- If Π_1 and Π_2 are in $\text{AP}(U(m)_{\mathbb{A}_F})_{\text{disc}}$ such that for almost all $v \in \Sigma$, $\Pi_{1,v}$ and $\Pi_{2,v}$ contain the same unramified representation, then $\Pi_1 = \Pi_2$.

- Let $U(m)^*$ be the quasi-split unitary group. Then we have the correspondence of A-packets of inner forms: $\text{JL} : \text{AP}(U(m)_{\mathbb{A}_F})_{\text{disc}} \to \text{AP}(U(m)^*_{\mathbb{A}_F})_{\text{disc}}$.

Remark 3.3.1. The similar assumptions for orthogonal groups will be proved in the upcoming book of Arthur [Art]. The similar approach should be possible to handle the case of unitary groups as well.

3.3.1 Cohomological triviality

We will fix an incoherent hermitian space \mathbb{V} as above and suppress \mathbb{H} from the notations of Shimura varieties.

Definition 3.3.2 (Arithmetic theta lifting). Let π be an irreducible cuspidal automorphic representation of $H_r(\mathbb{A}_F)$ realized in $L^2(H_r(F) \backslash H_r(\mathbb{A}_F))$. We assume that $1 \leq r \leq m - 2$ or $r = 1, m = 2$. For every $\phi \in \mathcal{S}(\mathbb{V}^r)^{U_\infty}$ and every cusp form $f \in \pi$, the following integral

$$
\Theta^{f}_{\phi} = \begin{cases}
\int_{H_r(F) \backslash H_r(\mathbb{A}_F)} f(g)Z_{\phi}(g)dg \in \text{CH}^r(\text{Sh}) & \text{Sh is proper}; \\
\int_{H_r(F) \backslash H_r(\mathbb{A}_F)} f(g)Z^{\sim}_{\phi}(g)dg \in \text{CH}^r(\text{Sh}^{\sim}) & \text{Sh is non-proper},
\end{cases}
$$

is called the *arithmetic theta lifting* of f, which is a (formal integral of) codimension r cycle on certain (compactified) Shimura variety of dimension $m - 1$. The cohomology class of $\Theta^{f}_{\phi} | \text{Sh}$ is well-defined due to [KM1990]. The original idea of this construction comes from S. Kudla, see . He constructed the arithmetic theta series as an Arakelov divisor on certain integral model of a Shimura curve.

Remark 3.3.3. The original idea of the arithmetic theta lifting comes from the work of Kudla [Kud2003, Section 8] and Kudla–Rapoport–Yang [KRY2006, Section 9.1]. However, there is an essential difference between our definition and theirs, in the sense that our arithmetic theta lifting is a cocycle on the canonical model of Shimura variety, while theirs (just in the case of Shimura curves) is an Arakelov divisor on certain integral model, which is not canonically defined. It is more natural to define arithmetic theta lifting just as a cocycle on the generic fiber in order to consider the canonical height.
In the following discussion, let $m = 2n$ and $r = n$. Let π be an irreducible cuspidal automorphic representation of $H_n(\mathbb{A}_F)$, χ a character of $E^\times \mathbb{A}_F \backslash \mathbb{A}_E^\times$ such that π_∞ is a discrete series representation of weight $(n - \frac{k}{2}, n + \frac{k}{2})$ and $\varepsilon(\pi, \chi) = -1$. Then the (equal-rank) theta correspondence of π_i (under ω_{χ}) is the trivial representation of $U(2n, 0)_R$ for every archimedean place ι. Therefore, $\nabla(\pi, \chi)$ is a totally positive definite incoherent hermitian space over \mathbb{A}_F. Now we fix an incoherent hermitian space ∇ that is totally positive definite of rank $2n$ and let $(\text{Sh}_K)_K$ be the attached Shimura varieties.

We fix an embedding $\iota^\circ : E \hookrightarrow \mathbb{C}$ inducing $\iota : F \hookrightarrow \mathbb{C}$ if $F \neq \mathbb{Q}$. Then similarly we have the class map $\text{cl} : CH^\bullet(\text{Sh}_K)_C \rightarrow H_{2n}^{\bullet}(\text{Sh}_{K, \iota^\circ}(\mathbb{C}), \mathbb{C})$. By a theorem of S. Zucker [Zuc1982, Section 6] concerning the L^2-cohomology and the intersection cohomology, we have a (compatible system of) Hecke equivariant isomorphisms

$$H_{(2)}^\bullet(\text{Sh}_K) = \begin{cases} H_{\text{bet}}^\bullet(\text{Sh}_{K, \iota^\circ}(\mathbb{C}), \mathbb{C}) & \text{Sh}_K \text{ is proper;} \\ IH^\bullet(\mathbb{P}^\bullet, \mathbb{C}) & \text{Sh}_K \text{ is non-proper,} \end{cases}$$

and let $H_{(2)}^\bullet(\text{Sh}) = \lim_{\to K} H_{(2)}^\bullet(\text{Sh}_K)$. In the non-proper case, we compose the map j_* in (3.8) to get a class map still denoted by $\text{cl} : CH^\bullet(\text{Sh}^\sim) \rightarrow H_{(2)}^\bullet(\text{Sh})$. We have the following proposition.

Proposition 3.3.4. The class $\text{cl}(\Theta_f^\phi) = 0$ in $H_{(2)}^{2n}(\text{Sh})$, i.e., if Sh is proper (resp. non-proper), Θ_f^ϕ is cohomologically trivial (resp. such that $\text{cl}(\Theta_f^\phi) \in H_{(2)}^{2n}(\text{Sh})$).

Proof. If Sh is non-proper, we can assume that $n > 1$. By our definition of the arithmetic theta lifting, for $\phi = \phi_\infty \phi_f$ with fixed ϕ_∞, $\text{cl}(\Theta_f^\phi)$ defines an element in

$$\text{Hom}_{H_n(\mathbb{A}_{F, \text{fin}})} \left(S(\mathbb{V}_\text{fin}^n) \otimes \pi_\text{fin}, H_{(2)}^{2n}(\text{Sh}) \right),$$

where $H_n(\mathbb{A}_{F, \text{fin}})$ acts trivially on the L^2-cohomology.

Let $V^{(i)}$ be the nearby hermitian space of \mathbb{V} at i (cf. 3.1.1) and $H^{(i)} = U(V^{(i)})$. Then since $Z_{\omega_{\chi}(h)\phi}(g) = T_h Z_{\phi}(g)$ for all $h \in H^{(i)}(\mathbb{A}_{F, \text{fin}})$ where T_h is the Hecke operator of h, we see that $\text{cl}(\Theta_f^\phi)$ in fact defines an element

$$H_{\Theta, \phi_\infty} \in \text{Hom}_{H_n(\mathbb{A}_{F, \text{fin}}) \times H^{(i)}(\mathbb{A}_{F, \text{fin}})} \left(S(\mathbb{V}_\text{fin}^n) \otimes \pi_\text{fin}, H_{(2)}^{2n}(\text{Sh}) \right)$$

$$= \text{Hom}_{H_n(\mathbb{A}_{F, \text{fin}}) \times H^{(i)}(\mathbb{A}_{F, \text{fin}})} \left(S(\mathbb{V}_\text{fin}^n), \pi_\text{fin} \otimes H_{(2)}^{2n}(\text{Sh}) \right),$$

where $H_n(\mathbb{A}_{F, \text{fin}}) \times H^{(i)}(\mathbb{A}_{F, \text{fin}})$ acts on $S(\mathbb{V}_\text{fin}^n)$ through the Weil representation ω_{χ} and $H^{(i)}(\mathbb{A}_{F, \text{fin}})$ acts on $H_{(2)}^{2n}(\text{Sh})$ through Hecke operators and on π_fin trivially. As an $H^{(i)}(\mathbb{A}_{F, \text{fin}})$-representation, we
have the following well-known decomposition (cf. e.g., [BW2000, Chapter XIV])

\[H_{(2)}^{2n}(\text{Sh}) = \bigoplus_{\sigma} m_{\text{disc}}(\sigma)H^{2n}(\text{Lie} H_{\infty}^{(i)}, \mathcal{K}_{H_{\infty}^{(i)}}; \sigma_{\infty}) \otimes \sigma_{\text{fin}}, \]

where the direct sum is taken over all irreducible discrete automorphic representations of \(H^{(i)}(\mathbb{A}_F) \).

If the invariant functional \(H_{\Theta, \phi_{\infty}} \neq 0 \), then some \(\sigma_f \) with

\[m_{\text{disc}}(\sigma)H^{2n}(\text{Lie} H_{\infty}^{(i)}, \mathcal{K}_{H_{\infty}^{(i)}}; \sigma_{\infty}) \neq 0 \]

is the theta correspondence \(\theta(\pi_{\text{fin}}^\vee) \) of \(\pi_{\text{fin}}^\vee \).

We define a character \(\tilde{\chi} \) of \(E \times \mathbb{A} \) in the following way. For every \(x \in \mathbb{A} \), we can write \(x = e \tau \) for some \(e \in \mathbb{A} \) and define \(\tilde{\chi}(x) = \chi(e) \) which is well-defined since \(\chi|_{\mathbb{A}} = 1 \).

For all finite place \(v \) such that \(v \nmid 2 \) and \(\psi_v, \chi_v, \pi_v \) unramified, we have \(H^{(i)}_v \cong H_{n, v} \). Let \(\Sigma \in \text{AP}(H^{(i)}_\mathbb{A}_F)_{\text{disc}} \) be the \(\mathbb{A} \)-packet containing \(\sigma \) and \(\Pi \in \text{AP}(H_{n, \mathbb{A}_F})_{\text{disc}} \) containing \(\pi \). Then by Corollary A.3.6, we have that for \(v \) as above, \(JL(\Sigma)_v = JL(\Sigma_{\text{fin}}) = \Sigma_v \) and \(\Pi_v \otimes \tilde{\chi}_v \) contain the same unramified representation. Therefore, \(JL(\Sigma) \) and \(\Pi \otimes \tilde{\chi} \) coincide. In particular,

\[JL(\Sigma_{\infty}) = JL(\Sigma)_\infty = \Pi_{\infty} \otimes \tilde{\chi}_{\infty} \]

which implies that \(\Sigma_{\infty} \) is a discrete series \(L \)-packet (cf. [Ada]). This contradicts our assumption since for every discrete series representation \(\sigma_{\infty} \), \(H^\bullet(\text{Lie} H_{\infty}^{(i)}, \mathcal{K}_{H_{\infty}^{(i)}}; \sigma_{\infty}) \neq 0 \) happens only in the middle dimension which is \(2n - 1 \), not \(2n \) (cf. [BW2000, Chapter II, Theorem 5.4]). Thus \(H_{\Theta, \phi_{\infty}} = 0 \) and we prove the proposition.

The proposition says that \(\Theta_{\phi} \) is automatically cohomologically trivial at least in the proper case. We would like to propose the following conjecture.

Conjecture 3.3.5. When \(\text{Sh} \) is non-proper, \(\text{cl}(\Theta_{\phi}^f) \in H_{2n}^{2n}(\text{Sh}^{-}) \) is 0 for every cusp form \(f \in \pi \) and \(\phi \) as above.

When \(n = 1 \), this follows from Corollary 3.4.2 by just computing the degree of the generating series which is the linear combination of an Eisenstein series and (possibly) an automorphic character (i.e., 1-dimensional automorphic representation) of \(H_1(\mathbb{A}_F) \). Therefore, \(\text{cl}(\Theta_{\phi}^f) \) is zero since \(f \) is cuspidal. For the general case, we believe that the same phenomenon will happen.
3.3.2 Arithmetic inner product formula: the general conjecture

Let us further assume Conjecture 3.3.5 and the existence of Beilinson–Bloch height paring [Bei1987, Blo1984] on smooth proper schemes over number fields. Then Θ^f_ϕ is cohomologically trivial and we let

$$\langle \Theta^f_\phi, \Theta^{f^\vee}_\phi \rangle_{\text{BB}}$$

be the Beilinson–Bloch height paring on Sh_K (resp. $\text{Sh}_{\tilde{K}}$) if it is proper (resp. non-proper) for sufficiently small K. Let $\text{Vol}(K)$ be the volume defined in Definition 4.3.3. Then

$$\langle \Theta^f_\phi, \Theta^{f^\vee}_\phi \rangle_{\text{BB}} := \text{Vol}(K) \langle \Theta^f_\phi, \Theta^{f^\vee}_\phi \rangle_{\text{BB}}$$

is a well-defined number that is independent of K.

If $V \not\cong V(\pi, \chi)$, then $\langle \Theta^f_\phi, \Theta^{f^\vee}_\phi \rangle_{\text{BB}} = 0$ for every f, f^\vee and ϕ, ϕ^\vee since otherwise, it defines a nonzero functional

$$\gamma(f, f^\vee, \phi, \phi^\vee) \in \text{Hom}_{H_n(A, F)}(\text{Sh}_F, \text{Sh}_{\tilde{F}})(R(V_f, f_f) \otimes \chi_f, f_f^\vee \otimes \chi_{f_f}^{-1}),$$

which contradicts the fact that the latter space is zero. This will imply that, assuming the conjecture that the Beilinson–Bloch height paring is non-degenerate, every arithmetic theta lifting $\Theta^f_\phi = 0$.

If $V \cong V(\pi)$, then we have the following main conjecture.

Conjecture 3.3.6 (Arithmetic inner product formula). Let π be an irreducible cuspidal automorphic representation of $H_n(A, F)$, χ a character of $E^\times A_n^\times \backslash A_n^\times$, such that π_∞ is a discrete series representation of weight $(n - \frac{n}{2}, n + \frac{n}{2})$, $\epsilon(\pi, \chi) = -1$ and $V \cong V(\pi, \chi)$. Then for every $f \in \pi$, $f^\vee \in \pi^\vee$ and every $\phi, \phi^\vee \in S(V)_{\text{U}_{\infty}}$ that are decomposable, we have

$$\langle \Theta^f_\phi, \Theta^{f^\vee}_\phi \rangle_{\text{BB}} = \frac{L^f(\frac{1}{2}, \pi, \chi)}{\prod_{i=1}^{2n} L(i, \epsilon^{E/F})} \prod_v Z^*(0, \chi_v, f_v, f_v^\vee, \phi_v \otimes \phi_v^\vee),$$

where in the last product, almost all factors are 1.

We would like to remark that when $n = 1$, the height paring $\langle \Theta^f_\phi, \Theta^{f^\vee}_\phi \rangle_{\text{BB}}$ is just the classical Néron–Tate height paring which will be recalled in 3.4.1, hence is defined unconditionally.
3.4 Arithmetic kernel functions

3.4.1 Néron–Tate height pairing on curves

we will review the general theory of the Néron–Tate height pairing on curves over number fields and some related facts.

Let E be a number field, not necessarily CM; M a connected smooth projective curve over E, not necessarily geometrically connected. Let $\text{CH}^1(M)_{\mathbb{C}}^0$ be the group of cohomologically trivial cycles which is the kernel of the following map

$$\text{deg} : \text{CH}^1(M)_{\mathbb{C}} \to H^2_{\text{ét}}(M_{\overline{E}}, \mathbb{Z}_\ell(1))^\Gamma_E \otimes_{\mathbb{Z}_\ell} \mathbb{C} \cong \mathbb{C}$$

for a fixed rational prime number ℓ. Let M be a regular model of M, i.e., a regular scheme, flat and projective over $\text{Spec} \mathcal{O}_E$ with the generic fibre $M_E \cong M$.

An arithmetic divisor is a datum (Z, g_{i°), where $Z \in Z^1(M)_{\mathbb{C}}$ is a usual divisor and g_{i° is a Green function, i.e., Green $(0,0)$-form of logarithmic type [Sou1992, II.2], for the divisor $Z_{i^\circ}(\mathbb{C})$ on $M_{i^\circ}(\mathbb{C})$ for each embedding $i^\circ : E \hookrightarrow \mathbb{C}$. We denote by $\widehat{Z}^1_{\mathbb{C}}(M)$ the group of arithmetic \mathbb{C}-divisors. For a nonzero rational function f on M, we define the associated principal arithmetic divisor to be

$$\widehat{\text{div}}(f) = (\text{div}(f), -\log |f_{i^\circ, \mathbb{C}}|^2).$$

The quotient of $\widehat{Z}^1_{\mathbb{C}}(M)$ divided by the \mathbb{C}-subspace generated by principal arithmetic divisors is the arithmetic Chow group, denoted by $\widehat{\text{CH}}^1_{\mathbb{C}}(M)$. Inside $\widehat{\text{CH}}^1_{\mathbb{C}}(M)$, there is a subspace $\text{CH}^1_{\text{fin}}(M)_{\mathbb{C}}$, which is \mathbb{C}-generated by $(Z, 0)$ with Z supported on special fibres. Let $\text{CH}^1_{\text{fin}}(M)_{\mathbb{C}} \subset \text{CH}^1_{\mathbb{C}}(M)$ be the orthogonal complement under the \mathbb{C}-bilinear pairing

$$\langle -, - \rangle_{\text{GS}} : \text{CH}^1_{\mathbb{C}}(M) \times \text{CH}^1_{\mathbb{C}}(M) \to \mathbb{C}.$$

An arithmetic divisor (Z, g_{i°) is flat if we have the following equality in the space $\text{D}^{1,1}(M_{i^\circ}(\mathbb{C}))$ of $(1,1)$-currents:

$$\text{dd}^c [g_{i^\circ}] + \delta_{Z_{i^\circ}(\mathbb{C})} = 0$$

for every i°, where $\text{d}^c = (4\pi i)^{-1}(\partial - \overline{\partial})$; $[-]$ is the associated current; and δ is the Dirac current. Flatness is well-defined in $\text{CH}^1_{\mathbb{C}}(M)$. Now we introduce the subgroup $\text{CH}^1_{\mathbb{C}}(M)^0$ of $\text{CH}^1_{\mathbb{C}}(M)$ consisting
of elements (represented by) \((Z, g_{i^*})\) satisfying:

1. \((Z, g_{i^*})\) is inside \(\text{CH}^1_{\text{fin}}(M)\).
2. \(Z_E\) is inside \(\text{CH}^1(M)\).
3. \((Z, g_i)\) is flat.

Therefore, we have a natural map

\[p_M : \widehat{\text{CH}}^1_c(M) \to \text{CH}^1(M) \]

\[(Z, g_i) \mapsto Z_E \] (3.9)

which is surjective. Now we can define the \(\text{Néron–Tate height paring}\) as

\[\langle -,- \rangle_{\text{NT}} : \text{CH}^1(M)^0 \times \text{CH}^1(M)^0 \to \mathbb{C} \]

\[(Z_1, Z_2) \mapsto \langle (Z_{i_1}, g_{1^*}), (Z_{i_2}, g_{2^*}) \rangle_{\text{GS}} \] (3.10)

where \((Z_i, g_{i^*})\) \((i = 1, 2)\) is any preimage of \(Z_i\) under \(p_M\). It is easy to see that this is independent of the choices of preimages and also the regular model \(M\).

In practice, the cycles we are interested in are not automatically cohomologically trivial. We need to make some modifications with respect to some auxiliary data. This is quite easy if we are working over a curve. Let \(\widehat{\text{Pic}}(M)\) be the abelian group of isomorphism classes of \textit{hermitian line bundles} on \(M\). Recall that a hermitian line bundle is the data \(\mathcal{L} = (\mathcal{L}, \|\cdot\|_{i^*})\), where \(\mathcal{L} \in \text{Pic}(M)\) and \(\|\cdot\|_{i^*}\) is a (smooth) hermitian metric on the holomorphic line bundle \(\mathcal{L}_{i^*} \otimes \mathcal{O}\). We assume that \(\text{deg} c_1(\mathcal{L}) \neq 0\).

For every \(Z \in \text{CH}^1(M)\), the divisor

\[Z_{\mathcal{L}}^0 = Z - \frac{\text{deg} Z}{\text{deg} c_1(\mathcal{L})} c_1(\mathcal{L}) \]

is in \(\text{CH}^1(M)^0\).

Now we define the modified height pairing with respect to \(\mathcal{L}\) to be

\[(Z_1, Z_2)_{\mathcal{L}} := \langle Z_1^0_{\mathcal{L}}, Z_2^0_{\mathcal{L}} \rangle_{\text{NT}} \]

for every \(Z_i \in \text{CH}^1(M)\) \((i = 1, 2)\). In particular, we need to choose suitable Green function on \(Z_i\) when computing via (3.10). We say that the Green function \(g_{i^*}\) of \(Z\) is \(\mathcal{L}-\text{admissible}\) if the following
equalities of \((1, 1)\)-currents hold
\[
\dd c^\dagger[g_c] + \delta Z_c(\mathcal{L}^\dagger) = \frac{\deg Z}{\deg c_1(\mathcal{L}^\dagger)[c_1(\mathcal{L}^\dagger, \mathcal{L}^\dagger, \parallel \cdot \parallel_{\mathcal{L}^\dagger})]};
\]
\[
\int_{M_c(\mathcal{L}^\dagger)} g_c \cdot c_1(\mathcal{L}^\dagger, \mathcal{L}^\dagger, \parallel \cdot \parallel_{\mathcal{L}^\dagger}) = 0,
\]
where \(c_1(\mathcal{L}^\dagger, \mathcal{L}^\dagger, \parallel \cdot \parallel_{\mathcal{L}^\dagger}) \in A^{1,1}(M_c(\mathcal{L}^\dagger))\) is the Chern form associated to the hermitian holomorphic line bundle \((\mathcal{L}^\dagger, \mathcal{L}^\dagger, \parallel \cdot \parallel_{\mathcal{L}^\dagger})\) which is a \((1, 1)\)-form.

3.4.2 Degree of generating series

We adopt the construction in 3.1.1 in the case where \(m = 2\) and \(r = 1\). In particular, \(\mathbb{V}\) is a totally positive definite hermitian space over \(A_E\) of rank 2 and we write \(H' = H_1\). Let \(H = \text{Res}_{A_F / A} U(\mathbb{V})\) be the associated unitary group over \(A\). For every (sufficiently small; Assumption 3.1.1) open compact subgroup \(K\) of \(H(A_{\text{fin}})\), there is a Shimura curve \(\text{Sh}_K(\mathbb{H})\), smooth over the reflex field \(E\). For every embedding \(\iota^0 : E \hookrightarrow \mathbb{C}\) over \(\iota \in \Sigma_{\infty}\), we have the following \(\iota^0\)-adic uniformization
\[
\text{Sh}_K(\mathbb{H})_{\mathbb{C}} \cong H^{(\iota)}(\mathbb{Q}) \backslash \left(\mathcal{D}^{(\iota)} \times \mathbb{H}(A_{\text{fin}})/K \right).
\]
The underlying real symmetric domain \(\mathcal{D}^{(\iota)}\) is identified with the \(H'(\mathbb{R})\)-conjugacy class of the Hodge map \(h^{(\iota)} : S \to H_R^{(\iota)} \cong U(1, 1)_R \times U(2, 0)_{\mathbb{R}}^{d-1}\) given by
\[
h^{(\iota)}(z) = \left(\begin{pmatrix} 1 & \frac{z}{\bar{z}} \\ \bar{z} / z & 1 \end{pmatrix}, 1_2, \ldots, 1_2 \right).
\]
The Shimura curves \(\text{Sh}_K(\mathbb{H})\) are non-proper if and only if \(F = \mathbb{Q}\) and \(\Sigma(\mathbb{V}) = \{\infty\}\). In this case, we can compactify them by add cusps. We denote by \(M_K\) the compactified (resp. original) Shimura curve if \(\text{Sh}_K(\mathbb{H})\) is non-proper (resp. proper), and \(M\) the projective system \((M_K)_K\) with respect to the projections \(\pi^{K'}_K : M_{K'} \to M_K\) (3.1). On each \(M_K\), we have the Hodge bundle \(\mathcal{L}_K \in \text{Pic}(M_K)_{\mathbb{Q}}\) which is ample. They are compatible under pullbacks of \(\pi^{K'}_K\), hence define an element \(\mathcal{L} \in \text{Pic}(M)_{\mathbb{Q}} := \lim_{\rightarrow} \text{Pic}(M_K)_{\mathbb{Q}}\).
Adapting the definition of (compactified) generating series in 3.2.2, we have

\[
Z_\phi(g) = \sum_{x \in K \setminus \mathbb{V}_{\mathbb{H}}} \omega_x(g) \phi(T(x), x) Z(x)_K,
\]

\[
Z_\phi^\sim(g) = \begin{cases}
Z_\phi(g) & \text{if } \text{Sh}(\mathbb{H})_K \text{ is proper;} \\
Z_\phi(g) + W_0(\frac{1}{2}, g, \phi)c_1(L_\phi^\vee) & \text{if not,}
\end{cases}
\]

respectively, as vector-valued series in \(\text{CH}^1(M_K)_C\) for \(\phi \in S(\mathbb{V})_{U \infty}^K\) and \(g \in H'(\mathbb{A}_F)\), where \(W_0(s, g, \phi) = \prod_v W_0(s, g_v, \phi_v)\) that is holomorphic at \(s = \frac{1}{2}\). It is easy to see that \(Z_\phi(g)\) and \(Z_\phi^\sim(g)\) are compatible under pullbacks of \(\pi_{K'}\), hence define series in \(\text{CH}^1(M)_C := \lim_{\rightarrow} \text{CH}^1(M_K)_C\). Readers may view the modification in the non-proper case as an analogy of the classical Eisenstein series \(G_2(\tau)\) (which is not a modular form!). It becomes modular if we add a term \(-\pi/\text{Im } \tau\) at the price of being non-holomorphic (cf. e.g., [DS2005, Page 18]).

We apply the construction in 3.4.1 to the curve \(M_K\). The cycles whose heights we want to compute are the generating series \(Z_\phi^\sim(g)\) which are not necessarily cohomologically trivial. We use the dual Hodge bundle \(L_\phi^\vee = (L_\phi)^K \in \text{Pic}(M)\) to modify as in 3.4.1. The metric on \(L_{\phi^\vee}\) for some \(\phi^\vee \in \Sigma_{\infty}\) over \(\iota \in \Sigma_{\infty}\) is the one descended from the \(H_{\iota^c}\)-invariant metric

\[
||v||_{\iota^c} = \frac{1}{2}(v, v),
\]

for \(v \in V_{\iota^c}\) and the hermitian form \((-,-)\) of \(V_{\iota^c}\) at \(\iota\). We denote by \(\overline{L} = (L_K^\vee)^K \in \overline{\text{Pic}}(M)\) the corresponding metrized line bundle. Since \(L^\vee\) is ample, \(\deg c_1(L_K^\vee) \neq 0\). For \(\phi \in S(\mathbb{V})_{U \infty}^K\) and \(g \in H'(\mathbb{A}_F)\), we define the arithmetic theta series to be

\[
\Theta_\phi(g) = Z_\phi^\sim(g) - \frac{\deg Z_\phi^\sim(g)}{\deg c_1(L_{\phi^\vee}')} c_1(L_{\phi^\vee}'),
\]

on every curve \(M_{K'}\) with \(K' \subset K\). The ratio

\[
D(g, \phi) := \frac{\deg Z_\phi^\sim(g)}{\deg c_1(L_{\phi^\vee}')}\]

is independent of the choice of \(K'\).

We compute the degree function \(D(g, \phi)\). From \(\phi \in S(\mathbb{V})_{U \infty}^K\) that is decomposable, we can form
an Eisenstein series

\[E(s,g,\phi) = \sum_{\gamma \in P'(F) \backslash H'(F)} (\omega_\chi(\gamma g) \phi) (0) \lambda_{P'}(\gamma g)^{s - \frac{1}{2}} \]

on \(H'(A_F) \), which is absolutely convergent if \(\Re(s) > \frac{1}{2} \) and has a meromorphic continuation to the entire complex plane. We take Tamagawa measures (with respect to \(\psi \)) \(\text{d}h \) on \(\mathbb{H}(A) \), \(\text{d}\tilde{h} \) on \(\mathbb{A}_E^{\times,1} = \mathbb{H}/\mathbb{H}^\text{der}(A) \) and \(\text{d}h_x \) on \(\mathbb{H}(A)_x \), which is the stabilizer of \(x \in \mathbb{V} \) in \(\mathbb{H}(A) \).

For every \(v \in \Sigma \), let \(b \in F_v^\times \) such that \(\Omega_b := \{ x \in \mathbb{V}_v \mid T(x) = b \} \neq \emptyset \). Then the local Whittaker integral \(W_b(s,e,\phi_v) \) has a holomorphic continuation to the entire complex plane and \(W_b(\frac{1}{2},e,\phi_v) \) is not identically zero. Therefore, on the one hand, we have an \(N_v \)-intertwining map

\[S(\mathbb{V}_v) \rightarrow \mathbb{C}_{N_v,\phi_b} \]

\[\phi_v \mapsto W_b(\frac{1}{2},e,\phi_v). \]

On the other hand, by [Ral1987, Lemma 4.2] for \(v \) finite, and [Ral1987, Lemma 4.2] and [KR1994, Proposition 2.10] for \(v \) infinite (see also [Ich2004, Proposition 6.2]), we have

\[W_b(\frac{1}{2},e,\phi_v) = \gamma_{\mathbb{V}_v} \int_{\Omega_b} \phi_v(x) \text{d}\mu_{v,b}(x) \]

(3.11)

for the quotient measure \(\text{d}\mu_{v,b} = \text{d}h_v/\text{d}h_{v,x} \) on \(\Omega_b \) for every \(x \in \Omega_b \).

Proposition 3.4.1. The Eisenstein series \(E(s,g,\phi) \) is holomorphic at \(s = \frac{1}{2} \) and

\[D(g,\phi) = E(s,g,\phi) \big|_{s=\frac{1}{2}}. \]

Proof. We can assume that \(\phi \) is decomposable. For \(b \in F^\times \), let

\[D_b(g,\phi) = \frac{1}{\text{deg} c_1(Z_{K'}^{\gamma})} \sum_{\substack{x \in K' \backslash V_{\text{fin}} \cap T(x) = b \atop \mathbb{V}_b}} (\omega_\chi(g) \phi)(b,x) \deg Z(x)_{K'} \]

be the \(b \)-th Fourier coefficient of \(D(g,\phi) \). We first compute the degree of \(Z(x)_{K'} \) when \(T(x) = b \) is totally positive. Without lost of generality, let us assume that \(x \) is contained in the image of some (rational) nearby hermitian space \(V^{(i)} \hookrightarrow V_{\text{fin}} \) and \(K' \) is sufficiently small. The isomorphism
\[\text{det : } H_x^{(s)} \to E^{x,1} \text{ induces a surjective map} \]

\[H_x^{(s)} \setminus \mathbb{H}(A_{\text{fin}})_x / (K' \cap \mathbb{H}(A_{\text{fin}})_x) \to E^{x,1} \setminus A_{\text{fin},E}^{x,1} / \text{det } K'. \]

Therefore,

\[\text{deg } Z(x)_{K'} = \left| \frac{\text{det } K'}{K' \cap \mathbb{H}(A_{\text{fin}})_x} \right| = \frac{\text{Vol} (\text{det } K', d\bar{h}_{\text{fin}})}{\text{Vol} (K' \cap \mathbb{H}(A_{\text{fin}})_x, d\mu_{f,x})}. \]

When \(b \neq 0 \) that is not totally positive, \(\text{deg } Z(x)_{K'} = 0 \) by definition. Therefore, on the one hand,

\[D_b(g, \phi) = \frac{1}{\text{deg } c_1(\mathcal{L}^{\nu}_{K'})} \sum_{x \in K' \setminus V_{\text{fin}} \atop T(x) = b} (\omega_{\chi}(g) \phi)(b, x) \frac{\text{Vol} (\text{det } K')}{\text{Vol} (K' \cap \mathbb{H}(A_{\text{fin}})_x)} \]

\[= \frac{\omega_{\chi}(g_{\infty}) \phi_{\infty}(b) \text{Vol} (\text{det } K')}{\text{deg } c_1(\mathcal{L}^{\nu}_{K'}) \text{Vol} (K')} \int_{x \in V_{\text{fin}}} (\omega_{\chi}(g) \phi)(x) d\mu_b(x) \]

\[= \frac{\omega_{\chi}(g_{\infty}) \phi_{\infty}(b) \text{Vol} (\text{det } K')}{\text{deg } c_1(\mathcal{L}^{\nu}_{K'}) \text{Vol} (K')} \prod_{v \in \Sigma_{\text{fin}}} \int_{\Omega_b} (\omega_{\chi}(g_v) \phi_v)(x) d\mu_{v,b}(x) \]

for \(b \) totally positive, and \(D_b(g, \phi) = 0 \) otherwise.

On the other hand, \(E_b(s, g, \phi) \) is holomorphic at \(s = \frac{1}{2} \) for \(b \neq 0 \). For \(b \) not totally positive, \(E_b(s, g, \phi)|_{s=\frac{1}{2}} = 0 \); otherwise,

\[E_b(s, g, \phi)|_{s=\frac{1}{2}} = W_b(\frac{1}{2}, g, \phi) = \prod_{v \in \Sigma} W_b(\frac{1}{2}, g_v, \phi_v) \]

\[= \prod_{v \in \Sigma} \gamma_{\nu_v} \int_{\Omega_b} (\omega_{\chi}(g_v) \phi_v)(x) d\mu_{v,b}(x) \]

\[= -\text{Vol}(\Omega_{\infty})(\omega_{\chi}(g_{\infty}) \phi_{\infty})(b) \prod_{v \in \Sigma_{\text{fin}}} \int_{\Omega_b} (\omega_{\chi}(g_v) \phi_v)(x) d\mu_{v,b}(x), \]

where \(\text{Vol}(\Omega_{\infty}) = \text{Vol}(\Omega_{\infty,b}) \) for every \(b \) that is totally positive. Let

\[D = \frac{\text{Vol} (\text{det } K')}{\text{Vol} (\Omega_{\infty}) \text{deg } c_1(\mathcal{L}^{\nu}_{K'}) \text{Vol} (K')} \]

Now we compute the constant term

\[D_0(g, \phi) = \omega_{\chi}(g) \phi(0) + W_0(\frac{1}{2}, g, \phi), \]
on the one hand. On the other hand, the constant term of $E(\frac{1}{2}, g, \phi)$ is

$$E_0(\frac{1}{2}, g, \phi) = \omega_\chi(g)\phi(0) + W_0(\frac{1}{2}, g, \phi).$$

Here the intertwining term $W_0(\frac{1}{2}, g, \phi)$ is nonzero only if $\text{Sh}_K(\mathbb{H})$ is not proper, i.e., $|\Sigma(\mathbb{V})| = 1$.

There are two cases:

- If $\text{Sh}_K(\mathbb{H})$ is proper, then we can apply Theorem 3.1.6 to see that $D(g, \phi)$ is already an automorphic form. Comparing the ratio of the constant term and non-constant terms, we find that $D = 1$.

- If $\text{Sh}_K(\mathbb{H})$ is not proper, we calculate the degree of the Hodge bundle as the classical way on modular curves and find that $D = 1$.

Therefore, the proposition follows. \qed

We let

$$E(g, \phi) = E(s, g, \phi)|_{s=\frac{1}{2}} - W_0(\frac{1}{2}, g, \phi).$$

Then

$$\Theta_\phi(g) = Z_\phi(g) - E(g, \phi)c_1(L_K^\vee).$$

If $|\Sigma(\mathbb{V})| > 1$, $W_0(\frac{1}{2}, g, \phi) = 0$; otherwise, it equals $C \cdot \tilde{\chi} \circ \det$ where C is a constant and $\tilde{\chi}$ is the descent of χ to $\mathbb{A}_E^{\times 1}$, as in the proof of Proposition 3.3.4. In all cases, $E(g, \phi)$ is a linear combination of an Eisenstein series and an automorphic character.

Proposition 3.4.1 implies the following corollary on the modularity of the generating series in the compactified case.

Corollary 3.4.2. Let ℓ be a linear functional of $\text{CH}^1(M)_C$. Then $\ell(Z_\phi)(g)$ and hence $\ell(\Theta_\phi)(g)$ are absolutely convergent and are automorphic forms of H'.

Proof. Assume that ϕ is invariant under $K \subseteq \mathbb{H}(\mathbb{A}_{\text{fin}})$. We only need to prove that the identity $Z_\phi^\vee(\gamma g) = Z_\phi^\vee(g)$ in $\text{Pic}(M_K)_C$ for every $\gamma \in H'(\mathbb{Q})$. By Theorem 3.1.6 and the fact that the Hodge bundle is supported on the cusps, $Z_\phi^\vee(\gamma g) = Z_\phi^\vee(g)$ in $\text{CH}^1(\text{Sh}_K(\mathbb{H}))_C$. So their difference must be supported on the set of cusps. By a theorem of Manin–Drinfeld (cf. [Man1972, Dri1973]) which posits that every two cusps are same in $\text{CH}^1(M_K)_C$, we have an exact sequence

$$\mathbb{C} \to \text{CH}^1(M_K)_C \to \text{CH}^1(\text{Sh}_K(\mathbb{H}))_C \to 0.$$
Therefore, we only need to prove that \(\deg Z_\phi^\sim(\gamma g) = \deg Z_\phi^\sim(g) \), which is true by the Proposition 3.4.1.

In particular, Definition 3.3.2 specializes to the following unconditional definition.

Definition 3.4.3. Let \(\pi \) be an irreducible cuspidal automorphic representation of \(H' (\mathcal{A}_F) = H_1 (\mathcal{A}_F) \).

For every cusp form \(f \in \pi \) and \(\phi \in S(V)_{U_\infty} \), we define the arithmetic theta lifting of \(f \) to be the following integral

\[
\Theta^f_\phi = \int_{H'(F) \setminus H'(\mathcal{A}_F)} f(g) \Theta_\phi(g) \, dg \in \text{CH}^1(M)_C^0,
\]

which is a divisor on the projective system of (compactified) Shimura curves.

3.4.3 Decomposition of arithmetic kernel functions

For \(\Phi = \sum \phi_{i,1} \otimes \phi_{i,2} \) with \(\phi_{i,\alpha} \in S(V)_{U_\infty}^K \) for \(\alpha = 1, 2 \), we define the geometric kernel function associated to the test function \(\Phi \) to be

\[
E(g_1, g_2; \Phi) := \text{Vol}(K') \sum \langle \Theta_{\phi_{i,1}}(g_1), \Theta_{\phi_{i,2}}(g_2) \rangle_{K'}^{K'},
\]

where the superscript \(K' \) means that we are taking the Néron–Tate height paring on the curve \(M_{K'} \) for some \(K' \subseteq K \), of which the definition is independent. By Corollary 3.4.2, \(E(g_1, g_2; \Phi) \) is in \(A(H' \times H') \).

Now let us work over \(M_K \) and choose a regular model \(\mathcal{M}_K \) of it. We choose an arithmetic line bundle \(\hat{\omega}_K \) extending \(\mathcal{X}_K^\vee \). In particular, the metrics on \(\hat{\omega}_K \) at archimedean places are same as those on \(\mathcal{X}_K^\vee \).

Since the map \(p_{\mathcal{M}_K} \) (3.9) is surjective, we may fix an inverse linear map \(p_{\mathcal{M}_K}^{-1} \) and write

\[
\hat{\Theta}_\phi(g) := p_{\mathcal{M}_K}^{-1}(\Theta_\phi(g)) = ([Z_\phi(g)]_{Zar}, g_{i^*}) + (V_\phi(g), 0) - E(g, \phi) \hat{\omega}_K,
\]

where \(g_{i^*} \) is an \(\mathcal{X}_K \)-admissible Green function of \(Z_\phi(g) \), and \(V_\phi(g) \) is the sum of (finitely many) vertical components supported on special fibres. We also simply write

\[
\hat{Z}_\phi(g) = ([Z_\phi(g)]_{Zar}, g_{i^*}) + (V_\phi(g), 0).
\]
Then we have for $\phi_\alpha \in \mathcal{S}(\mathbb{V})^{U_K} \ (\alpha = 1, 2)$,

$$
\mathbb{E}(g_1, g_2; \phi_1 \otimes \phi_2) \\
= \text{Vol}(K) \langle \Theta_{\phi_1}(g_1), \Theta_{\phi_2}(g_2) \rangle^K_{\text{NT}} \\
= - \text{Vol}(K) \langle \tilde{\Theta}_{\phi_1}(g_1), \tilde{\Theta}_{\phi_2}(g_2) \rangle_{\text{GS}} \\
= - \text{Vol}(K) \langle \tilde{Z}_{\phi_1}(g_1) - E(g_1, \phi_1) \tilde{\omega}_K, \tilde{Z}_{\phi_2}(g_2) - E(g_2, \phi_2) \tilde{\omega}_K \rangle_{\text{GS}} \\
= - \text{Vol}(K) \langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{\text{GS}} + E(g_1, \phi_1) \text{Vol}(K) \langle \tilde{\omega}_K, \tilde{\Theta}_{\phi_2}(g_2) \rangle_{\text{GS}} \\
+ E(g_2, \phi_2) \text{Vol}(K) \langle \tilde{\Theta}_{\phi_1}(g_1), \tilde{\omega}_K \rangle_{\text{GS}} + E(g_1, \phi_1) E(g_2, \phi_2) \text{Vol}(K) \langle \tilde{\omega}_K, \tilde{\omega}_K \rangle_{\text{GS}},
$$

(3.12)

where the Gillet–Soulé parings are taken on the model M_K. By Corollary 3.4.2,

$$
A(g, \phi) := \text{Vol}(K) \langle \tilde{\omega}_K, \tilde{\Theta}(g) \rangle_{\text{GS}}
$$

is an automorphic form of H', which may depend on K and also the model M_K, since we do not require any canonicality of $p^{-1}_{M_K}$. Let $C = \text{Vol}(K) \langle \tilde{\omega}_K, \tilde{\omega}_K \rangle_{\text{GS}}$. Then

$$
(3.12) = - \text{Vol}(K) \langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{\text{GS}} \\
+ E(g_1, \phi_1) A(g_2, \phi_2) + A(g_1, \phi_1) E(g_2, \phi_2) + CE(g_1, \phi_1) E(g_2, \phi_2).
$$

(3.13)

We assume that ϕ_1 and ϕ_2 are decomposable, and $\phi_{1, v} \otimes \phi_{2, v} \in \mathcal{S}(\mathbb{V}^2_v)_{\text{reg}}$ for some $v \in \Sigma_{\text{fin}}$. Then $Z_{\phi_1}(g_1)$ and $Z_{\phi_2}(g_2)$ will not intersect on the generic fiber if $g_\alpha \in P(H'(A^\infty_F)) \ (\alpha = 1, 2)$. Then

$$
\langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{\text{GS}} = \sum_{v^o \in \Sigma^o} \langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{v^o},
$$

(3.14)

where the intersection $\langle - , - \rangle_{v^o}$ is taken on the local model $M_{K, v^o} := M_K \times_{\mathcal{O}_E} \mathcal{O}_{K, v}$ (resp. $M_{K, v^o}(\mathbb{C})$) if $v^o = p^o$ is finite (resp. if $v^o = \mathcal{O}^o$ is infinite). Combining (3.13) and (3.14), we have for such ϕ_α and $g_\alpha \ (\alpha = 1, 2)$,

$$
\mathbb{E}(g_1, g_2; \phi_1 \otimes \phi_2) = - \text{Vol}(K) \sum_{v^o \in \Sigma^o} \langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{v^o} \\
+ E(g_1, \phi_1) A(g_2, \phi_2) + A(g_1, \phi_1) E(g_2, \phi_2) + CE(g_1, \phi_1) E(g_2, \phi_2).
$$

(3.15)
Chapter 4

Comparison at infinite places

We compare local terms of analytic and arithmetic kernel functions at an archimedean place. Section 4.1 is dedicated to the computation on the analytic side. We calculate certain Whittaker integral and its derivative, following the method of G. Shimura. In 4.2, we introduce a local height function on the hermitian domain in terms of the Kudla–Millson form, and prove an important invariance property of such height. The actual comparison of the derivative of Whittaker integrals and the local height function is accomplished in 4.3.
4.1 Archimedean Whittaker integrals

In this section, we calculate the Whittaker integral $W_T(s,g,\Phi)$ and its derivative (at $s = 0$) at an archimedean place. In particular, we fix archimedean places $\iota: F \to \mathbb{C}$ and $\iota': E \to \mathbb{C}$ over ι that will be suppressed from notations. As in 2.1.2, we identify $H' = H'_\iota$ (resp. $H'' = H''_\iota$) with $\text{U}(n,n)_{\mathbb{R}}$ (resp. $\text{U}(2n,2n)_{\mathbb{R}}$). We have the parabolic subgroup $P = P_\iota$ of $H'' = \text{U}(2n,2n)_{\mathbb{R}}$ as in Notation 2.2.1. Moreover, we have the hermitian space $V = V_\iota$ of rank $2n$ over \mathbb{C}, which is the standard positive definite $2n$-dimensional complex hermitian space, and $\Phi_0 \in S(V^{2n})$ the Gaussian. We have also a character $\chi = \chi_\iota: \mathbb{C} \times \to \mathbb{C} \times$ that is trivial on $\mathbb{R} \times$. Therefore $\chi(z) = z^{2\ell}/(z\overline{z})^\ell$ for some integer ℓ.

4.1.1 Elementary reduction steps

We study the integral

$$W_T(s,g,\Phi^0) = \int_{\text{Her}_{2n}(\mathbb{C})} \varphi_{\Phi^0,s}(\text{wn}(u)g)\psi_T(n(u))^{-1}du$$

(4.1)

for $T \in \text{Her}_{2n}(\mathbb{C})$ and $\text{Re } s > n$, where $\text{w} = w_n$ and du is the selfdual measure with respect to the additive character $\psi(t) = \exp(2\pi it)$. We have the formula

$$\omega_\chi([k_1,k_2])\Phi^0 = (\det k_1)^{n+\ell}(\det k_2)^{-n+\ell}\Phi^0$$

for $[k_1,k_2] \in \mathcal{K}$ (cf. 2.1.2). Write $g = n(b)m(a)[k_1,k_2]$ under the Iwasawa decomposition. Then

$$(4.1) = \int_{\text{Her}_{2n}(\mathbb{C})} \left(\omega_\chi(\text{wn}(u)n(b)m(a)[k_1,k_2])\Phi^0 \right) (0)\lambda_P(\text{wn}(u)n(b)m(a)[k_1,k_2])^s\psi(-\text{tr } Tu)du$$

$$= \psi(\text{tr } Tb)(\det k_1)^{n+\ell}(\det k_2)^{-n+\ell}$$

$$\int_{\text{Her}_{2n}(\mathbb{C})} \left(\omega_\chi(\text{wn}(u)m(a))\Phi^0 \right) (0)\lambda_P(\text{wn}(u)m(a))^s\psi(-\text{tr } Tu)du.$$ \hspace{1cm} (4.2)

Since

$$\text{wn}(u)m(a) = \text{wm}(a)n(a^{-1}u^t\overline{a}^{-1}) = m(t^{\ell}\overline{a}^{-1})\text{wn}(a^{-1}u^t\overline{a}^{-1}),$$
changing variable $\text{det} a|_{\mathbb{C}}^{n} d(a^{-1} u^T a^{-1})$, we have

\[
(4.2) = \psi(\text{tr} T b) |\text{det} a|_{\mathbb{C}}^{n-s} \chi(\text{det} a)(\text{det} k_1)^{n+\ell}(\text{det} k_2)^{-n-\ell} \int_{\text{Her}_{2n}(\mathbb{C})} (\omega(x)(\text{det} u)|_{\mathbb{C}}^{m}(\text{det} k_1)^{n+\ell}(\text{det} k_2)^{-n-\ell} W_{\tau T}=1(s, e, \Phi^0). \quad (4.3)
\]

Therefore, we need to only study $W_T(s, e, \Phi^0)$. In what follows, we will not restrict ourselves to the case of even dimension. In other words, V will be the standard positive definite complex hermitian space of dimension $m > 0$. For $T \in \text{Her}_m(\mathbb{C})$, the Whittaker integral $W_T(s, e, \Phi^0)$ is absolutely convergent for $\text{Re } s > \frac{m}{2}$.

Lemma 4.1.1. For $u \in \text{Her}_m(\mathbb{C})$,

\[
(\omega(x)(\text{det} u)|_{\mathbb{C}}^{m}(\text{det} k_1)^{n+\ell}(\text{det} k_2)^{-n-\ell} W_{\tau T}=1(s, e, \Phi^0).
\]

where γ_V is the Weil constant.

Proof. By definition,

\[
\gamma_V^{-1} (\omega(x)(\text{det} u)|_{\mathbb{C}}^{m}(\text{det} k_1)^{n+\ell}(\text{det} k_2)^{-n-\ell} W_{\tau T}=1(s, e, \Phi^0) (0) = \int_{V_m} (\omega(x)(\text{det} u)|_{\mathbb{C}}^{m}(\text{det} k_1)^{n+\ell}(\text{det} k_2)^{-n-\ell} W_{\tau T}=1(s, e, \Phi^0) (x) dx = \int_{V_m} \psi(\text{tr} u T(x)) \Phi^0(x) dx. \quad (4.4)
\]

Write $u = k \text{diag}[u_1, \ldots, u_m]^T k$ with $u_j \in \mathbb{R}$ ($j = 1, \ldots, m$) and $k \in U(m) \mathbb{R}$. Then

\[
(4.4) = \int_{V_m} \psi(\text{tr} k \text{diag}[u_1, \ldots, u_m]^T k T(x) k k^{-1}) \Phi^0(x) dx
\]

\[
= \int_{V_m} \psi(\text{tr} \text{diag}[u_1, \ldots, u_m] T(x k)) \exp(-2 \pi \text{tr} T(x)) dx. \quad (4.5)
\]

Changing variable $x \mapsto x k$ and since $\text{tr} T(x) = \text{tr} T(x k)$, we have

\[
(4.5) = \int_{V_m} \exp(2 \pi i \text{tr} \text{diag}[u_1, \ldots, u_m] T(x) - 2 \pi \text{tr} T(x)) dx
\]

\[
= \prod_{j=1}^{m} \int_{V} \exp(2 \pi i u_j T(x_j) - 2 \pi T(x_j)) dx_j. \quad (4.6)
\]

Identifying V with \mathbb{C}^m such that (\cdot, \cdot) coincides with the standard hermitian form on \mathbb{C}^m, then the
selfdual measure dx_j on V is simply the usual Lebesgue measure dx on $\mathbb{C}^m \cong \mathbb{R}^{2m}$. Therefore,

$$\begin{align*}
(4.6) &= \prod_{j=1}^{m} \int_{\mathbb{R}^{2m}} \exp(-\pi(1-\text{i}u_j\|x\|^2))dx \\
&= \prod_{j=1}^{m} \left(\int_{-\infty}^{\infty} \exp(-\pi(1-\text{i}u_j)t^2)dt \right)^{2m} \\
&= \prod_{j=1}^{m} (1-iu_j)^{-m} = \det(1_m - iu)^{-m}.
\end{align*}$$

Therefore, the lemma follows. □

Lemma 4.1.2. For $u \in \text{Her}_m(\mathbb{C})$, $\lambda_p(\text{wn}(u)) = \det(1_m + u^2)^{-1}$.

Proof. We have the following identities

$$\text{wn}(u) \begin{pmatrix} i1_m \\ 1_m \end{pmatrix} = \begin{pmatrix} 1_m & u \\ -1_m & 1_m \end{pmatrix} \begin{pmatrix} i1_m \\ 1_m \end{pmatrix} = \begin{pmatrix} 1_m \\ -i1_m - u \end{pmatrix}.$$

Then,

$$1_m(-i1_m - u)^{-1} = -u(1_m + u^2)^{-1} + i(1_m + u^2)^{-1}.$$

Therefore, $\lambda_p(\text{wn}(u)) = \det(1_m + u^2)^{-1}$ that is a positive real number. □

Combining Lemmas 4.1.1 and 4.1.2, we have that for $\text{Re } s > \frac{m}{2}$,

$$\gamma_V^{-1}W_T(s, e, \Phi^0) = \int_{\text{Her}_m(\mathbb{C})} \psi(-\text{tr } Tu) \det(1_m + iu)^{-s} \det(1_m - iu)^{-s-m} du.$$

We proceed as in [Shi1982, Case II]. We introduce some new notations that may be different from those in [Shi1982]. Set

$$\text{Her}_m^+(\mathbb{C}) = \{ x \in \text{Her}_m(\mathbb{C}) \mid x > 0 \};$$

$$\mathfrak{h}_m = \{ x + iy \mid x \in \text{Her}_m(\mathbb{C}), y \in \text{Her}_m^+(\mathbb{C}) \};$$

$$\mathfrak{h}_m' = \{ x + iy \mid x \in \text{Her}_m^+(\mathbb{C}), y \in \text{Her}_m(\mathbb{C}) \}.$$

The following lemma is proved in [Shi1982, Section 1].

Lemma 4.1.3 (Siegel). We have
1. For \(z \in \mathfrak{h}'_m \) and \(\text{Re}\ s > m - 1 \), we have

\[
\int_{\text{Her}_m^+(\mathbb{C})} \exp(-\text{tr}\ zx)(\det x)^{s-m}dx = \Gamma_m(s)(\det z)^{-s},
\]

where \(dx \) is induced from the selfdual measure on \(\text{Her}_m(\mathbb{C}) \), and

\[
\Gamma_m(s) = (2\pi)^{\frac{m(m-1)}{2}} \prod_{j=0}^{m-1} \Gamma(s-j).
\]

2. For \(x \in \text{Her}_m(\mathbb{C}) \), \(b \in \text{Her}_m^+(\mathbb{C}) \) and \(\text{Re}\ s > 2m - 1 \), we have

\[
\Gamma_m(s) \int_{\text{Her}_m(\mathbb{C})} \exp(2\pi i \text{tr} ux)(\det x)^{-s}du = \begin{cases}
\exp(-\text{tr} xb)(\det x)^{s-m} & x \in \text{Her}_m^+(\mathbb{C}); \\
0 & \text{if not.}
\end{cases}
\]

By Lemma 4.1.3 (1), for \(\text{Re}\ s > m - 1 \),

\[
\gamma_{V^{-1}}^{-1}W_T(s, c, \Phi^0)
= \int_{\text{Her}_m(\mathbb{C})} \psi(-\text{tr} Tu) \frac{1}{\Gamma_m(s)} \int_{\text{Her}_m^+(\mathbb{C})} \exp(-\text{tr} (1_m + iu)x)(\det x)^{s-m} \det(1_m - iu)^{-s-m}dxdu
= \frac{1}{\Gamma_m(s)} \int_{\text{Her}_m^+(\mathbb{C})} \exp(-\text{tr} x)(\det x)^{s-m} \int_{\text{Her}_m(\mathbb{C})} \exp(-i \text{tr}(x + 2\pi T)u) \det(1_m - iu)^{-s-m}du dx.
\]

(4.7)

Applying Lemma 4.1.3 (2) to \((1_m, x + 2\pi, s + m)\), and changing variable \(u \mapsto -\frac{u}{2\pi} \), we have

\[
(4.7) = \frac{1}{\Gamma_m(s)} \int_{x > 0, x + 2\pi T > 0} \exp(-\text{tr} x)(\det x)^{s-m} \frac{(2\pi)^{m^2}}{\Gamma_m(s + m)} \exp(-\text{tr}(x + 2\pi T)) \det(x + 2\pi T)^{s}dx.
\]

(4.8)

In [Shi1982, (1.26)], the author introduced the function

\[
\eta(g, h; \alpha, \beta) = \int_{x > -h, x > h} \exp(-\text{tr} gx)(\det x + h)^{\alpha-m} \det(x - h)^{\beta-m}dx
\]
for $g \in \text{Her}_{m}^{+}(\mathbb{C})$, $h \in \text{Her}_{m}(\mathbb{C})$, and $\text{Re } \alpha \gg 0$, $\text{Re } \beta \gg 0$. Changing variable $x \mapsto \frac{x}{\pi} + T$, we have

$$
(4.8) = \frac{(2\pi)^{m^2} \pi^{2ms}}{\Gamma_{m}(s) \Gamma_{m}(s + m)} \int_{x > -T, x > T} \exp(-\text{tr } 2\pi x) \det(x + T)^{s} \det(x - T)^{s - m} \, dx
$$

$$
= \frac{(2\pi)^{m^2} \pi^{2ms}}{\Gamma_{m}(s) \Gamma_{m}(s + m)} \eta(2\pi 1_{m}, T; s + m, s).
$$

In what follows, we assume that T is nonsingular with sign $T = (p, q)$ for $p + q = m$. Write

$$
T = k \text{diag}[t_{1}, \ldots, t_{p}, -t_{p+1}, \ldots, -t_{m}]^\top k
$$

with $k \in U(m)_{\mathbb{R}}$ and $t_{j} \in \mathbb{R}_{>0}$. Let $a = k \text{diag}\left[\sqrt{t_{1}}, \ldots, \sqrt{t_{m}}\right]$. Then $T = a \varepsilon_{p,q}^\top \bar{\alpha}$, where

$$
\varepsilon_{p,q} = \begin{pmatrix}
1_{p} \\
-1_{q}
\end{pmatrix}.
$$

It is easy to see that

$$
\eta(g, T; \alpha, \beta) = |\det T|^{\alpha + \beta - m} \eta(a^* ga, \varepsilon_{p,q}; \alpha, \beta);
$$

$$
\eta(g, \varepsilon_{p,q}; \alpha, \beta) = 2^{m(\alpha + \beta - m)} \exp(-\text{tr } g) \zeta_{p,q}(2g; \alpha, \beta).
$$

We recall the definition of $\zeta_{p,q}(g; \alpha, \beta)$ introduced in [Shi1982, (4.16)]. Let

$$
\varepsilon_{p} = \begin{pmatrix}
1_{p} \\
0_{q}
\end{pmatrix}; \quad \varepsilon'_{q} = \begin{pmatrix}
0_{p} \\
1_{q}
\end{pmatrix}.
$$

Then for $g \in \text{Her}_{m}^{+}(\mathbb{C})$, and $\text{Re } \alpha \gg 0$, $\text{Re } \beta \gg 0$,

$$
\zeta_{p,q}(g; \alpha, \beta) = \int_{X_{p,q}} \exp(-\text{tr } gx) \det(x + \varepsilon_{p})^{\alpha - m} \det(x + \varepsilon'_{q})^{\beta - m} \, dx,
$$

where

$$
X_{p,q} := \{ x \in \text{Her}_{m}(\mathbb{C}) \mid x + \varepsilon_{p} > 0, x + \varepsilon'_{q} > 0 \}
$$

with the measure induced from the selfdual one on $\text{Her}_{m}(\mathbb{C})$. In particular, $X_{m,0} = \text{Her}_{m}^{+}(\mathbb{C})$.

4.1.2 Analytic continuation

Following [Shi1982, (4.17)], we set

\[\omega_{p,q}(g; \alpha, \beta) = \Gamma_q(\alpha - p)^{-1} \Gamma_p(\beta - q)^{-1} (\det^+ \varepsilon_{p,q} g)^{\beta - q/2} (\det^- \varepsilon_{p,q} g)^{\alpha - p/2} \zeta_{p,q}(g; \alpha, \beta), \]

where for a nonsingular element \(h \in \mathrm{Her}_m(\mathbb{C}) \), \(\det^+ h \) (resp. \(\det^- h \)) is the absolute value of the product of all positive (resp. negative) (real) eigenvalues of \(h \) if they exist; 1 otherwise. It is proved in [Shi1982, Section 4] that \(\omega_{p,q}(g; \alpha, \beta) \) has a holomorphic continuation in \((\alpha, \beta)\) to the whole \(\mathbb{C}^2 \), and satisfies the following functional equation

\[\omega_{p,q}(g; m - \beta, m - \alpha) = \omega_{p,q}(g; \alpha, \beta). \]

Lemma 4.1.4. If \(p = m \) and \(q = 0 \), then \(\omega_{m,0}(g; m, \beta) = \omega_{m,0}(g; \alpha, 0) = 1. \)

Proof. The integral

\[\zeta_{m,0}(g; m, \beta) = \int_{\mathrm{Her}_m^+(\mathbb{C})} \exp(-\text{tr} \, gx)(\det x)^{\beta - m} \, dx \]

is absolutely convergent for \(\text{Re} \, \beta > m - 1 \), and equal to \(\Gamma_m(\beta)(\det g)^{-\beta} \) by Lemma 4.1.3 (1). Therefore, \(\omega_{m,0}(g; m, \beta) = 1 \), which confirms the lemma by the functional equation. \(\square \)

Proposition 4.1.5. Suppose \(T \in \mathrm{Her}_m(\mathbb{C}) \) is nonsingular with sign \(T = (p, q) \). Then

1. \(\text{ord}_{s=0} W_T(s, e, \Phi^0) \geq q; \) and

2. If \(T \) is positive definite, i.e., \(p = m \) and \(q = 0 \), then

\[W_T(0, e, \Phi^0) = \gamma V (2\pi)^{m^2} \Gamma_m(s) \exp(-2\pi \text{tr} \, T). \]

Proof. 1. Combining (4.9), (4.10), (4.11) and (4.12), we have

\[\gamma V^{-1} W_T(s, e, \Phi^0) = \frac{\Gamma_q(m + s - p)\Gamma_p(s - q)}{\Gamma_m(s)\Gamma_m(s + m)} (2\pi)^{m^2 + 2ms} \det T^{2s} \exp(-2\pi \text{tr} \, T) \]

\[\approx (\det^+ 4\pi T)^{q/2 - s} (\det^- 4\pi T)^{p/2 - m - s} \omega_{p,q}(4\pi \text{tr} \, T; m + s, s). \]

All terms except the Gamma factors, are holomorphic for all \(s \in \mathbb{C} \). Since

\[\frac{\Gamma_q(m + s - p)\Gamma_p(s - q)}{\Gamma_m(s)\Gamma_m(s + m)} = \frac{(2\pi)^{-pq} m^{(m-1)}}{\Gamma(s) \cdots \Gamma(s - q + 1) \times \Gamma(s + m) \cdots \Gamma(s + m - p + 1)}, \]
we have
\[\text{ord}_{s=0} W_T(s, e, \Phi^0) \geq -\text{ord}_{s=0} \Gamma(s) \cdots \Gamma(s - q + 1) = q. \]

2. If \(T \) is positive definite, then \(\text{tr}^t \sigma a = \text{tr} T \). By (4.13) and Lemma 4.1.4, we have
\[\gamma_{v-1} W_T(0, e, \Phi^0) = \frac{(2\pi)^m}{\Gamma_m(m)} \exp(-2\pi \text{tr} T) \omega_{m,0}(4\pi^t \sigma a; m, 0) = \frac{(2\pi)^m}{\Gamma_m(m)} \exp(-2\pi \text{tr} T). \]

\[\square \]

4.1.3 First-order derivatives

By Proposition 4.1.5 (1), the \(T \)-th coefficient will not contribute to the analytic kernel function \(E'(0, g, \Phi) \) if \(\text{sign} T = (p, q) \) with \(q \geq 2 \). Therefore, we focus on the case where \(q = 1 \), and study the functions \(\zeta_{m-1,1}(g; \alpha, \beta) \) and \(\omega_{m-1,1}(g; \alpha, \beta) \).

We assume that
\[g = \begin{pmatrix} a \\ b \end{pmatrix}, \quad a \in \text{Her}_{m-1}(\mathbb{C}), b \in \mathbb{R}_{>0}. \]

We write elements in \(X_{m-1,1} \) in the following form
\[\begin{pmatrix} x & z \\ t \bar{z} & y \end{pmatrix}, \quad x \in \text{Her}_{m-1}(\mathbb{C}), y \in \mathbb{R}, z \in \text{Mat}_{m-1,1}(\mathbb{C}). \]

Then by [Shi1982, Page 288],
\[X_{m-1,1} = \{(x, y, z) \mid x > 0, y > 0, x + 1_{m-1} > zy^{-1} t \bar{z}, y + 1 > t \bar{z}x^{-1}z\} \]
\[= \{(x, y, z) \mid x + 1_{m-1} > 0, y + 1 > 0, x > z(y + 1)^{-1} t \bar{z}, y > t \bar{z}(x + 1_{m-1})^{-1}z\}. \]

We have
\[\zeta_{m-1,1}(g; \alpha, \beta) = \int_{X_{m-1,1}} \exp(-\text{tr} ax - by) \det \begin{pmatrix} x + 1_{m-1} & z \\ t \bar{z} & z \end{pmatrix}^{\alpha-m} \det \begin{pmatrix} x & z \\ t \bar{z} & y + 1 \end{pmatrix}^{\beta-m} \, dx dy dz, \]

where we apply the selfdual measure \(dx \) on \(\text{Her}_{m-1}(\mathbb{C}) \), the Lebesgue measure \(dy \) on \(\mathbb{R} \), and the measure \(dz \) that is \(2^{m-1} \) times the Lebesgue measure on \(\text{Mat}_{m-1,1}(\mathbb{C}) \). We make change of variables

\[^1\text{Two letters} g \text{ appearing here stand for different meanings.} \]
as in [Shi1982, Page 289] as follows. Put

\[f = (x + 1^{m-1})^{-1/2} z(y + 1)^{-1/2}. \]

Then \(1^{m-1} - f^> > 0. \) Put

\[r = (1 - f^>)^{1/2}; \quad s = (1^{m-1} - f^>)^{1/2}; \quad w = s^{-1} f = fr^{-1}; \quad u = x - w^t \bar{w}; \quad v = y - w^t \bar{w}. \]

Then the map \((x, y, z) \mapsto (u, v, w)\) maps \(X \) bijectively onto \(Y = \text{Her}_{m-1}(\mathbb{C}) \times \mathbb{R} \times \text{Mat}_{m-1,1}(\mathbb{C}), \) and the Jacobian

\[\frac{\partial (x, y, z)}{\partial (u, v, w)} = \det(1^{m-1} + x)(1 + y)^{m-1}(1 + w^t \bar{w})^{-m} \]

for the measure \(\partial (u, v, w) \) on \(Y \) induced from that on \(\text{Her}_{m-1}(\mathbb{C}) \times \mathbb{R} \times \text{Mat}_{m-1,1}(\mathbb{C}) \) as an open subset. Since

\[
\begin{align*}
\det \begin{pmatrix} x + 1^{m-1} & z \\ \bar{w} & y \end{pmatrix} &= \det(u + 1^{m-1} + w^t \bar{w})v \det(1^{m-1}w^t \bar{w})^{-1}; \\
\det \begin{pmatrix} x & z \\ \bar{w} & y + 1 \end{pmatrix} &= (v + 1 + w^t \bar{w})(\det u) \det(1^{m-1}w^t \bar{w})^{-1},
\end{align*}
\]

we obtain, on the one hand, that

\[
(4.14) = \int_Y \exp \left(- \text{tr}(au + aw^t \bar{w}) - (bv + b^t \bar{w}w) \right) \det(1^{m-1} + w^t \bar{w})^{m-\alpha-\beta} \\
\det(u + 1^{m-1} + w^t \bar{w})^{\alpha-m+1}(\det u)^{\beta-m}(v + 1 + w^t \bar{w})^{\beta-1}v^{\alpha-m} dudwdw \\
= \int_{\text{Mat}_{m-1,1}(\mathbb{C})} \exp(- \text{tr} aw^t \bar{w} - b^t \bar{w}w)\zeta_{1,0}(b(1 + w^t \bar{w}); \beta, \alpha - m + 1) \\
\int_{\text{Her}_{m-1}(\mathbb{C})} \exp(- \text{tr} au) \det(u + 1^{m-1} + w^t \bar{w})^{\alpha-m}(\det u)^{\beta-m} dudw. \quad (4.15)
\]

By (4.10), (4.11) and (4.12), we have, on the other hand, that

\[
\gamma_V^{-1} W_T(s, \epsilon, \Phi^b) = \frac{(2\pi)^{m^2+2m^{s}} |\det T|^{2s}}{\Gamma_m(s)\Gamma_m(s+m)} \exp(-2\pi \text{tr}^t \bar{a}a)\zeta_{m-1,1}(4\pi^t \bar{a}a; m+s, s). \quad (4.16)
\]

Assume that \(T = k \text{ diag}[a_1, \ldots, a_{m-1}, -b]^t \bar{k} \) with \(a_1, \ldots, a_{m-1}, b \in \mathbb{R}^{>0} \) and \(k \in U(m)_{\mathbb{R}}. \) Then
\(t^\alpha \) = \{a_1, \ldots, a_{m-1}, b\}. By (4.16) and (4.13),

\[
\gamma_V^{-1} W^\alpha_{\nu}(0, e, \Phi^0) = \frac{(2\pi)^m}{s \Gamma_m(s) \Gamma_m(m)} \exp(-2\pi(a_1 + \cdots + a_{m-1} + b)) \zeta_{m-1,1}(4\pi \text{ diag}[a_1, \ldots, a_{m-1}, b]; m, s). (4.17)
\]

Plugging (4.15) with \((\alpha, \beta) = (m, s)\),

\[
(4.17) = \lim_{s \to 0} \frac{2^{m-1}(2\pi)^m}{s \Gamma_m(s) \Gamma_m(m)} \exp(-2\pi(a_1 + \cdots + a_{m-1} + b)) \int_C^{m-1} \exp(-4\pi [(a_1 + a_m)w_1w_1 + \cdots + (a_{m-1} + a_m)w_{m-1}w_{m-1}]) \zeta_{1,0}(4\pi b(1 + t^\mu w); 0, 1) \int_{\text{Her}_{m-1}^+(C)} \exp(-4\pi \text{ tr diag}[a_1, \ldots, a_{m-1}]u) \det(u + 1_{m-1} + w^\mu)(\det u)^{s-m} du dw_1 \cdots dw_{m-1}. (4.18)
\]

It is easy to see that

\[
\zeta_{1,0}(4\pi b(1 + t^\mu w); 0, 1) = - \exp(4\pi b(1 + t^\mu w)) \text{Ei}(-4\pi b(1 + t^\mu w)), (4.19)
\]

where \(\text{Ei} \) is the exponential integral

\[
\text{Ei}(z) = - \int_1^\infty \frac{\exp(zt)}{t} \, dt.
\]

We evaluate the inside integral, \(i.e., \) the one over \(\text{Her}_{m-1}^+(C) \). Temporarily let \(g_0 = 4\pi \text{ diag}[a_1, \ldots, a_{m-1}] \), and consider the integral

\[
\int_{\text{Her}_{m-1}^+(C)} \exp(- \text{ tr } g_0) \det(u + 1_{m-1} + w^\mu)(\det u)^{s-m} du. (4.20)
\]

Define a differential operator

\[
\Delta = \det \left(\frac{\partial}{\partial g_{jk}} \right)_{j,k=1}^{m-1}.
\]

Then

\[
\Delta \exp(- \text{ tr } u g) = (-1)^{m-1}(\det u) \exp(- \text{ tr } u g).
\]
Therefore,

\[
(4.20) = \exp \left(\text{tr}(1_m - 1 + w^t \overline{w}) g_0 \right)
\]
\[
\int_{\text{Her}^+_{m-1}(C)} \exp \left(- \text{tr}(u + 1_m - 1 + w^t \overline{w}) g_0 \right) \det(u + 1_m - 1 + w^t \overline{w}) (\det x)^{s-m} du
\]
\[
= (-1)^{m-1} \exp \left(\text{tr}(1_m - 1 + w^t \overline{w}) g_0 \right)
\]
\[
\int_{\text{Her}^+_{m-1}(C)} \Delta |_{g=g_0} \exp \left(- \text{tr}(u + 1_m - 1 + w^t \overline{w}) g \right) (\det x)^{s-m} du.
\]

(4.21)

We exchange \(\Delta \) and the integration by analytic continuation. Then

\[
(4.21) = (-1)^{m-1} \exp \left(\text{tr}(1_m - 1 + w^t \overline{w}) g_0 \right)
\]
\[
\Delta |_{g=g_0} \int_{\text{Her}^+_{m-1}(C)} \exp \left(- \text{tr}(u + 1_m - 1 + w^t \overline{w}) g \right) (\det x)^{s-m} du
\]
\[
= (-1)^{m-1} \exp \left(\text{tr}(1_m - 1 + w^t \overline{w}) g_0 \right) \Delta |_{g=g_0} \left(\exp \left(- \text{tr}(1_m - 1 + w^t \overline{w}) g \right) \zeta_{m-1}(g; m-1, s-1) \right)
\]
\[
= (-1)^{m-1} \Gamma_{m-1}(s-1) \exp \left(\text{tr}(1_m - 1 + w^t \overline{w}) g_0 \right) \Delta |_{g=g_0} \left(\exp \left(- \text{tr}(1_m - 1 + w^t \overline{w}) g \right) (\det g)^{1-s} \right).
\]

(4.22)

Plugging (4.19) and (4.22) into (4.18), we obtain

\[
(4.18) = \lim_{s \to 0} \frac{\Gamma_{m-1}(s-1)(-2)^{m-1}(2\pi)^{m^2}}{sG_m(s)\Gamma_m(m)} \exp(-2\pi \text{ tr } T)
\]
\[
\int_{C_{m-1}} \exp(-4\pi(a_1w_1\overline{w_1} + \cdots + a_{m-1}w_{m-1}\overline{w_{m-1}}))
\]
\[
\exp \left(\text{tr}(1_m - 1 + w^t \overline{w}) g_0 \right) \Delta |_{g=g_0} \left(\exp \left(- \text{tr}(1_m - 1 + w^t \overline{w}) g \right) (\det g)^{1-s} \right)
\]
\[
(-E_i) (-4\pi b(1 + t\overline{w})) \, dw_1 \cdots dw_{m-1}
\]
\[
= \frac{(2\pi)^{m^2}(-2)^{m-1}}{\Gamma_m(m)(2\pi)^{m-1}} \exp(-2\pi \text{ tr } T) \int_{C_{m-1}} \exp(-4\pi(a_1w_1\overline{w_1} + \cdots + a_{m-1}w_{m-1}\overline{w_{m-1}}))
\]
\[
\exp \left(\text{tr}(1_m - 1 + w^t \overline{w}) g_0 \right) \Delta |_{g=g_0} \left(\exp \left(- \text{tr}(1_m - 1 + w^t \overline{w}) g \right) (\det g) \right)
\]
\[
(-E_i) (-4\pi b(1 + t\overline{w})) \, dw_1 \cdots dw_{m-1}.
\]

(4.23)

To compare with the local height later, we make a change of variables. Let

\[
D_{m-1} = \{ z = (z_1, \ldots, z_{m-1}) \in C^{m-1} \mid z \overline{z} := z_1 \overline{z_1} + \cdots + z_{m-1} \overline{z_{m-1}} < 1 \}
\]
be the open unit disc in \(\mathbb{C}^{m-1} \). Then the map

\[
w_j = \frac{z_j}{(1 - z \bar{z})^{1/2}}, \quad j = 1, \ldots, m - 1
\]

is a homeomorphism from \(\mathbb{C}^{m-1} \) to \(D_{m-1} \) as real manifolds. To calculate the Jacobian, let \(w_j = u_j + v_j i \) and \(z_j = x_j + y_j i \) be the corresponding real and imaginary parts. Then

\[
\frac{\partial u_j}{\partial x_k} = \frac{x_j x_k}{(1 - z \bar{z})^{3/2}}, \quad k \neq j;
\]
\[
\frac{\partial u_j}{\partial x_j} = \frac{x_j^2}{(1 - z \bar{z})^{3/2}} + \frac{1}{(1 - z \bar{z})^{1/2}};
\]
\[
\frac{\partial u_j}{\partial y_k} = \frac{x_j y_k}{(1 - z \bar{z})^{3/2}};
\]
\[
\frac{\partial v_j}{\partial y_k} = \frac{y_j y_k}{(1 - z \bar{z})^{3/2}}, \quad k \neq j;
\]
\[
\frac{\partial v_j}{\partial y_j} = \frac{y_j^2}{(1 - z \bar{z})^{3/2}} + \frac{1}{(1 - z \bar{z})^{1/2}};
\]
\[
\frac{\partial v_j}{\partial x_k} = \frac{y_j x_k}{(1 - z \bar{z})^{3/2}}.
\]

In Lemma 4.1.6 below, we let \(n = 2m + 2, \epsilon = 1 - z \bar{z} \) and \(c = (c_1, \ldots, c_{2m-2}) \) with \(c_j = x_j, c_{m+1-j} = y_j \) for \(j = 1, \ldots, m - 1 \). Then

\[
\begin{align*}
\frac{\partial (u_1, v_1, \ldots, u_{m-1}, v_{m-1})}{\partial (x_1, y_1, \ldots, x_{m-1}, y_{m-1})} &= \frac{\partial (u_1, \ldots, u_{m-1}; v_1, \ldots, v_{m-1})}{\partial (x_1, \ldots, x_{m-1}; y_1, \ldots, y_{m-1})} \\
&= (1 - z \bar{z})^{-3(m-1)} \det ((1 - z \bar{z}) 1_{2m-2} + c^t c) \\
&= (1 - z \bar{z})^{-3(m-1)} (1 - z \bar{z})^{2m-3} (1 - z \bar{z} + x_1^2 + \cdots + x_{m-1}^2 + y_1^2 + \cdots + y_{m-1}^2) \\
&= (1 - z \bar{z})^{-m}.
\end{align*}
\]

\[\tag{4.25}\]

Lemma 4.1.6. Let \(c \in \text{Mat}_{n \times 1}(\mathbb{C}) \). Then

1. \(\det (1_n + c^t \bar{c}) = 1 + t^* c; \)

2. For \(\epsilon > 0 \), \(\det (\epsilon 1_n + c^t \bar{c}) = \epsilon^{n-1} (\epsilon + t^* c) \).

Proof. 1. It is [Shi1982, Lemma 2.2]. Since it is not difficult, we will give a proof here for completeness, following Shimura. We claim that \(\det (1_n + sc^t \bar{c}) = 1 + s^* c \) for all \(c \in \mathbb{R} \). Since they
are both polynomials in \(s \), we need only to prove for \(s < 0 \). We have

\[
\begin{pmatrix}
1 & \sqrt{-sc} \\
1 & \sqrt{-s'tc}
\end{pmatrix}
\begin{pmatrix}
1 & \sqrt{-sc} \\
1 & \sqrt{-s'tc}
\end{pmatrix} =
\begin{pmatrix}
1 + sc'tc \\
1 + s'tc
\end{pmatrix},
\]

and

\[
\begin{pmatrix}
1 & \sqrt{-sc} \\
1 & \sqrt{-s'tc}
\end{pmatrix}
\begin{pmatrix}
1 & \sqrt{-sc} \\
1 & \sqrt{-s'tc}
\end{pmatrix} =
\begin{pmatrix}
1 \\
1
\end{pmatrix}.
\]

Therefore, \(\det \left(1 + sc'tc \right) = 1 + s'tc \).

2. It follows from (1) immediately.

Now we write the Lebesgue measure \(dz_1 \cdots dz_{m-1} \) in the differential form of degree \((m - 1, m - 1)\) on \(D_{m-1} \) that is

\[
dz_1 \cdots dz_{m-1} = \frac{1}{(-2)^{m-1}} \Omega,
\]

where

\[
\Omega = \bigwedge_{j=1}^{m-1} (dz_j \wedge d\overline{z}) .
\] (4.26)

Here, we view \(dz_j \) as a \((1,0)\)-form, not the Lebesgue measure. By (4.25), we have

\[
(4.23) = \frac{(2\pi)^m}{\Gamma_m(m)(2\pi i)^{m-1}} \exp \left(-2\pi \text{tr} T \int_{D_{m-1}} \exp \left(-4\pi (a_1 w_1 \overline{w_1} + \cdots + a_{m-1} w_{m-1} \overline{w_{m-1}}) \right) \right) \Omega,
\]

\[
\exp \left(\text{tr} (1_{m-1} + w^t \overline{w}) g_0 \right) \Delta \big|_{g=g_0} \left(\exp \left(- \text{tr} \left(1_{m-1} + w^t \overline{w} \right) g \right) \right) \left(- \text{Ei} \right) \left(-4\pi b (1 + t^w) \right) \Omega,
\] (4.27)

where \(w_j \) are as in (4.24). The final step is accomplished by the following lemma.

Lemma 4.1.7. For \(g_0 = 4\pi \text{ diag}[a_1, \ldots, a_{m-1}] \),

\[
\Delta \big|_{g=g_0} \left(\exp \left(- \text{tr} \left(1_{m-1} + w^t \overline{w} \right) g \right) \right) = \exp \left(- \text{tr} \left(1_{m-1} + w^t \overline{w} \right) g \right)
\]

\[
= \sum_{1 \leq s_1 < \cdots < s_t \leq m-1} (-4\pi)^t (m-1-t)! (a_{s_1} \cdots a_{s_t}) \left(1 + w_{s_1} \overline{w_{s_1}} + \cdots + w_{s_t} \overline{w_{s_t}} \right),
\]
where the sum is taken over all subsets of \(\{1, \ldots, m-1\} \).

Proof. Let

\[
\Delta = \sum_{\sigma \in \mathcal{S}_{m-1}} \epsilon_{\sigma} \cdot \exp(\text{tr } g_{\sigma}) = \exp(\text{tr } g_{0}) \sum_{\sigma \in \mathcal{S}_{m-1}} (-1)^{|\sigma|} \sum_{1 \leq j_1 < \cdots < j_t \leq m-1} \epsilon_{\{j_1, \ldots, j_t\}}(\sigma) u_{\sigma(s_{m-1-t}, s_{m-1-t})} \cdots u_{\sigma(s_1, s_1)} \exp(\text{tr } g_{\sigma}) \exp(\text{tr } g_{\sigma(s_{m-1-t})}) \cdots \exp(\text{tr } g_{\sigma(s_1, s_1)}) \quad .
\]

By induction, we have

\[
\Delta = \exp(\text{tr } g_{0}) \cdot \sum_{1 \leq j_1 < \cdots < j_t \leq m-1} \epsilon_{\{j_1, \ldots, j_t\}}(\sigma) u_{\sigma(s_{m-1-t}, s_{m-1-t})} \cdots u_{\sigma(s_1, s_1)} \exp(\text{tr } g_{\sigma}) \exp(\text{tr } g_{\sigma(s_{m-1-t})}) \cdots \exp(\text{tr } g_{\sigma(s_1, s_1)}) \quad .
\]
Changing the order of summation, since g_0 is diagonal, we have

$$
\Delta |_{g=g_0} \left(\exp(\text{tr } ug) | g \right) = \exp(\text{tr } u g_0) \sum_{J=\{j_1<\cdots<j_t\}} \sum_{\sigma(J)=J} (-1)^{\sigma'} (-1)^{\sigma J} u_{\sigma(s_m-1-t),s_m-1-t} \cdots u_{\sigma(s_1),s_1} \left| g_0^{J,J} \right|
$$

$$
= \exp(\text{tr } u g_0) \sum_{J=\{j_1<\cdots<j_t\}} t! \left| g_0^{J,J} \right| \sum_{\sigma',J'=J} (-1)^{\sigma'} u_{\sigma(s_m-1-t),s_m-1-t} \cdots u_{\sigma(s_1),s_1} \left| u_{J,J'} \right|
$$

$$
= \exp(\text{tr } u g_0) \sum_{J=\{j_1<\cdots<j_t\}} \left| g_0^{J,J} \right| \left| u_{J,J} \right|
$$

$$
= \exp(\text{tr } u g_0) \sum_{J'=\{s_1<\cdots<s_t\}} (m-1-t)! \left| (g_0)_{J',J} \right| \left| u_{J',J} \right|.
$$

The lemma follows by Lemma 4.1.6 (1). \qed

In conclusion, combining (4.27), we obtain the following proposition.

Proposition 4.1.8. For $T = k \text{ diag}[a_1, \ldots, a_{m-1}, -b]^{-1} k$ of signature $(m-1,1)$ as above, we have

$$
W_T'(0, \epsilon, \Phi^0) = \gamma_V \frac{(2\pi)^m}{\Gamma(m)(2\pi)^m} \exp(-2\pi \text{ tr } T) \int_{D_{m-1}} \exp \left(-4\pi (a_1 w_1 \overline{w_1} + \cdots + a_{m-1} w_{m-1} \overline{w_{m-1}}) \right) \sum_{1 \leq s_1 < \cdots < s_t \leq m-1} (-4\pi)^t (m-1-t)! (a_{s_1} \cdots a_{s_t}) (1 + w_{s_1} \overline{w_{s_1}} + \cdots + w_{s_t} \overline{w_{s_t}})
$$

$$
(- \text{Ei}) (-4\pi b(1 + w^* w)) (1 - z\pi)^{-m} \Omega,
$$

where w_j are functions in z as in (4.24), and Ω (4.26) is the volume form in z.

4.2 Archimedean local height

In this section, we introduce a notion of height on the symmetric domain that will eventually contribute to the local height pairing at an archimedean place. We also prove some properties of such height. A basic reference for archimedean Green currents and height paring is [Sou1992, Chapter II]. We keep the notations in 4.1. We fix an integer $m \geq 2$.
4.2.1 Green currents

Let $V' \simeq \mathbb{C}^m$ be the complex hermitian space with the form

$$(z', z) = z_1 \bar{z}_1 + \cdots + z_{m-1} \bar{z}_{m-1} - z_m \bar{z}_m; \quad z = (z_1, \ldots, z_m), z' = (z'_1, \ldots, z'_m) \in \mathbb{C}^m. $$

In particular, the signature of V' is $(m-1, 1)$. The symmetric hermitian domain D of $U(V')$, introduced in 3.1.1, can be identified with the $(m-1)$-dimensional open complex unit disc D_{m-1} via the map

$$ z = (z_1, \ldots, z_m) \mapsto \left(\frac{z_1}{z_m}, \ldots, \frac{z_{m-1}}{z_m} \right) \in D_{m-1}. $$

In what follows, we will not distinguished between D and D_{m-1}.

Given any $x \in V'$ with nonsingular moment matrix $T(x)$, let D_x be the subspace of D_{m-1} consisting of lines perpendicular to all components in x. Then D_x is nonempty if and only if $T(x)$ is positive definite. Suppose $r = 1$, for $z \in D_{m-1}$, let $x = x_z + x^z$ be the orthogonal decomposition with respect to the line z, i.e., $x_z \in z$ and $x^z \perp z$. Let $R(x, z) = -(x_z, x_z)$ that is nonnegative since z is negative definite, and $R(x, z) = 0$ if and only if $x = 0$ or $z \in D_x$. Explicitly, let $x = (x_1, \ldots, x_m) \in V'$, $z = (z_1, \ldots, z_{m-1}) \in D_{m-1}$. Then

$$ R(x, z) = \frac{(x_1 \bar{z}_1 + \cdots + x_{m-1} \bar{z}_{m-1} - x_m)(x_1 z_1 + \cdots + x_{m-1} z_{m-1} - x_m)}{1 - z \bar{z}}, $$

where we recall that $z \bar{z} = z_1 \bar{z}_1 + \cdots + z_{m-1} \bar{z}_{m-1}$. We define

$$ \xi(x, z) = -\text{Ei}(-2\pi R(x, z)). $$

For each nonzero element $x \in V'$, $\xi(x, \bullet)$ is a smooth function on $D_{m-1} - D_x$, and has logarithmic growth along D_x if not empty. Therefore, we can view it as a current $[\xi(x)] = [\xi(x, \bullet)]$ on D_{m-1}.

We recall the Kudla–Millson form $\varphi \in \mathcal{S}(V'') \otimes A^{r-\nu}(D_{m-1}))^{U(V')} (1 \leq r \leq m - 1)$ constructed in [KM1986], and let

$$ \omega(x) = \omega(x, \bullet) = \exp(2\pi \text{ tr } T(x)) \varphi(x, \bullet). $$

We have the following proposition.

Proposition 4.2.1. Let $x \in V'$ be a nonzero elements. Then we have

$$ \text{dd}^c [\xi(x)] + \delta_{D_x} = [\omega(x)] $$
We will only give a proof for \(m = 2 \), and the proof for general \(m \) is similar but involves tedious computations.

Proof. We start from showing that \(\ddc \xi(x) = \omega(x) \) holds away from \(D_x \). Let \(x = (x_1, x_2) \) and \(z \in D_1 - D_x \). Sometimes we simply write \(R \) instead of \(R(x) \) for short. Then we have the formula

\[
\ddc \xi(x) = \frac{1}{2\pi i} \left(\frac{\exp(-2\pi R)}{R^2} (R\partial \bar{\partial} R - \partial R \wedge \bar{\partial} R) - 2\pi \frac{\exp(-2\pi R)}{R} \partial R \wedge \bar{\partial} R \right). \tag{4.28}
\]

Computing each term, we have

\[
R(x, z) = \frac{(x_1 \bar{z} - x_2)(\bar{x}_1 \bar{z} - \bar{x}_2)}{1 - z \bar{z}};
\]
\[
\partial R = \frac{x_1 (\bar{x}_1 z - \bar{x}_2) (1 - z \bar{z}) + (x_1 \bar{z} - x_2) (\bar{x}_1 \bar{z} - \bar{x}_2) z d\bar{z}}{(1 - z \bar{z})^2};
\]
\[
\bar{\partial} R = \frac{x_1 (x_1 \bar{z} - x_2) (1 - z \bar{z}) + (x_1 \bar{z} - x_2) (\bar{x}_1 \bar{z} - \bar{x}_2) \bar{z} dz}{(1 - z \bar{z})^2};
\]
\[
\partial \bar{\partial} R = \left(\frac{x_1 x_1 + x_1 \bar{z} (x_1 \bar{z} - \bar{x}_2) + (x_1 \bar{z} - x_2) (2 \bar{x}_1 \bar{z} - \bar{x}_2) + 2R \bar{x} z}{(1 - z \bar{z})^2} \right) dz \wedge d\bar{z};
\]
\[
\partial R \wedge \bar{\partial} R = \left(\frac{x_1 x_1 + x_1 \bar{z} (x_1 \bar{z} - \bar{x}_2) + x_1 \bar{z} (\bar{x}_1 \bar{z} - \bar{x}_2) + R \bar{x} z}{(1 - z \bar{z})^2} \right) dz \wedge d\bar{z}.
\]

Therefore,

\[
R \partial \bar{\partial} R - \partial R \wedge \bar{\partial} R = \left(\frac{(x_1 x_2) (\bar{x}_1 \bar{z} - \bar{x}_2) R}{(1 - z \bar{z})^2} - \frac{R^2 \bar{x} z}{(1 - z \bar{z})^2} \right) dz \wedge d\bar{z} = R^2 \frac{dz \wedge d\bar{z}}{(1 - z \bar{z})^2}, \tag{4.29}
\]

and

\[
\partial R \wedge \bar{\partial} R = \left(x_1 \bar{x}_1 (1 - z \bar{z}) + x_1 \bar{z} (x_1 \bar{z} - x_2) + x_1 \bar{z} (\bar{x}_1 \bar{z} - \bar{x}_2) + R \bar{x} z \right) \frac{R dz \wedge d\bar{z}}{(1 - z \bar{z})^2}
\]
\[
= \left(x_1 \bar{x}_1 + x_1 \bar{z} x_2 + x_1 \bar{z} x_2 + x_1 \bar{x}_1 \bar{z} \right) \frac{R dz \wedge d\bar{z}}{(1 - z \bar{z})^2}
\]
\[
= \left((x, x) + (\bar{x}_1 \bar{z} - \bar{x}_2) (x_1 \bar{z} - x_2) + R \bar{x} z \right) \frac{R dz \wedge d\bar{z}}{(1 - z \bar{z})^2}
\]
\[
= \left(R(x, z) + (x, x) \right) \frac{R dz \wedge d\bar{z}}{(1 - z \bar{z})^2}. \tag{4.30}
\]

Plugging (4.29) and (4.30), we have that

\[
(4.28) = (1 - 2\pi (R(x, z) + (x, x))) \exp(-2\pi R(x, z)) \frac{dz \wedge d\bar{z}}{2\pi i (1 - z \bar{z})^2} = \omega(x, z).
\]
The remaining discussion is same as in the proof of [Kud1997, Proposition 11.1], from Lemma 11.2 on Page 606. We will not repeat the detail.

The above proposition says that $\xi(x)$ is a Green function of logarithmic type for D_x. Now we consider $x = (x_1, \ldots, x_r) \in V''$ with nonsingular moment matrix $T(x)$. Then using the star product of Green currents, we have a Green current

$$\Xi_x = [\xi(x_1)] \ast \cdots \ast [\xi(x_r)]$$

for D_x. As currents of degree (r, r), we have

$$dd^c ([\xi(x_1)] \ast \cdots \ast [\xi(x_r)]) + \delta_{D_x} = [\omega(x_1) \wedge \cdots \wedge \omega(x_r)] = [\omega(x)].$$

Definition 4.2.2 (Height functions (on D)). For $x = (x_1, \ldots, x_m) \in V'^m$ with nonsingular moment matrix $T(x)$, we define the height function (on D) to be

$$H(x)_{\infty} = \langle 1, \Xi_x \rangle = \langle 1, [\xi(x_1)] \ast \cdots \ast [\xi(x_m)] \rangle.$$

Since $\xi(hx, hz) = \xi(x, z)$ for $h \in U(V')$, the height function satisfies $H(hx)_{\infty} = H(x)_{\infty}$, and thus depends only on the (nonsingular) moment matrix $T(x)$. Sometimes we simply write $H(T)_{\infty}$ for this function.

The following proposition claims that $H(T)_{\infty}$ is in fact invariant under the conjugation action of $U(m)$.

Proposition 4.2.3. The height function $H(T)_{\infty}$ depends only on the eigenvalues of T. In other words, for every $k \in U(m)$, $H(kT_k)_{\infty} = H(T)_{\infty}$.

Proof. We prove by induction on m. The case $m = 2$ is left to the next subsection. Suppose that $m \geq 3$ and the proposition holds for $m - 1$. Since $U(m)$ is generated by diagonal matrices, permutation matrices, and the matrices of form

$$\begin{pmatrix} k' \\ 1 \end{pmatrix}, \quad k' \in U(m - 1),$$

We only need to prove that $H((x'k', x_m))_{\infty} = H((x', x_m))_{\infty}$, where $x = (x', x_m) \in V'^{m-1} \oplus V' = V'^m$.
with $T(x) = T$. By definition,

$$H((x', x_m)_\infty) = \langle [\xi(x_1)] \ast \cdots \ast [\xi(x_{m-1})]|_{D_{x_m}} \rangle + \int_{D_{x_{m-1}}} \omega(x_1) \wedge \cdots \wedge \omega(x_{m-1}) \wedge \xi(x_m)$$

$$= H(x')_\infty + \int_{D_{x_{m-1}}} \omega(x') \wedge \xi(x_m).$$

By induction, $H(x'k')_\infty = H(x')_\infty$ and by [KM1986, Theorem 3.2 (ii)], $\omega(x') = \omega(x'k')$. Therefore, $H((x'k', x_m)_\infty) = H((x', x_m)_\infty)$.

4.2.2 Invariance under $U(2)$: an exercise in Calculus

We consider the case $m = 2$. Suppose

$$T = \begin{pmatrix} d_1 & m \\ \overline{m} & d_2 \end{pmatrix}$$

with $d_1, d_2 \in \mathbb{R}$ and $m \in \mathbb{C}$. Choose a complex number ϵ with norm 1 such that $\epsilon^2 m \in \mathbb{R}$. Then

$$\begin{pmatrix} \epsilon & 1 \\ \epsilon^{-1} & \overline{m} \end{pmatrix} \begin{pmatrix} d_1 & m \\ \overline{m} & d_2 \end{pmatrix} \begin{pmatrix} \epsilon & 1 \\ \epsilon^{-1} & \overline{m} \end{pmatrix} = \begin{pmatrix} d_1 & \epsilon^2 m \\ \epsilon^2 m & d_2 \end{pmatrix} \in \text{Sym}_2(\mathbb{R}).$$

We write elements of $\text{SO}(2)$ in the form

$$k_\theta := \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad \theta \in \mathbb{R},$$

and write $T[\theta] = k_\theta T^T \overline{k_\theta} = k_\theta T^T k_\theta$. Since $\xi(cx) = \xi(x)$ for every $x \in V'$, to finish the proof of Proposition 4.2.3, we need only to prove the following proposition.

Proposition 4.2.4. For every $T \in \text{Sym}_2(\mathbb{R})$ with sign $T = (1, 1)$, we have $H(T[\theta])_\infty = H(T)_\infty$.

Suppose $T = \text{diag}[a, -b]$ with $a, b > 0$,

$$T[\theta] = \begin{pmatrix} d_{1,\theta} & m_{\theta} \\ m_{\theta} & d_{2,\theta} \end{pmatrix} \in \text{Sym}_2(\mathbb{R}).$$
Let \(x_0 = (\sqrt{2}a, 0) \in V', \ y_0 = (0, \sqrt{2}b) \in V' \). For \(\theta \in \mathbb{R} \), let

\[
\begin{align*}
x_\theta &= x_0 k_\theta = (x_{1, \theta}, x_{2, \theta}) = \cos \theta \cdot x_0 - \sin \theta \cdot y_0; \\
y_\theta &= y_0 k_\theta = (y_{1, \theta}, y_{2, \theta}) = \sin \theta \cdot x_0 + \cos \theta \cdot y_0.
\end{align*}
\]

We have

\[
\begin{align*}
dx_\theta &= -y_\theta; \\
dy_\theta &= x_\theta; \\
H(T[\theta])_\infty &= H((x_\theta, y_\theta))_\infty.
\end{align*}
\]

Let

\[
\begin{align*}
z_{x, \theta} &= \frac{x_{2, \theta}}{x_{1, \theta}}; \\
z_{y, \theta} &= \frac{y_{2, \theta}}{y_{1, \theta}}.
\end{align*}
\]

Then

\[
\begin{align*}
D_{x_\theta} &= [z_{x, \theta}, 1]; \\
D_{y_\theta} &= [z_{y, \theta}, 1]
\end{align*}
\]

if not empty. In what follows, we adopt the convention that if \(|z| \geq 1 \), \(f(z) = 0 \) for any function \(f \).

We record the following lemma that is [Kud1997, Lemma 11.4].

Lemma 4.2.5. We have that

\[
H((x_\theta, y_\theta))_\infty = \xi(x_\theta, z_{y, \theta}) + \int_{D_1} \xi(y_\theta) \omega(x_\theta) \\
= \xi(y_\theta, z_{x, \theta}) + \int_{D_1} \xi(x_\theta) \omega(y_\theta) \\
= \xi(x_\theta, z_{y, \theta}) + \xi(y_\theta, z_{x, \theta}) - \int_{D_1} d\xi(x_\theta) \wedge d^c \xi(y_\theta).
\]

We consider the last integral above in general. Write \(x = (x_1, x_2) \in V', \ y = (y_1, y_2) \in V' \), \(R_1 = R(x) \), and \(R_2 = R(y) \). Define

\[
I(T) = I((x, y)) = -\int_{D_1} d\xi(x) \wedge d^c \xi(y) \\
= -\frac{1}{4\pi i} \int_{D_1} (\partial + \overline{\partial}) \xi(x) \wedge (\partial - \overline{\partial}) \xi(y) \\
= -i \frac{1}{4\pi} \int_{D_1} (\partial \xi(x) \wedge \overline{\partial} \xi(y) + \partial \xi(y) \wedge \overline{\partial} \xi(x)) \\
= -i \frac{1}{4\pi} \int_{D_1} \exp(-2\pi(R_1 + R_2)) \frac{\partial R_1 \wedge \overline{\partial} R_2 + \partial R_2 \wedge \overline{\partial} R_1}{R_1 R_2}.
\]

For \(z \in D_1 \), let

\[
x(z) = (1 - z \overline{z})^{-1/2} (z, 1) \in V'; \\
M = (x, x(z))(y, x(z)).
\]
We have the following lemma.

Lemma 4.2.6. Let \(2m = (x, y)\). Then

\[
\partial R_1 \wedge \partial R_2 + \partial R_2 \wedge \partial R_1 = 2(R_1 R_2 + mM + mM) \frac{dz \wedge d\bar{z}}{(1 - z\bar{z})^2};
\]

\[
\partial R_1 \wedge \partial R_2 - \partial R_2 \wedge \partial R_1 = 2(mM - mM) \frac{dz \wedge d\bar{z}}{(1 - z\bar{z})^2}.
\]

Proof. By definition,

\[
R_1 = \frac{(x_1 z - x_2)(\bar{x}_1 z - \bar{x}_2)}{1 - z\bar{z}}.
\]

Therefore,

\[
\partial R_1 = \frac{(x_1 z - x_2)(\bar{x}_1 + \bar{x}_2)R_1}{1 - z\bar{z}} dz,
\]

and similarly for \(\partial R_2, \partial R_1, \text{ and } \partial R_2\). We compute that

\[
\partial R_1 \wedge \partial R_2
\]

\[
= \left((x_1 z - x_2)(\bar{y}_1 z - \bar{y}_2) \bar{x}_1 y_1 + (\bar{y}_1 z - \bar{y}_2) y_1 \bar{x}_1 R_1 + (x_1 z - x_2) \bar{x}_1 \bar{x}_2 R_2 + z\bar{z} R_1 R_2 \right) \frac{dz \wedge d\bar{z}}{(1 - z\bar{z})^2}
\]

\[
= \left((x_1 z - x_2)(\bar{y}_1 z - \bar{y}_2) \bar{x}_1 y_1 + (\bar{y}_1 z - \bar{y}_2) y_2 y_1 + (x_1 z - x_2) \bar{x}_1 \bar{x}_2 R_2 + R_1 R_2 \right) \frac{dz \wedge d\bar{z}}{(1 - z\bar{z})^2}
\]

\[
= \left((x_1 z - x_2)(\bar{y}_1 z - \bar{y}_2) \bar{x}_1 y_1 + \frac{y_2 (\bar{x}_1 z - \bar{x}_2)}{1 - z\bar{z}} + (x_1 z - x_2) \bar{x}_1 \bar{x}_2 R_2 + R_1 R_2 \right) \frac{dz \wedge d\bar{z}}{(1 - z\bar{z})^2}
\]

\[
= \left((x_1 z - x_2)(\bar{y}_1 z - 2M \bar{x}_1 y_1 - \bar{x}_2 y_2 + \frac{(y_1 \bar{x}_1 - y_2)}{1 - z\bar{z}} + (x_1 z - x_2) \bar{x}_1 \bar{x}_2 R_2 + R_1 R_2 \right) \frac{dz \wedge d\bar{z}}{(1 - z\bar{z})^2}
\]

\[
= (2mM + R_1 R_2) \frac{dz \wedge d\bar{z}}{(1 - z\bar{z})^2}.
\]

The lemma follows from a similar calculation for \(\partial R_2 \wedge \partial R_1\). \(\square\)

We define a morphism

\[
\alpha: \mathbb{R} \times D_1 \to \text{Her}_2(\mathbb{C})^{\det=0} = \{ h \in \text{Her}_2(\mathbb{C}) \mid \det h = 0 \}
\]

of 3-dimensional real analytic spaces by the formula

\[
\alpha(\theta, z) = \begin{pmatrix} R_1 & M \\ M & R_2 \end{pmatrix} = \begin{pmatrix} (x_\theta, x(z)) & (x_\theta, x(z)) \\ x_\theta, x(z) \end{pmatrix},
\]

\[
\begin{pmatrix} (y_\theta, x(z)) \\ x_\theta, x(z) \end{pmatrix} = \begin{pmatrix} (y_\theta, x(z)) \\ (y_\theta, x(z)) \end{pmatrix}.
\]
and set $\alpha_\theta = \alpha(\theta, \bullet)$. By an easy computation, we see that

\[
\frac{dR_1}{d\theta} = -(M + \overline{M}); \quad \frac{dR_2}{d\theta} = M + \overline{M}; \quad \frac{dM}{d\theta} = R_1 + R_2. \tag{4.31}
\]

Therefore, $R_1 + R_2$ and $M - \overline{M}$ are independent of θ, which are the values at $\theta = 0$, respectively. In other words,

\[
R_1 + R_2 = \frac{2az\overline{z} + 2b}{1 - z\overline{z}} = -2a + \frac{2(a + b)}{1 - z\overline{z}}; \tag{4.32}
\]

\[
M - \overline{M} = \frac{2\sqrt{ab}(z - \overline{z})}{1 - z\overline{z}}. \tag{4.33}
\]

By Lemma 4.2.6, and the fact that $2m_\theta = (x_\theta, y_\theta) \in \mathbb{R}$, we have

\[
I(T[\theta]) = -\frac{i}{2\pi} \int_{D_1} \exp(-2\pi(R_1 + R_2)) \frac{(R_1R_2 + m(M + \overline{M}))}{R_1R_2} \frac{dz \wedge d\overline{z}}{(1 - z\overline{z})^2}
= I'(T[\theta]) + I''(T[\theta]), \tag{4.34}
\]

where

\[
I'(T[\theta]) = -\frac{i}{2\pi} \int_{D_1} \exp(-2\pi(R_1 + R_2)) \frac{dz \wedge d\overline{z}}{(1 - z\overline{z})^2};
\]

\[
I''(T[\theta]) = -\frac{i}{2\pi} \int_{D_1} \exp(-2\pi(R_1 + R_2)) \frac{m(M + \overline{M})}{R_1R_2} \frac{dz \wedge d\overline{z}}{(1 - z\overline{z})^2}.
\]

By (4.32) and (4.33), the integral $I'(T[\theta])$ is independent of θ. There we only need to consider the second term $I''(T[\theta])$. Define a differential form of degree two on (the smooth locus of) $\text{Her}_2(\mathbb{C})_{\text{det}=0}$ as follows.

\[
\Xi = \frac{-i}{4\pi} \exp(-2\pi(R_1 + R_2)) \frac{M + \overline{M}}{R_1R_2} \frac{dR_1 \wedge dR_2}{M - \overline{M}},
\]

which has singularities along the locus $R_1R_2(M - \overline{M}) = 0$. We have the following lemma.

Lemma 4.2.7. We have

1. For a fixed $\theta \in \mathbb{R}$,

\[
\alpha_\theta^*(\Xi) = -\frac{i}{2\pi} \exp(-2\pi(R_1 + R_2)) \frac{m(M + \overline{M})}{R_1R_2} \frac{dz \wedge d\overline{z}}{(1 - z\overline{z})^2};
\]
2. On $\text{Her}_2(\mathbb{C})^{\det=0}$, we have

$$d\Xi = \frac{i}{\pi} \frac{\exp(-2\pi(R_1 + R_2))}{(M - \overline{M})^2 (M + \overline{M})} d(M - \overline{M}) \wedge dR_1 \wedge dR_2.$$

Proof.

1. It follows from Lemma 4.2.6.

2. By the equality

$$(M + \overline{M})^2 - (M - \overline{M})^2 = 4R_1R_2,$$

we have

$$\frac{d}{d} \frac{M + \overline{M}}{M - \overline{M}} = -\frac{4R_1R_2}{(M - \overline{M})^2 (M + \overline{M})}.$$

Then it follows.

Let $D_1^+ = \{z \in D_1 \mid \text{Im } z \geq 0\}$. Since $\alpha^*_\theta(\Xi)/dz \wedge d\Xi$ is invariant under $z \mapsto \overline{z}$, by Lemmas 4.2.5, 4.2.7 (1), and (4.34), we have

$$H(T[\theta_1])_\infty - H(T[\theta_0])_\infty$$

$$= \xi(x_{\theta_1}, z_{y, \theta_1}) + \xi(y_{\theta_1}, z_{x, \theta_1}) - \xi(x_{\theta_0}, z_{y, \theta_0}) - \xi(y_{\theta_0}, z_{x, \theta_0}) + I(T[\theta]) - I(T[\theta_0])$$

$$= \xi(x_{\theta_1}, z_{y, \theta_1}) + \xi(y_{\theta_1}, z_{x, \theta_1}) - \xi(x_{\theta_0}, z_{y, \theta_0}) - \xi(y_{\theta_0}, z_{x, \theta_0}) + I''(T[\theta]) - I''(T[\theta_0])$$

$$= \xi(x_{\theta_1}, z_{y, \theta_1}) + \xi(y_{\theta_1}, z_{x, \theta_1}) - \xi(x_{\theta_0}, z_{y, \theta_0}) - \xi(y_{\theta_0}, z_{x, \theta_0}) + \int_{D_1} \alpha^*_\theta(\Xi) - \int_{D_1} \alpha^*_\theta(\Xi)$$

$$= \xi(x_{\theta_1}, z_{y, \theta_1}) + \xi(y_{\theta_1}, z_{x, \theta_1}) - \xi(x_{\theta_1}, z_{y, \theta_0}) - \xi(y_{\theta_1}, z_{x, \theta_0}) + 2 \int_{D_1^+} \alpha^*_\theta(\Xi) - 2 \int_{D_1^+} \alpha^*_\theta(\Xi). \quad (4.35)$$

We see that the form $\alpha^*_\theta(\Xi)$ has (possible) singularities when $R_1R_2 = 0$, i.e., at the (possible) points $z_{x, \theta}, z_{y, \theta}$. An easy calculation shows that

$$z_{x, \theta} = \frac{x_{2, \theta}}{x_{1, \theta}} = -\tan \theta \cdot \sqrt{\frac{b}{a}} \in \mathbb{R}; \quad z_{y, \theta} = \frac{y_{2, \theta}}{y_{1, \theta}} = \cot \theta \cdot \sqrt{\frac{b}{a}} \in \mathbb{R}.$$

We now assume that $0 < \theta_0 \leq \theta_1 < \pi/2$. Then $0 \in D_1$ will not be a singular point for $\theta \in [\theta_0, \theta_1]$. We need to evaluate

$$\int_{D_1^+} \alpha^*_{\theta_0}(\Xi) - \int_{D_1^+} \alpha^*_{\theta_1}(\Xi).$$

For any $\epsilon > 0$ small enough, let

- $B_{1,\epsilon}$ be the (oriented) path $\{z = r \exp(i\epsilon) \mid r \in [0, 1]\}$ from $r = 0$ to $r = 1$;
• $B_{2,\epsilon}$ the path \(\{ z = r \exp(i(\pi - \epsilon)) \mid r \in [0, 1) \} \) from \(r = 1 \) to \(r = 0 \); and

• $D_\epsilon \subset D_1^+$ the area containing points on or above the lines B_1,ϵ and B_2,ϵ.

By our assumption, $\alpha^{*}_\theta(\Xi)$ is nonsingular on D_ϵ for every $\theta \in [\theta_0, \theta_1]$. By Stokes’ Theorem and the fact that $\exp(-2\pi(R_1 + R_2))$ decays rapidly as $|z|$ goes to 1, we have

$$
\int_{[\theta_0, \theta_1] \times D_\epsilon} \alpha^*(d\Xi) = \int_{D_\epsilon} \alpha^*_{\theta_1}(\Xi) - \int_{D_\epsilon} \alpha^*_{\theta_0}(\Xi) + \int_{[\theta_0, \theta_1] \times (B_1,\epsilon \cup B_2,\epsilon)} \alpha^* (\Xi). \tag{4.36}
$$

Lemma 4.2.8. We have

$$
\int_{[\theta_0, \theta_1] \times D_\epsilon} \alpha^*(d\Xi) = 0.
$$

Proof. By (4.31), (4.32) and (4.33), we have

\[
\begin{align*}
 dR_1 &= \partial R_1 + \bar{\partial} R_1 - (M + \overline{M}) \, d\theta; \\
 dR_2 &= \partial R_2 + \bar{\partial} R_2 + (M + \overline{M}) \, d\theta; \\
 d(M - \overline{M}) &= 2\sqrt{ab} \left(\partial \frac{z - \overline{z}}{1 - z \overline{z}} + \bar{\partial} \frac{z - \overline{z}}{1 - z \overline{z}} \right).
\end{align*}
\]

Therefore,

\[
\begin{align*}
 \alpha^*(d(M - \overline{M}) \wedge dR_1 \wedge dR_2) &= 2\sqrt{ab} (M + \overline{M}) \left(\partial \frac{z - \overline{z}}{1 - z \overline{z}} \wedge \bar{\partial} (R_1 + R_2) - \partial (R_1 + R_2) \wedge \bar{\partial} \frac{z - \overline{z}}{1 - z \overline{z}} \right) \\
 &= 4\sqrt{ab}(a + b)(M + \overline{M}) \left(\partial \frac{z - \overline{z}}{1 - z \overline{z}} \wedge \frac{1}{1 - z \overline{z}} - \partial \frac{1}{1 - z \overline{z}} \wedge \frac{z - \overline{z}}{1 - z \overline{z}} \right).
\end{align*}
\]

Then by Lemma 4.2.7 (2), we have

\[
\begin{align*}
 \alpha^*(d\Xi) &= \frac{4i\sqrt{ab}(a + b)}{\pi} \exp(-2\pi(R_1 + R_2)) \left(\partial \frac{z - \overline{z}}{1 - z \overline{z}} \wedge \frac{1}{1 - z \overline{z}} - \partial \frac{1}{1 - z \overline{z}} \wedge \frac{z - \overline{z}}{1 - z \overline{z}} \right) \\
 &= \frac{4i\sqrt{ab}(a + b)}{\pi} \exp(-2\pi(R_1 + R_2)) \frac{z + \overline{z}}{(1 - z \overline{z})^2} d\Xi \wedge d\Xi.
\end{align*}
\]

Therefore, $z \mapsto -\overline{z}$ stabilizes the domain $[\theta_0, \theta_1] \times D_\epsilon$, and maps $\alpha^*(d\Xi)/dz \wedge d\Xi$ to its negative, the integral is zero. \qed
By the above lemma and (4.36), we have

$$\int_{D^+} \alpha^*_{\theta_0}(\Xi) - \int_{D^+} \alpha^*_{\theta_1}(\Xi) = \lim_{\epsilon \to 0} \int_{D^\epsilon} \alpha^*_{\theta_0}(\Xi) - \lim_{\epsilon \to 0} \int_{D^\epsilon} \alpha^*_{\theta_1}(\Xi) = \lim_{\epsilon \to 0} \int_{[\theta_0, \theta_1] \times (B_{1,\epsilon} \cup B_{2,\epsilon})} \alpha^*(\Xi). \quad (4.37)$$

A simple computation shows that on $[\theta_0, \theta_1] \times (B_{2,\epsilon} \cup B_{1,\epsilon})$, we have

$$\alpha^*(\Xi) = -i(a + b) \exp(-2\pi(R_1 + R_2)) \left(\frac{M + M}{1 - r^2}\right)^2 \frac{r}{R_1 R_2} \frac{1}{(1 - r^2)^2} dr \wedge d\theta$$

$$= -i(a + b) \exp(-2\pi(R_1 + R_2)) \left(\frac{M}{1 - r^2}\right)^2 \frac{r}{R_1 R_2} \frac{1}{(1 - r^2)^2} dr \wedge d\theta$$

$$+ 4i(a + b) \exp(-2\pi(R_1 + R_2)) \left(\frac{M}{1 - r^2}\right)^2 \frac{r}{R_1 R_2} \frac{1}{(1 - r^2)^2} dr \wedge d\theta.$$

Since the integrations of the second term on two paths cancel each other, we have

$$\int_{[\theta_0, \theta_1] \times (B_{2,\epsilon} \cup B_{1,\epsilon})} \alpha^*(\Xi) = -i(a + b) \exp(-2\pi(R_1 + R_2)) \left(\frac{M}{1 - r^2}\right)^2 \frac{r}{R_1 R_2} \frac{1}{(1 - r^2)^2} dr \wedge d\theta. \quad (4.38)$$

To proceed, we need the following lemma.

Lemma 4.2.9. Let $f(r)$ be a smooth function on $[0, 1)$ that is rapidly decreasing as $r \to 1$. Then for any $c_1, c_2, d_1, d_2 > 0$,

$$\lim_{\epsilon \to 0} \int_{0}^{1} \frac{\sin \epsilon}{c_2(c_1 d_2 + c_2 d_1)^2} f \left(\frac{c_2}{c_1}\right) \left(c_2^2 + 2c_2 r \cos \epsilon \right) \left(d_1^2 r^2 + d_2^2 + 2d_1 d_2 r \cos \epsilon \right) \frac{f(r)dr}{r}$$

$$= \begin{cases} \frac{\pi c_1}{c_2(c_1 d_2 + c_2 d_1)^2} f \left(\frac{c_2}{c_1}\right) & c_1 > c_2; \\ 0 & c_1 \leq c_2. \end{cases}$$

Proof. The case $c_1 \leq c_2$ follows from the assumption that f is rapidly decreasing. For the first case, we only need to prove that

$$\lim_{\epsilon \to 0} \int_{0}^{1} \frac{\sin \epsilon}{c_2^2 r^2 + c_2^2 - 2c_1 c_2 r \cos \epsilon} dr = \frac{\pi}{c_1 c_2}. \quad (4.39)$$
The integral of the left-hand side of (4.39) (for small $\epsilon > 0$) equals
\[
\sin \epsilon \int_0^1 \frac{1}{(c_1 r - c_2 \cos \epsilon)^2 + c_2^2 (1 - \cos \epsilon)}
\]
\[
= \frac{\sin \epsilon}{c_1 c_2 \sqrt{1 - \cos \epsilon}} \int_{\frac{c_1 r - c_2 \cos \epsilon}{c_2 \sqrt{1 - \cos \epsilon}}}^{\frac{1}{c_2 \sqrt{1 - \cos \epsilon}}} \frac{1}{(c_1 r - c_2 \cos \epsilon)^2 + 1} \left(\frac{c_1 r - c_2 \cos \epsilon}{c_2 \sqrt{1 - \cos \epsilon}} \right) \, dr.
\]

Let $\epsilon \to 0^+$, the limit is $\pi/c_1 c_2$.

Applying the above lemma, we have, on the one hand, that
\[
(4.38) = \int_{\theta_0}^{\theta_1} \sqrt{ab} (a + b) \left(\frac{\exp(-2\pi R_1(z_{y,\theta}))}{R_1(z_{y,\theta})} \frac{y_1,\theta y_2,\theta}{d^2_{2,\theta}} + \frac{\exp(-2\pi R_2(z_{x,\theta}))}{R_2(z_{x,\theta})} \frac{x_1,\theta x_2,\theta}{d^2_{1,\theta}} \right) \, d\theta. (4.40)
\]

On the other hand, we have
\[
\frac{dR_1(z_{y,\theta})}{d\theta} = \frac{d}{d\theta} (R_1(z_{y,\theta}) + R_2(z_{y,\theta})) = 4(a + b) \frac{r}{(1 - r^2)^2} \frac{d}{d\theta} \left(\frac{y_2,\theta}{y_1,\theta} \right) = 2\sqrt{ab(a + b)} \frac{y_1,\theta y_2,\theta}{d^2_{2,\theta}};
\]
\[
\frac{dR_2(z_{x,\theta})}{d\theta} = 2\sqrt{ab(a + b)} \frac{x_1,\theta x_2,\theta}{d^2_{1,\theta}}.
\]

Therefore,
\[
(4.40) = \frac{1}{2} \left(\int_{R_1(z_{y,\theta})}^{R_1(z_{y,\theta})} \frac{\exp(-2\pi R_1(z_{y,\theta}))}{R_1(z_{y,\theta})} \, dR_1(z_{y,\theta}) + \int_{R_2(z_{x,\theta})}^{R_2(z_{x,\theta})} \frac{\exp(-2\pi R_2(z_{x,\theta}))}{R_2(z_{x,\theta})} \, dR_2(z_{x,\theta}) \right)
\]
\[
= \frac{1}{2} \left(\xi(x_{\theta_1}, z_{y,\theta_1}) + \xi(y_{\theta_1}, z_{x,\theta_1}) - \xi(x_{\theta_0}, z_{y,\theta_0}) - \xi(y_{\theta_0}, z_{x,\theta_0}) \right),
\]
which, by (4.35), implies that
\[
H(T[\theta_1])_\infty - H(T[\theta_0])_\infty = 0 \quad (4.41)
\]
for $0 < \theta_0 \leq \theta_1 < \pi/2$. Same argument works for intervals $(\pi/2, \pi)$, $(\pi, 3\pi/2)$ and $(3\pi/2, 2\pi)$, other than $(0, \pi/2)$. The constancy of $H(T[\theta])_\infty$ for all $\theta \in \mathbb{R}$ then follows from (4.41) and the continuity. This finishes the proof of Proposition 4.2.4.
4.3 An archimedean local Siegel–Weil formula

In this section, we set up a relation between derivatives of Whittaker integrals and the height functions defined in the previous section. Furthermore, we prove a local arithmetic analogue of the Siegel–Weil formula at an archimedean place for arbitrary dimensions.

4.3.1 Comparison on the hermitian domain

We propose and prove the following theorem, which we call the archimedean local arithmetic Siegel–Weil formula.

Theorem 4.3.1. Let \(T \in \text{Her}_m(\mathbb{C}) \) such that \(\text{sign} T = (m - 1, 1) \). Then we have

\[
W_T'(0, e, \Phi^0) = \gamma_V \frac{(2\pi)^m}{\Gamma(m)} \exp(-2\pi \text{ tr } T) H(T)_{\infty},
\]

where \(H(T)_{\infty} \) is defined in Definition 4.2.2.

By Proposition 4.2.3, we only need to prove for \(T = \text{diag}[a_1, \ldots, a_{m-1}, -b] \) with \(a_1, \ldots, a_{m-1}, b \in \mathbb{R}_{>0} \). We let \(x_j = (\ldots, \sqrt{2a_j}, \ldots) \in \mathbb{C}^m \cong V' \) with the \(j \)-th entry \(\sqrt{2a_j} \) and all others zero for \(j = 1, \ldots, m - 1 \), and \(x_m = (0, \ldots, 0, \sqrt{2b}) \). Then \(H(T)_{\infty} = H((x_1, \ldots, x_m))_{\infty} \). Since \((x_m, x_m) < 0 \), we have \(D_{x_m} = \emptyset \), and

\[
H(T)_{\infty} = \int_{D_{m-1}} \omega(x_1) \wedge \cdots \wedge \omega(x_{m-1}) \wedge \xi(x_m).
\]

Proof of Theorem 4.3.1. By Proposition 4.1.8, we need to prove that

\[
(2\pi)^{m-1} \int_{D_{m-1}} \omega(x_1) \wedge \cdots \wedge \omega(x_{m-1}) \wedge \xi(x_m)
= \int_{D_{m-1}} \exp(-4\pi (a_1 w_1 \overline{w_1} + \cdots + a_{m-1} w_{m-1} \overline{w_{m-1}}))
\sum_{1 \leq s_1 < \cdots < s_t \leq m - 1} (-4\pi)^{t}(m - 1 - t)! (a_{s_1} \cdots a_{s_t})(1 + w_{s_1} \overline{w_{s_1}} + \cdots + w_{s_t} \overline{w_{s_t}})
(- \text{Ei} (-4\pi b (1 + \text{Im} w)) (1 - \text{Im} w)^{-m}. \tag{4.42}
\]
By definition and (4.24), we have
\[
R_j(z) := R(x_j, z) = \frac{2a_j z_j \overline{w}}{1 - z \overline{w}} = 2a_j w_j \overline{w}_j, \quad j = 1, \ldots, m - 1;
\]
\[
R_m(z) := R(x_m, z) = \frac{-2b}{1 - z \overline{w}} = -2b \left(1 + t \overline{w} \right).
\]

Therefore, \(\xi(x_m) = - \text{Ei} \left(-4\pi b \left(1 + t \overline{w} \right) \right) \). The next step is to find an explicit formula for \(\omega(x_j) \). By (4.28), we need to calculate \(\partial R_j, \partial R_j, \) and \(\partial \overline{R}_j \) for \(j = 1, \ldots, m - 1 \). Since \((1 - z \overline{w}) R_j = 2a_j z_j \overline{w} \),
\[
\overline{R} (1 - z \overline{w}) R_j + (1 - z \overline{w}) \overline{R} R_j = 2a_j z_j d \overline{w}_j, \quad (4.43)
\]
\[
\overline{R} R_j = \frac{2a_j z_j d \overline{w}_j + R_j \overline{R} (z \overline{w})}{1 - z \overline{w}}. \quad (4.44)
\]
Similarly,
\[
\partial R_j = \frac{2a_j \overline{w}_j d z_j + R_j \partial (z \overline{w})}{1 - z \overline{w}}. \quad (4.45)
\]
Differentiating (4.43) and plugging (4.44) and (4.45), we have
\[
\partial \overline{R} (1 - z \overline{w}) R_j + \partial R_j \overline{R} (1 - z \overline{w}) + \partial (1 - z \overline{w}) \overline{R} R_j + (1 - z \overline{w}) \partial \overline{R} R_j = 2a_j d z_j d \overline{w}_j,
\]
which implies that
\[
R_j = \frac{2a_j (1 - z \overline{w}) d z_j d \overline{w}_j + 2a_j z_j d z_j \overline{R} (z \overline{w}) + 2a_j z_j \partial (z \overline{w}) d \overline{w}_j + 2R_j \partial (z \overline{w}) \overline{R} (z \overline{w}) + R_j (1 - z \overline{w}) \partial \overline{R} (z \overline{w})}{(1 - z \overline{w})^2}. \quad (4.46)
\]
Taking wedge of (4.44) and (4.45), we have
\[
\partial R_j \wedge \overline{R} R_j = \frac{4a^2_j z_j \overline{w}_j d z_j d \overline{w}_j + 2a_j R_j z_j d z_j \overline{R} (z \overline{w}) + 2a_j R_j z_j \partial (z \overline{w}) d \overline{w}_j + R^2_j \partial (z \overline{w}) \overline{R} (z \overline{w})}{(1 - z \overline{w})^2}. \quad (4.47)
\]
Combining (4.46) and (4.47), we have
\[
\frac{1}{R_j^2} \left(R_j \overline{R} R_j - \partial R_j \wedge \overline{R} R_j \right) = \frac{\partial (z \overline{w}) \overline{R} (z \overline{w})}{(1 - z \overline{w})^2} + \frac{\partial \overline{R} (z \overline{w})}{1 - z \overline{w}}. \quad (4.48)
\]
For simplicity, we make some substitutions. Let

\[\omega = \partial (z \overline{\sigma}) \overline{\partial} (z \overline{\sigma}) + (1 - z \overline{\sigma}) \partial \overline{\partial} (z \overline{\sigma}); \]

\[\omega_j = (1 - z \overline{\sigma}) \overline{\sigma} \overline{d}z_j \overline{d} \sigma_j + \overline{\sigma} \overline{d}z_j \overline{\partial} (z \overline{\sigma}) + z_j \partial (z \overline{\sigma}) \overline{d} \sigma_j + w_j \overline{w}_j \partial (z \overline{\sigma}) \overline{\partial} (z \overline{\sigma}), \quad j = 1, \ldots, m - 1. \]

Then we have

\[2\pi i \omega (x_j) = -\partial \overline{\partial} \xi (x_j) = \exp (-4\pi a_j w_j \overline{w}_j) (\omega - 4\pi a_j \omega_j) (1 - z \overline{\sigma})^2. \]

Therefore, to prove (4.42), we only need to prove the following equality of \((m - 1, m - 1)\)-forms on \(D_{m-1} \)

\[
\bigwedge_{j=1}^{m-1} (\omega - 4\pi a_j \omega_j) = \sum_{s_1 < \cdots < s_t} (-4\pi)^t (m - 1 - t)! (a_{s_1} \cdots a_{s_t}) (1 + w_{s_1} \overline{w}_{s_1} + \cdots + w_{s_t} \overline{w}_{s_t}) (1 - z \overline{\sigma})^{m-2} \Omega,
\]

which follows from the claim that for every subset \(\{ s_1 < \cdots < s_t \} \subset \{1, \ldots, m - 1\} \), we have

\[\omega_{s_1} \wedge \cdots \wedge \omega_{s_t} \wedge \omega^{m-1-t} = (m - 1 - t)! (1 + w_{s_1} \overline{w}_{s_1} + \cdots + w_{s_t} \overline{w}_{s_t}) (1 - z \overline{\sigma})^{m-2} \Omega. \]

This will be proved in the next lemma where, without lost of generality, we assume that \(s_j = j \). The theorem then follows.

Lemma 4.3.2. Let \(w_j, \Omega, \omega \) and \(\omega_j \) be as above. For any integer \(0 \leq t \leq m - 1 \), we have the following equality of \((m - 1, m - 1)\)-forms on \(D_{m-1} \)

\[
\left(\bigwedge_{j=1}^{t} \omega_j \right) \bigwedge \omega^{m-1-t} = (m - 1 - t)! \left(1 + \sum_{j=1}^{t} w_j \overline{w}_j \right) (1 - z \overline{\sigma})^{m-2} \Omega.
\]

The proof will occupy the next subsection.

4.3.2 Proof of Lemma 4.3.2

For \(j = 1, \ldots, m - 1 \), we let

\[\sigma_j = \overline{\sigma} \overline{d}z_j \overline{\partial} (z \overline{\sigma}); \quad \sigma_j' = z_j \partial (z \overline{\sigma}) \overline{d} \overline{\sigma}j; \quad \delta_j = (1 - z \overline{\sigma}) \overline{d}z_j \overline{d} \overline{\sigma}j. \]
Then
\[\sum_{k=1}^{m-1} \sigma_k = \sum_{k=1}^{m-1} \sigma'_k; \quad \omega = \sum_{k=1}^{m-1} (\sigma_k + \delta_k); \quad \omega_j = \delta_j + \sigma_j + \sigma'_j + w_j \sum_{k=1}^{m-1} \sigma_k; \]
and
\[\sigma_j \land \sigma_j = 0; \quad \sigma'_j \land \sigma'_j = 0; \quad \delta_j \land \delta_j = 0. \]

Introduce the following \((m-1) \times (m-1)\) matrix
\[Z = \begin{pmatrix} z_1 & z_1 & \cdots & z_{m-1} \\ z_2 & z_2 & \cdots & z_{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ z_{m-1} & z_{m-1} & \cdots & z_{m-1} \end{pmatrix}. \]

Recall the notation \(Z_{J,K}\) as in the proof of Lemma 4.1.7 for subsets \(J, K \subset \{1, \ldots, m-1\}\) with \(|J| = |K|\). It is easy to see that \(|Z_{J,K}| \neq 0\) only if \(|J| \leq 1\), where in the later case, \(|Z_{\{j\},\{k\}}| = \bar{z}_j z_k\) and \(|Z_{\emptyset,\emptyset}| = 1\).

Consider three subsets \(I, J, K \subset \{1, \ldots, m-1\}\) with \(|I| + |J| + |K| = m-1\). Write
\[\sigma_I = \bigwedge_{i \in I} \sigma_i; \quad \sigma'_J = \bigwedge_{j \in J} \sigma'_j; \quad \delta_K = \bigwedge_{k \in K} \delta_k. \]

We have the following equality
\[\sigma_I \sigma'_J \delta_K := \sigma_I \land \sigma'_J \land \delta_K = \begin{cases} \epsilon_{I,J,K} |Z_{I,J,K}| \big|Z_{I,J,K}^{-1}\big| (1 - z \bar{z})^{m-1} \Omega & (I \cup J) \cap K = \emptyset; \\ 0 & (I \cup J) \cap K \neq \emptyset. \end{cases} \]

Here, \(\epsilon_{I,J,K} \in \{1, 0, 1\}\) is a factor depending only on \(I, J, K\). It is nonzero only if \(|I| \leq 1\) and \(|J| \leq 1\).

Explicitly,
\[\sigma_I \sigma'_J \delta_K = \begin{cases} \bar{z}_i z_j (1 - z \bar{z})^{m-3} \Omega & i \neq j, I = \{i\}, J = \{j\}, K = T \cup J; \\ -\bar{z}_i z_j z_i (1 - z \bar{z})^{m-3} \Omega & i \neq j, I = \{i\}, J = \{j\}, K = T \cup \{j\}; \\ \bar{z}_i (1 - z \bar{z})^{m-2} \Omega & I \cup J = \{i\}, K = \{i\}; \\ (1 - z \bar{z})^{m-1} \Omega & I = J = \emptyset, K = \{1, \ldots, m-1\}. \end{cases} \]
For a subset P of $\{1, \ldots, m\}$, we set $w_P = \prod_{p \in P} w_p$ and $\overline{w}_P = \prod_{p \in P} \overline{w}_p$. Then

$$\left(\bigwedge_{j=1}^t \omega \right) \wedge \omega^{m-1-t} = \bigwedge_{j=1}^t \left(\delta_j + \sigma_j + \sigma'_j + w_j \overline{\omega} \sum_{k=1}^{m-1} \sigma_k \right) \wedge \left(\sum_{k=1}^{m-1} \sigma_k + \sum_{k=1}^{m-1} \delta_k \right)^{m-1-t}$$

$$= \left(\sum_{L \sqcup M \sqcup N \sqcup P = \{1, \ldots, t\}} \delta_L \sigma_M \sigma'_N w_P \overline{w}_P \left(\sum_{k=1}^{m-1} \sigma_k \right)^{|P|} \right)$$

$$\left(\sum_{Q \subseteq 1, \ldots, m-1} \frac{(m-1-t)!}{(m-1-t-|Q|)!} \left(\sum_{k=1}^{m-1} \sigma_k \right)^{m-1-t-|Q|} \delta_Q \right)$$

$$= \sum_{L \sqcup M \sqcup N \sqcup P = \{1, \ldots, t\}} \sum_{Q \subseteq 1, \ldots, m-1} T_{L,M,N,P,Q}, \quad (4.49)$$

where

$$T_{L,M,N,P,Q} = \frac{(m-1-t)!}{(m-1-t-|Q|)!} \delta_{L \cup Q} \sigma_M \sigma'_N w_P \overline{w}_P \left(\sum_{k=1}^{m-1} \sigma_k \right)^{|P|+m-1-t-|Q|}.$$

It is easy to see that if $T_{L,M,N,P,Q} \neq 0$, then $|Q| \geq m-2-t$. We enumerate all cases where $T_{L,M,N,P,Q}$ may be nonzero.

Case I: $|Q| = m - 1 - t$. Then $|P| \leq 1$:

Case I-1: $|P| = 0$. Then $Q = \{t+1, \ldots, m-1\}$ and $|M| \leq 1$, $|N| \leq 1$:

Case I-1a: $M = \{m\}$ and $N = \{n\}$ for $m \neq n \in \{1, \cdots, t\}$. Then the sum of corresponding terms is

$$\sum T_{L,M,N,P,Q} = (m-1-t)! \sum_{m,n=1 \atop m \neq n} \frac{z_m \overline{z}_m \overline{z}_n \overline{z}_n (1-z\overline{z})^{m-3}}{z_m \overline{z}_m \overline{z}_n \overline{z}_n}. \quad (4.50)$$

Case I-1b: $M \cup N = \{m\}$ for $1 \leq m \leq t$. Then the sum of corresponding terms is

$$\sum T_{L,M,N,P,Q} = 2(m-1-t)! \sum_{m=1}^t \frac{z_m \overline{z}_m (1-z\overline{z})^{m-2}}{z_m \overline{z}_m}. \quad (4.51)$$

Case I-1c: $M = N = \emptyset$. Then the corresponding term is

$$T_{L,M,N,P,Q} = T_{\{1, \ldots, t\}, \emptyset, \emptyset, \{t+1, \ldots, m-1\}} = (m-1-t)! \frac{(1-z\overline{z})^{m-1}}{z_m \overline{z}_m}. \quad (4.52)$$

Case I-2: $|P| = 1$. Then $M = N = \emptyset$. Suppose $P = \{p\}$ for $1 \leq p \leq t$. Then $Q = \{p, t+1, \ldots, m-1\} - \{q\}$ for some q inside $\{p, t+1, \ldots, m-1\}$. The sum of the corresponding
we have the Shimura variety \(Sh_n \) of rank 2

Case II: \(|Q| = m - 2 - t \). Then \(M = N = P = \emptyset \) and \(|Q| = \{t + 1, \ldots, m - 1\} - \{q\} \) for some \(q \) inside \(\{t + 1, \ldots, m - 1\} \). The sum of the corresponding terms is

\[
\sum T_{L,M,N,P,Q} = (m - 1 - t)! \sum_{q=t+1}^{m-1} \frac{z_q \overline{z}_q}{1 - z_\overline{z}} + \sum_{m=1}^{t} \frac{z_m \overline{z}_m}{1 - z_\overline{z}} + \sum_{q=t+1}^{m-1} \frac{z_q \overline{z}_q}{1 - z_\overline{z}} + \sum_{q=1}^{t} \frac{z_q \overline{z}_q}{1 - z_\overline{z}} (1 - z_\overline{z}) ^{-2} \Omega. \quad (4.54)
\]

Taking the sum from (4.50) to (4.54), we have

\[
(4.49) = (m - 1 - t)! (1 - z_\overline{z}) ^{-2} \Omega
\]

\[
\left(\sum_{p=1}^{t} \frac{z_p \overline{z}_p}{1 - z_\overline{z}} + \sum_{q=t+1}^{m-1} \frac{z_q \overline{z}_q}{1 - z_\overline{z}} \right) + \sum_{m=1}^{t} \frac{z_m \overline{z}_m}{1 - z_\overline{z}} + \sum_{q=t+1}^{m-1} \frac{z_q \overline{z}_q}{1 - z_\overline{z}} (1 - z_\overline{z}) ^{-2} \Omega
\]

\[
= (m - 1 - t)! (1 - z_\overline{z}) ^{-2} \Omega \sum_{m=1}^{t} \frac{z_m \overline{z}_m}{1 - z_\overline{z}} + \sum_{q=t+1}^{m-1} \frac{z_q \overline{z}_q}{1 - z_\overline{z}} + \sum_{q=1}^{t} \frac{z_q \overline{z}_q}{1 - z_\overline{z}} (1 - z_\overline{z}) ^{-2} \Omega
\]

\[
= (m - 1 - t)! \left(1 + \sum_{j=1}^{t} \frac{w_j \overline{w}_j}{1 - z_\overline{z}} \right) (1 - z_\overline{z}) ^{-2} \Omega.
\]

Lemma 4.3.2 is proved.

4.3.3 Comparison on Shimura varieties

We use previous results to compute the archimedean local height pairing on the unitary Shimura varieties with respect to suitable Green currents. We recall some notations from 3.1.1 and 3.1.2. Let \(n \geq 1 \) be an integer. We have a totally positive definition incoherent hermitian space \(\mathcal{V} \) over \(\mathbb{A}_F \) of rank \(2n \), and \(\mathbb{H} = \text{Res}_{\mathbb{A}_F/\mathbb{Q}} U(\mathcal{V}) \). For (sufficiently small) open compact subgroup \(K \) of \(\mathbb{H}(\mathbb{A}_{\text{fin}}) \), we have the Shimura variety \(\text{Sh}_K := \text{Sh}_K(\mathbb{H}) \). Suppose that \(K = \prod_{p \in \Sigma_{\text{fin}}} K_p \) is decomposable. Let \(\phi_\alpha = \phi_\alpha^0 \otimes \phi_{\alpha,\text{fin}} \) (\(\alpha = 1, 2 \)) be decomposable Schwartz functions with \(\phi_{\alpha,\text{fin}} \in \mathcal{S}(\mathcal{W}^n_{\text{fin}})^K \). Suppose that \(\phi_{1,p} \otimes \phi_{2,p} \in \mathcal{S}(\mathcal{W}^n_{\text{fin}})_{\text{reg}} \) for some finite place \(p \) of \(F \). Then the generating series \(Z_{\phi_1}(g_1) \) and \(Z_{\phi_2}(g_2) \) do not meet on \(\text{Sh}_K \) providing \(g_\alpha \in P^p_{\text{fin}} H'(\mathbb{A}^p_{\text{fin}}) \).
Definition 4.3.3 (Volume of open compact). For every finite place \(p \) of \(F \), we define a measure \(dh \) on \(\mathbb{H}(\mathbb{A}_{\text{fin}}) \), which depends only on the additive character \(\psi_{\text{fin}} \), as follows. By [Ral1987, Lemma 4.2], there is a unique Haar measure \(d'h_p \) on \(U(V_p) \) such that for every nonsingular matrix \(T \in \text{Her}_{2n}(E_p) \) such that \(O_T \) is nonempty, and \(\Phi \in S(\mathbb{V}_p^{2n}) \),

\[
W_T(0, e, \Phi) = \gamma_{V_p} b_{2n,p}(0)^{-1} \int_{U(V_p)} \Phi(h_T^{-1} x_T) d'h_v,
\]

where \(x_T \) is any element in \(O_T \), and \(b_{2n,p} \) is defined in (2.6). By Lemma 2.3.6, for almost all \(p \), the volume of \(K_v \) with respect to \(d'h_p \) is 1. We define

\[
\text{dh} = \frac{1}{2b_{2n}(0)} \prod_{p \in \Sigma_{\text{fin}}} d'h_p,
\]

where \(b_{2n} = \prod_{v \in \Sigma} b_{2n,v} \) is (a product of) global Tate \(L \)-factors. Let \(\text{Vol}(K) \) be the volume of \(K \) with respect to the measure \(dh \).

In what follows, we fix an archimedean place \(\iota \) of \(F \), and \(\iota' \in \{ \iota^0, \iota^* \} \). Let \(V = V^{(\iota)} \), \(H = \text{Res}_{F/Q} U(V) \), and \(\mathcal{D} = \mathcal{D}^{(\iota')} \). Assume that there exists a finite place \(p \) of \(F \) such that \(\phi_p(0) = 0 \). Let \(\text{Her}^+_n(E) \) be the subset of \(\text{Her}_n(E) \) consisting of totally positive definite matrices. For every \(T \in \text{Her}^+_n(E) \), we choose an element \(x_T \in V^n \) such that \(T(x) = T \). Then for \(g \in P^p_n H'(\mathbb{A}_F^p) \), we have the generating series

\[
Z_{\phi}(g) = \sum_{T \in \text{Her}^+_n(E)} \sum_{h \in H_{x_T}(\mathbb{A}_{\text{fin}}) \backslash H(\mathbb{A}_{\text{fin}})/K} (\omega_{\chi}(g) \phi)(T, h^{-1} x_T) Z(h^{-1} x_T)_K,
\]

where \(H_{x_T} \subset H \) is the stabilizer of \(x_T \). Recall that under the uniformization

\[
(\text{Sh}_K)^{\text{an}}_{\iota'} \cong H(\mathbb{Q}) \backslash \mathcal{D} \times H(\mathbb{A}_{\text{fin}})/K,
\]

the special cycle \(Z(h^{-1} x_T)_K \) is represented by the points \((z, h'h) \), where \(z \perp V_{x_T} \) and \(h' \) fixes all elements in \(V_{x_T} \). In other words, if we identify \(\mathcal{D} \) with \(D_{2n-1} \), then \(z \) is in \(D_{x_T} \). Choose a set of representatives \(h_1, \ldots, h_l \) of the double coset \(H(\mathbb{Q}) \backslash H(\mathbb{A}_{\text{fin}})/K \) such that \(h_1 \) is the identity element. Let \([Z_{\phi}(g)_{\iota'}]^{\text{an}}_{h_1} \) be the restriction of (the \(\iota' \)-analytification of) \(Z_{\phi}(g) \) to the neutral component. Then it is the image of

\[
\sum_{x \in V^n, T(x) \in \text{Her}^+_n(E)} (\omega_{\chi}(g) \phi)(T(x), x) D_x
\]

under the projection map \(\mathcal{D} \to (H(\mathbb{Q}) \cap K) \backslash \mathcal{D} \). Write \(g_i = n(b)m(a)[k_1,k_2] \) under the Iwasawa...
Let \(\Xi_\phi(g)_{\nu',h_1} = \sum_{x \in V^n, T(x) \in \text{Her}_+^+(E)} (\omega_\chi(g)\phi)(T(x), x)\Xi_{x\alpha} \) (4.55)

descends to a current on \((H(\mathbb{Q}) \cap K) \setminus \mathcal{D},\) which is a Green current for \([Z_{\phi}(g)_{\nu'}]_{h_i}^{\text{an}}\). By Hecke translation under \(h_i\) (\(i = 2, \ldots, l\)), we obtain the a Green current \(\Xi_\phi(g)_{\nu'}\) for \(Z_{\phi}(g)_{\nu'}\). The following is our main theorem of this chapter.

Theorem 4.3.4. Let \(\iota, \iota'\) be as above. Let \(\phi_\alpha = \phi_\infty^0 \otimes \phi_\alpha^{\text{fin}}\) (\(\alpha = 1,2\)) be decomposable Schwartz functions with \(\phi_\alpha^{\text{fin}} \in S(\mathbb{V}_\text{fin}^n)^K\). Suppose that \(\phi_1, \phi_2, \in S(\mathbb{V}_p^2)^{\text{reg}}\) for some finite place \(p\) of \(F\). Then for \(g_\alpha \in P_p^* H'(\mathbb{A}_F)\),

\[E_i(0, \iota(g_1, g_2'), \phi_1 \otimes \phi_2) = -2 \text{Vol}(K)(\langle Z_{\phi_1}(g_1), \Xi_{\phi_1}(g_1)_{\nu'}, (Z_{\phi_2}(g_2), \Xi_{\phi_2}(g_2)_{\nu'}) \rangle_{\text{Sh}_K}, \]

where \(E_i\) is defined as (2.14); and the right-hand side is the local height pairing on \(\text{Sh}_K\) at the place \(\iota'\).

Proof. It is clear that we can assume that \(g_{\alpha, \iota} = m(a_\alpha)\) with \(a_\alpha \in \text{GL}_n(E_{\iota'})\) for \(\alpha = 1,2\). Then we have

\[\langle (Z_{\phi_1}(g_1), \Xi_{\phi_1}(g_1)_{\nu'}), (Z_{\phi_2}(g_2), \Xi_{\phi_2}(g_2)_{\nu'}) \rangle_{\text{Sh}_K} \]

\[= \sum_{i=1}^l \int_{(H(\mathbb{Q}) \cap K) \setminus \mathcal{D}} \bigg(\Xi_{\omega_\chi(h_i)\phi_1}(g_1)_{\nu',n_1} \bigg) \sum_{x_1 \in V^n, T(x_1) \in \text{Her}_+^+(E)} (\omega_\chi(g_1)\phi_1)(T(x_1), h_i^{-1}x_1)\Xi_{x_1a_1} \bigg) \bigg(\sum_{x_2 \in V^n, T(x_2) \in \text{Her}_+^+(E)} (\omega_\chi(g_2)\phi_2)(T(x_2), h_i^{-1}x_2)\Xi_{x_2a_2} \bigg) \bigg) \]

\[= \sum_{i=1}^l \sum_{x_1 \in V^n, T(x_1) \in \text{Her}_+^+(E)} \sum_{x_2 \in V^n, T(x_2) \in \text{Her}_+^+(E)} \bigg((\omega_\chi''(\iota(g_1, g_2'))(\phi_1 \otimes \phi_2))(T((x_1, x_2)), h_i^{-1}(x_1, x_2)) \bigg) \Xi_{x_1a_1} \Xi_{x_2a_2} \]

(4.56)

Let

\[a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}. \]
Then

\[
(4.56) = \sum_{i=1}^{l} \sum_{x \in V^{2n}, T(x) \in \text{Her}_{2n}^{+}(E)} (\omega''_{\lambda}(i(g_1, g_2)) (\phi_1 \otimes \phi_2)) (T(x), h_{i}^{-1}x) H(''\pi T(x)a)_{\infty}
\]

\[
= \sum_{T} H(''\pi T'a)_{\infty} \prod_{v \in \Sigma_{\infty}} (\omega''_{\lambda}(i(g_1, v, g_2)) \Phi_{v})(T)
\]

\[
= \prod_{p \in \Sigma_{\text{fin}}} \sum_{h_{p} \in \mathcal{U}(V_p)/K_{p}} (\omega''_{\lambda}(i(g_1, p, g_2)) (\phi_1, p \otimes \phi_2)) (h_{p}^{-1}x_{T}),
\]

\[(4.57)\]

where the sum is taken over all \(T \in \text{Her}_{2n}^{+}(E) \) that is the moment matrix of some \(x_{T} \in V^{2n} \). There are three cases.

Case I: \(v = \iota \). By (4.3) and Theorem 4.3.1 for '\pi T'a, we have

\[
H(''\pi T'a)_{\infty} (\omega''_{\lambda}(i(g_1, \iota, g_2)) \Phi_{\iota})(T) = \gamma_{\iota}^{-1} \Gamma_{2n}(2n) W_{T}(0, i(g_1, \iota, g_2), \Phi_{\iota}).
\]

By (2.6), we have

\[
H(''\pi T'a)_{\infty} (\omega''_{\lambda}(i(g_1, \iota, g_2)) \Phi_{\iota})(T) = \gamma_{\iota}^{-1} b_{2n, \iota}(0) W_{T}(0, i(g_1, \iota, g_2), \Phi_{\iota}).
\]

\[(4.58)\]

Case II: \(v \in \Sigma_{\infty} \) and \(v \neq \iota \). By (4.3) and Proposition 4.1.5 (2), we have

\[
(\omega''_{\lambda}(i(g_1, v, g_2)) \Phi_{v})(T) = \gamma_{v}^{-1} b_{2n, v}(0) W_{T}(0, i(g_1, v, g_2), \Phi_{v}).
\]

\[(4.59)\]

Case III: \(v \in \Sigma_{\text{fin}} \). By Definition 4.3.3,

\[
\sum_{h_{p} \in \mathcal{U}(V_p)/K_{p}} (\omega''_{\lambda}(i(g_1, p, g_2)) (\phi_1, p \otimes \phi_2)) (h_{p}^{-1}x_{T}) = \gamma_{v}^{-1} b_{2n, v}(0) \left(\int_{K_{p}} d'h_{p} \right)^{-1} W_{T}(0, i(g_1, p, g_2), \phi_1, p \otimes \phi_2)
\]

\[(4.60)\]

After plugging (4.58), (4.59) and (4.60) in (4.57), the theorem follows. \(\Box \)
Chapter 5

Comparison at finite places: good reduction

We compare local terms of analytic and arithmetic kernel functions at an unramified finite place. In 5.1, we introduce the integral models for the Shimura curves, and extend the special cycles and the generating series to the models. At a good place, we need to calculate certain intersection multiplicity on the smooth model. This is done in 5.2. The computation of the derivative of Whittaker integrals at an unramified place and the comparison of the analytic and arithmetic side are the content of 5.3.

We fix some notations for this chapter, which may differ from the previous ones. Let F/\mathbb{Q}_p be a finite extension and E/F a quadratic extension of fields with $\text{Gal}(E/F) = \{1, \tau\}$. We fix a uniformizer ϖ of F and let q be the cardinality of the residue field of F. Let V^\pm be the 2-dimensional E-hermitian space with $\epsilon(V^\pm) = \pm 1$, which is unique up to isometry and $H^\pm = U(V^\pm)$. Let Λ^\pm be a maximal \mathcal{O}_E-lattice in V^\pm, on which the hermitian form takes values in \mathcal{O}_E. Let K_0^\pm be the stabilizer of Λ^\pm in H^\pm, which is a maximal compact subgroup. Recall that we have local groups $H'=H_1$, $H'' \cong H_2$, P, etc.

Recall that we let $\iota_i\ (i = 1, \ldots, d)$ be all embeddings of F into \mathbb{C} and ι_i^e, ι_i^* those of E above ι_i as in Notation 2.1.1. Let us fix more notations for Chapter 5 and 6.

- For any rational prime p, we fix an isomorphism $\iota_{(p)}: \mathbb{C} \xrightarrow{\sim} \mathbb{C}_p$ once and for all.

- For p a finite place of F, let p° (resp. p^o, p^*) be that (resp. those) of E over p if p is nonsplit (resp. split) in E. We fix a uniformizer ϖ of F_p.

- For a number field F, $T_F = \text{Res}_{F/\mathbb{Q}} G_{m,F}$ and $T_F^1 = \text{Res}_{F/\mathbb{Q}} F^{\vee \times 1}$ for any quadratic extension.
F'/F, where $F'^\times : = \ker (\text{Nm} : F'^\times \to F\times)$. If F is totally real, let F^+ be the set of all totally positive elements.

- For every finite extension L/Q_p of local fields with ring of integers \mathcal{O}_L and maximal ideal $q \subset \mathcal{O}_L$, let U^s_L be the subgroup of \mathcal{O}_L^\times congruent to 1 modulo q^s. Denote by L^0 the maximal unramified extension of L. For $s \geq 0$, let L^s be the finite extension of L^0 corresponding to U^s_L through local class field theory. Finally, let \widehat{L}^s be the completion of L^s, whose ring of integers is denoted by $\mathcal{O}_{\widehat{L}^s}$.

- We fix an algebraic closure of \mathbb{F}_p to be $\overline{\mathbb{F}}$.
5.1 Integral models

In the next four subsections, we will assume that $F \neq \mathbb{Q}$. The rest case is slightly different and in fact simpler, which will be summarized in the last subsection.

5.1.1 Change of Shimura data

Let $p = p_1, p_2, \ldots, p_r$ ($1 \leq r \leq d$) be all places of F dividing p and p° one of E above p. We assume that the embedding $\iota_p \circ \iota_{p^\circ} : E \hookrightarrow \mathbb{C}_p$ induces the place p°. As before, we suppress ι_{p° and ι_1 for the nearby objects. We have the hermitian space V over E of dimension 2 whose signature is $(1, 1)$ at ι_1 and $(2, 0)$ elsewhere, the unitary group H over \mathbb{Q}, and the Shimura curve $M_K = \text{Sh}_K(H, X)$ for a sufficiently small open compact subgroup $K \subset H(A_{\text{fin}})$, which is a smooth projective curve defined over $\iota_1^\circ(E)$. Recall that X is the conjugacy class of the Hodge map $h : S \to H_{\mathbb{R}}$ defined by

$$z = x + iy \mapsto \begin{pmatrix} x & y \\ -y & x \end{pmatrix}^{-1} \times z, 1, \ldots, 1 \in H(\mathbb{R}) \subset (\text{GL}_2(\mathbb{R}) \times \mathbb{R} \times \mathbb{C}^\times) \times (\mathbb{H}^\times \times \mathbb{R} \times \mathbb{C}^\times)^{d-1},$$

where we identify $T_E(\mathbb{R})$ with $(\mathbb{C}^\times)^d$ through $(\iota_1^\circ, \ldots, \iota_d^\circ)$. We denote by $\nu : H \to T_E^1$ the determinant map. Then we have the 0-dimensional Shimura variety $L_K = \text{Sh}_{\nu(K)}(T_E^1, \nu(X))$, and a smooth morphism (also denoted by) $\nu : M_K \to L_K$ of $\iota_1^\circ(E)$-schemes such that the fiber of each geometric point is connected.

Let us define a subgroup $K_{p,n}$ of $U(V_p)$ for every integer $n \geq 0$. Since V_p is (isometric to) either V^+ or V^-, we have the lattice Λ^\pm (if p is split, we only have the positive one). We define $K_{p,n}$ to be the subgroup of K_0^\pm consisting of elements that have trivial action on $\Lambda^\pm/\mathfrak{o}^n\Lambda^\pm$. Then $K_{p,0} = K_0^\pm$ is a maximal compact subgroup. For $K = K_{p,n} \times K_p$, we write M_{n,K_p} (resp. L_{n,K_p}) for M_K (resp. L_K).

Notation 5.1.1. For simplicity, we introduce the following notation

$$H_{\text{fin}}^p = U(V \otimes_F \mathbb{A}_{F,\text{fin}}^p).$$

Then K^p is an open compact subgroup of H_{fin}^p.

Since $F \neq \mathbb{Q}$, the Shimura datum (H, X) is not of PEL type. We need to change Shimura data in order to obtain the moduli interpretations and integral models. This is analogous to the case considered in [Car1986, YZZa, Zha2001a, Zha2001b], and we refer the detailed proof of various facts
to [Car1986]. We choose a negative number $\lambda \in \mathbb{Q}$ such that the extension $\mathbb{Q}(\sqrt{\lambda})$ is split at p, and the CM extension $F^\dagger = F(\sqrt{\lambda})/F$ with $\text{Gal}(F^\dagger/F) = \{1, \tau^\dagger\}$ is not isomorphic to E/F. We fix also a square root λ' of λ in \mathbb{C} with positive imaginary part, and a square root λ_p of λ in \mathbb{Q}_p. Let ι_1^\dagger (resp. ι_2^\dagger) be the embeddings of F^\dagger into \mathbb{C} above i_i ($i = 1, \ldots, d$) which sends $\sqrt{\lambda}$ to λ' (resp. $-\lambda'$). Since p is split in $\mathbb{Q}(\sqrt{\lambda})$, p_i for $i = 1, \ldots, r$ are all split in F^\dagger. We denote by p_1^\dagger (resp. p_2^\dagger) the place above p_i which sends $\sqrt{\lambda}$ to λ_p (resp. $-\lambda_p$), and assume that $\iota_{(p)} \circ \iota_1^\dagger$ induces p_1^\dagger.

By the Hasse principle, there is a unique up to isometry quaternion algebra B over F, such that B, as an F-quadratic space (of dimension 4), is isometric to V as an F-quadratic space with the quadratic form $\text{Tr}_{E/F}$, which sends λ to $\lambda/2$. We choose a negative number λ such that the Hodge map $H_0(B)$ is an isometry and hence V has both left and right multiplication by B. We fix an embedding $E \hookrightarrow B$, through which the action of E induced from the left multiplication of B coincides with the E-vector space structure of V. Let $G = \text{Res}_{F/\mathbb{Q}} B^\times$ with center $T \cong T_F$ and

$$G^\dagger = G \times_T T_{F^\dagger} \xrightarrow{\nu^\dagger} T \times T_{F^\dagger}$$

where

$$\nu^\dagger(g \times z) = \left(\text{Nm}_g \cdot z^{-1}, \frac{z}{z^\dagger} \right).$$

Consider the subtorus $T^\dagger = G_{m,\mathbb{Q}} \times T^\dagger_{F^\dagger}$, and let H^\dagger be the preimage of T^\dagger under ν^\dagger. Define the Hodge map $h^\dagger : S \to H^\dagger_{\mathbb{R}} \subset G_{\mathbb{R}} \times T_{F^\dagger,\mathbb{R}}$ by

$$z = x + iy \mapsto \left(\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \right)^{-1} \times 1, 1_2 \times z^{-1}, \ldots, 1_2 \times z^{-1}$$

(5.1)

and let X^\dagger be the $H^\dagger(\mathbb{R})$-conjugacy class of h^\dagger, where we identify $T_{F^\dagger}(\mathbb{R})$ with $(\mathbb{C}^\times)^d$ through $(\iota_1^\dagger, \ldots, \iota_d^\dagger)$. We then have the Shimura curve $M^\dagger_{K^\dagger} = \text{Sh}_{K^\dagger}(H^\dagger, X^\dagger)$ that is defined over $\iota_1^\dagger(F^\dagger)$ for an open compact subgroup K^\dagger of $H^\dagger(\mathbb{A}_f)$. Similarly, we have the smooth morphism

$$\nu^\dagger : M^\dagger_{K^\dagger} \to L^\dagger_{K^\dagger}.$$

Moreover, $h^\dagger(i)$ defines a complex structure on V_{ι_1}, and hence V_{ι_1} becomes a complex hermitian space of dimension 2 that is isometric to its original complex hermitian space structure inherited from the
E-hermitian space V. In such a way, X^\dagger can be identified with the set of negative definite complex lines in V_{ℓ}. Therefore, X^\dagger is isomorphic to X as hermitian symmetric domains.

As in [Car1986, Section 2.2], H^\dagger is a group of symplectic similitude. In fact, let $B^\dagger = B \otimes_F F^\dagger$, and $b \mapsto \overline{b}$ be the involution of the second kind on B^\dagger, which is the tensor product of the canonical involution on B and the conjugation on F^\dagger. Consider the underlying \mathbb{Q}-vector space V^\dagger of B^\dagger. Define a symplectic form by

$$\psi^\dagger(v, w) = \text{Tr}_{F^\dagger/Q} \left(\sqrt{\lambda} \text{Tr}_{B^\dagger/F^\dagger}(vw) \right)$$

for $v, w \in B^\dagger$. Then H^\dagger can be identified with the group of B^\dagger-linear symplectic similitude of $(V^\dagger, \psi^\dagger)$ through the left action $hv = v \cdot h^{-1}$. In particular, $H^\dagger(\mathbb{Q}_p)$ can be identified with the group $\mathbb{Q}_p^\times \times \prod_{i=1}^r B_{p_i}^\times$. For every open compact subgroups $K^\dagger_{p_i} \times \prod_{i=2}^r B_{p_i}^\times$, and $K^\dagger \subset H^\dagger(\mathbb{A}_{\text{fin}}^p)$, we simply write $M^\dagger_{0,K^\dagger_{p_i} \times K^\dagger}$ for $M^\dagger_{K^\dagger_{p_i}}$, where $K^\dagger = \mathbb{Z}_p^\times \times 0_{B_p}^\times \times K^\dagger_{p_i} \times K^\dagger_{p_i}$, and similarly for $L^\dagger_{0,K^\dagger_{p_i} \times K^\dagger}$.

We let

$$M^\dagger_{K,p} = M_{K^\dagger_{p_i}} \times_{E^p_v} M_{K^\dagger_{p_i}} \times_{F^p_{K^\dagger_{p_i}}}; \quad M^\dagger_{K^\dagger_{p_i}} = M_{K^\dagger_{p_i}} \times_{F^p_{K^\dagger_{p_i}}} F^p_{K^\dagger_{p_i}}$$

$$L^\dagger_{K,p} = L_{K^\dagger_{p_i}} \times_{E^p_v} L_{K^\dagger_{p_i}} \times_{F^p_{K^\dagger_{p_i}}} F^p_{K^\dagger_{p_i}},$$

where $F^p_{K^\dagger_{p_i}}$ is naturally a subfield of E^p_v, which is identified with F_p. Since H and H^\dagger have the same derived subgroup, which is also the derived subgroup of G, we have the following result of Carayol.

Proposition 5.1.2 (Section 4 of [Car1986]). Let $K^p \subset H^p_{\text{fin}}$ (Notation 5.1.1) be an open compact subgroup that is decomposable and sufficiently small. Then there is an open compact subgroup $K^\dagger_{p_i} \times K^\dagger \subset \prod_{i=2}^r B_{p_i}^\times \times H^\dagger(\mathbb{A}_{\text{fin}}^p)$, such that the geometric neutral components $M^\dagger_{0,K^\dagger_{p_i} \times K^\dagger}$ and $M^\dagger_{0,K^\dagger_{p_i} \times K^\dagger}$ are defined and isomorphic over $E^p_{0 \times \times}$.

5.1.2 Moduli interpretations and integral models: minimal level

From the Hodge map h^\dagger (5.1), we have a Hodge filtration

$$0 \subset \text{Fil}^0(V^\dagger_{C}) = (V^\dagger_{C})^{0,-1} \subset V^\dagger_{C}.$$

We define

$$t^\dagger_{V_{C}}(b) = \text{tr}(b; V^\dagger_{C}/\text{Fil}^0(V^\dagger_{C})) \in \text{Fil}^1(F^\dagger)$$

for $b \in B^\dagger$. For sufficiently small open compact subgroup K^\dagger, the curve $M^\dagger_{K^\dagger}$ represents the following functor in the category of locally noetherian $t^\dagger_{V_{C}}(F^\dagger)$-schemes (cf. [Kot1992]): for every such scheme
Two quadruples \((A, \theta, i, \eta)\) and \((A', \theta', i', \eta')\) are equivalent if there is an isogeny \(A \to A'\) that sends \(\theta\) to a \(\mathbb{Q}^\times\)-multiple of \(\theta'\), \(i\) to \(i'\), and \(\eta\) to \(\eta'\).

Taking the base change by \(\iota_{(p)}\), we obtain the functor \(M_{K^1; p}^1\) over the completion \([\iota_1^1(F^1)]\cong F_p\). For every element \((A, \theta, i, \eta)\) in \(M_{K^1; p}^1(S)\), \(\text{Lie}_S(A)\) is a \(B_p^1 = B^1 \otimes_{\mathbb{Q}} \mathbb{Q}_p\)-module. Since the algebra \(B_p^1 = B \otimes_{\mathbb{F}} (F^1 \otimes \mathbb{Q}_p)\) decomposes as

\[
B_p^1 = B_1^1 \oplus B_2^1 \oplus \cdots \oplus B_i^1 \oplus B_2^2 \oplus \cdots \oplus B_r^2,
\]

where \(B_i^1 = B^1 \otimes_{\mathbb{F}} F_p^1\) is isomorphic to \(B_p\), as an \(\mathbb{F}_p\)-algebra, the \(B_p^1\)-module \(\text{Lie}_S(A)\) decomposes as

\[
\text{Lie}_S(A) = \left(\bigoplus_{i=1}^{r} \text{Lie}_S(A)_i^1 \right) \bigoplus \left(\bigoplus_{i=1}^{r} \text{Lie}_S(A)_i^2 \right),
\]

and

\[
A_{p^\infty} = \left(\bigoplus_{i=1}^{r} (A_{p^\infty})_i^1 \right) \bigoplus \left(\bigoplus_{i=1}^{r} (A_{p^\infty})_i^2 \right),
\]

for the \(p\)-divisible group \(A_{p^\infty}\) of \(A\). Since the involution \(b \mapsto \overline{b}\) on \(B_p^1\) interchanges the factors \(B_1^1\) and \(B_2^2\), by computing the trace, we see that the condition \(\text{tr}(i(b); \text{Lie}_S(A)) = t^1(b)\) is equivalent to the following:

\[
\text{tr}(b \in B_i^1; \text{Lie}_S(A)^2_i) = \text{Tr}_{B_i^1/F_p}(b); \quad \text{Lie}_S(A)^2_i = 0, i \geq 2.
\]

Fix a maximal order \(\Lambda_2^2 = \mathcal{O}_{B_p}\), of \(B_2^2\) for each \(i = 1, \ldots, r\), and let \(\Lambda_i^1\) be the dual of \(\Lambda_2^2\). Then

\[
\Lambda_p = \left(\bigoplus_{i=1}^{r} \Lambda_i^1 \right) \bigoplus \left(\bigoplus_{i=1}^{r} \Lambda_i^2 \right) \subset \left(\bigoplus_{i=1}^{r} (V_i^1/F_p)_i \right) \bigoplus \left(\bigoplus_{i=1}^{r} (V_i^2/F_p)_i \right) = V^1_p := V^1 \otimes \mathbb{Q}_p"
is a \(\mathbb{Z}_p \)-lattice in \(V_p \) that is selfdual under \(\psi^\dagger \). There is a unique maximal \(\mathbb{Z}_{(p)} \)-order \(\mathcal{O} \subset B \) such that \(\overline{\mathcal{O}} = \mathcal{O} \), and \(\mathcal{O}^\dagger \subset \mathcal{O}_{B_p} \) that acts on \(\Lambda^2 \), where \(\mathcal{O}_{B_p} \) is the \(B^2 \)-component of \(\mathcal{O} \otimes \mathbb{Z}_{(p)} \mathbb{Z}_p \subset B \otimes \mathbb{Q}_p \). Then the functor \(M^\dagger_{0,K^\dagger_{(p),K^\dagger_{(p)}}} \) is isomorphic to the following one in the category of locally noetherian \(F_p \)-schemes: for every such scheme \(S \), \(M^\dagger_{0,K^\dagger_{(p),K^\dagger_{(p)}}}(S) \) is the set of equivalence classes of quintuples \((A, \theta, i, \bar{\eta}^p, \bar{\eta}^p_p) \) where

- \(A \) is an abelian scheme over \(S \) of dimension \(4d \);
- \(\theta : A \to A^\vee \) is a prime-to-\(p \) polarization;
- \(i : \mathcal{O} \hookrightarrow \text{End}_S(A) \otimes \mathbb{Z}_{(p)} \) such that (5.3) is satisfied, and \(\theta \circ i(b) = i(b^\vee) \circ \theta \) for all \(b \in \mathcal{O} \);
- \(\bar{\eta}^p \) is a \(K^\dagger_{(p)} \)-level structure, that is, a \(\pi_1(\mathcal{O}^\dagger, -) \)-invariant \(K^\dagger_{(p)} \)-orbit of \(B^1 \otimes \mathcal{A}_\text{fin}^p \)-linear symplectic similitude \(\eta^p : V^\dagger \otimes \mathcal{A}_\text{fin}^p \to H^i(\mathcal{O}^\dagger(\mathcal{O}^\dagger, \mathcal{A}_\text{fin}^p)) \);
- \(\bar{\eta}^p_p \) is a \(K^\dagger_{(p)} \)-level structure, that is, a \(\pi_1(\mathcal{O}^\dagger, -) \)-invariant \(K^\dagger_{(p)} \)-orbit of isomorphisms of \(\mathcal{O}^\dagger \)-modules \(\eta^p_p : \bigoplus_{i=2}^2 \Lambda^2_i \to \bigoplus_{i=2}^2 H^i(\mathcal{O}^\dagger(\mathcal{O}^\dagger, \mathbb{Z}_p^2)) \).

Two quintuples \((A, \theta, i, \bar{\eta}^p, \bar{\eta}^p_p) \) and \((A', \theta', i', (\bar{\eta}^p)'p, (\bar{\eta}^p)'p_p) \) are equivalent if there is a prime-to-\(p \) isogeny \(A \to A' \) that carries \(\theta \) to a \(\mathbb{Z}_{(p)} \)-multiple of \(\theta' \), \(i \) to \(i' \), \(\bar{\eta}^p \) to \((\bar{\eta}^p)'p \), and \(\bar{\eta}^p_p \) to \((\bar{\eta}^p)'p_p \).

We will extend the previous moduli functor to the category of locally noetherian schemes over \(\text{Spec} \mathcal{O}_F \) to construct an integral model of \(M^\dagger_{0,K^\dagger_{(p),K^\dagger_{(p)}}} \). Let us consider an abelian scheme \((A, \theta, i) \) that is a part of the datum defined above, but with the scheme \(S \) over \(\mathcal{O}_F \). Through \(\theta \), we see that \((A_{(p)})^1 \) and \((A_{(p^\infty)})^2 \) are Cartier dual to each other. We replace (5.3) by the following condition:

\[
\text{tr}(b) \in \mathcal{O}_{B_p} \subset B^1; \text{Lie}_S(A)^2_i = \text{Tr}_{B^1_p/F_p} (b) \in \mathcal{O}_{F_p}, \quad \text{Lie}_S(A)^2_i = 0, i \geq 2. \tag{5.4}
\]

This means that the \(p \)-divisible group \((A_{(p^\infty)})^2 \) is ind-\text{\'{e}tale for } \(i \geq 2 \). We let \(T_p A = \lim_{\to} A[p^n] \) that is a pro-scheme over \(S \). It has an action by \(\mathcal{O} \otimes \mathbb{Z}_{(p)} \mathbb{Z}_p \). Then \(T_p A(S)^2 \) is isomorphic to \(\Lambda^2 \) as \(\mathcal{O}^\dagger \)-modules if \(S \) is connected and simply-connected.

We define a functor \(M^\dagger_{0,K^\dagger_{(p),K^\dagger_{(p)}}} \) in the category of locally noetherian schemes over \(\mathcal{O}_F \): for every such scheme \(S \), \(M^\dagger_{0,K^\dagger_{(p),K^\dagger_{(p)}}}(S) \) is the set of equivalence classes of quintuple \((A, \theta, i, \bar{\eta}^p, \bar{\eta}^p_p) \) where

- \((A, \theta, i) \) is as in the last moduli problem but satisfies (5.4);
- \(\bar{\eta}^p \) \(K^\dagger_{(p)} \)-level structure;
- \(\bar{\eta}^p_p \) is a \(\pi_1(\mathcal{O}^\dagger, -) \)-invariant \(K^\dagger_{(p)} \)-orbit of isomorphisms of \(\mathcal{O}^\dagger \)-modules \(\eta^p_p : \bigoplus_{i=2}^2 \Lambda^2_i \to \bigoplus_{i=2}^2 T_p A(s)^2_i. \)
Two quintuples \((A, \theta, i, \bar{\eta}^p, \bar{\eta}^p_0)\) and \((A', \theta', i', (\bar{\eta}^p)', (\bar{\eta}^p)'_0)\) are equivalent if there exists a prime-to-\(p\) isogeny \(A \to A'\) satisfying the same requirements in the last moduli problem. For sufficiently small \(K^1_p \times K^1_p\), this moduli functor is represented by a regular scheme denoted by \(M_{0,K^1_p,K^1_p}^{\dagger}\), which is flat and projective over \(\text{Spec} \mathcal{O}_{E_p}\). By Proposition 5.1.2, we obtain a regular scheme \(M_{0,K^*}^{\dagger}\) that is flat and projective over \(\text{Spec} \mathcal{O}_{E_p}\) whose generic fiber is (isomorphic to) \(M_{0,K^{\dagger},p'}\). Here, we also need to use the fact that \(M_{0,K^1_p,K^1_p}^{\dagger}\) is stable for \(K^1_p\) small, and the results in [DM1969, Section 1] to make the descent argument. By construction, the neutral components of \(M_{0,K^1_p,K^1_p}^{\dagger} \times \mathcal{O}_{F_p} \mathcal{O}_{E_p}^0\) and \(M_{0,K^*}^{0} \times \mathcal{O}_{E_p} \mathcal{O}_{E_p}^0\) are isomorphic.

We denote by \((A, \theta, i)\) (that is a part of the datum of) the universal object over \(M_{0,K^1_p,K^1_p}^{\dagger}\). We also denote by \(X^1 = (A_{p_0})_2^1 \to M_{0,K^1_p,K^1_p}^{\dagger}\) the universal \(p\)-divisible group with the action by \(\mathcal{O}_{B_p}\) and another action by \(\prod_{i=2} B_{p^i} \times H^1(A_{p_0}^p)\) that is compatible with the one on the underlying scheme \(M_{0,K^1_p,K^1_p}^{\dagger}\). We have also a \(p\)-divisible group \(X \to M_{0,K^*}\) with an action by \(H_{\text{fin}}^1\) that is compatible with the one on \(M_{0,K^*}\).

Remark 5.1.3. In fact, when \(p \mid 2\) and \(B_p\) is division, the condition (5.4) is not enough. One needs to impose that \((A_{p_0})_2^1\) is special (cf. [BC1991, Section II.2]) for geometric points of characteristic \(p\).

Let us consider the case where \(e(V_p) = 1\), that is, \(V_p\) is isometric to \(V^+\); \(B_p\) is isomorphic to \(\text{Mat}_2(F_p)\); or \(U(V_p)\) is quasi-split. Before we proceed, we introduce some notations. Let \(R\) be a (commutative) ring (with a unit) and \(M\) a (left) \(R\)-module (or \(p\)-divisible group according to the context). Let \(m > 0\) be an integer. We denote by \(M^l = M^m\) (arranged in a column) as a left \(\text{Mat}_m(R)\)-module in the natural way. Conversely, for any left \(\text{Mat}_m(R)\)-module \(N\), we denote by \(N^e = eN\) the (left) \(R\)-module, where \(e = \text{diag}[1, 0, \ldots, 0] \in \text{Mat}_m(R)\), and the action is given by \(r.(en) = (e \times \text{diag}[r, \ldots, r]).n\) for \(r \in R\) and \(n \in N\). It is easy to see that the pair of adjoint functors \((-^l, -^b)\) induce an equivalence between the category of left \(R\)-modules and the category of left \(\text{Mat}_m(R)\)-modules.

We identify \(A^1_2 = \mathcal{O}_{B_p}\) with \(\text{Mat}_2(\mathcal{O}_{F_p})\), and hence \(\mathcal{O}_{B_p}^\times\) with \(\text{GL}_2(\mathcal{O}_{F_p})\), respectively. By the above discussion, we can replace the first part of (5.4) by the following one:

\[
\text{tr}(b \in \mathcal{O}_{F_p}; \text{Lie}_S(A)^{2,b}) = b,
\]

in the moduli problem \(M_{0,K^1_p,K^1_p}^{\dagger}\).

Consider a geometric point \(s : \text{Spec} \mathbb{F} \to M_{0,K^1_p,K^1_p}^{\dagger}\) of characteristic \(p\) and let \(\hat{\mathcal{O}}(s)\) be the completion of the henselization of the local ring at \(s\). By the theorem of Serre–Tate, it is the universal
deformation ring of \((A_s, \theta_s, i_s)\) that is the isomorphic to the one of \((A_{s,p\infty}, \theta_s, i_s)\). This is in turn isomorphic to the deformation ring of the \(p\)-divisible group \(X^{\dagger}_s = (A_{s,p\infty})^2_b\), which is an \(O_{F_p}\)-module of dimension 1 and height 2. Therefore, \(\hat{O}_{(s)}\) is isomorphic to \(O_{F_p}[t]\). We have the following result of Carayol [Car1986, Section 6].

Proposition 5.1.4. The scheme \(M^\dagger_{0,K_p^+,K_p^+} \) (resp. \(M_{0,K_p}\)) is smooth and projective over \(O_{F_p}\) (resp. \(O_{E_p}\)).

For a geometric point \(s\) of characteristic \(p\) of \(M^\dagger_{0,K_p^+,K_p^+}\) (resp. \(M_{0,K_p}\)), there are two cases. We say \(s\) is ordinary if the formal part of \(X^\dagger_s\) (resp. \(X_s\)) is of height 1; supersingular if \(X^\dagger_s\) (resp. \(X_s\)) is formal. We denote by \([M^\dagger_{0,K_p^+,K_p^+}]_{ss}\) (resp. \([M_{0,K_p}]_{ss}\)) the supersingular locus of the scheme \(M^\dagger_{0,K_p^+,K_p^+}\) (resp. \(M_{0,K_p}\)).

5.1.3 Basic abelian scheme

In order to obtain the moduli interpretation of special cycles, we will construct a special abelian scheme, which we name the basic abelian scheme. We fix an imaginary element \(\mu\) in \(E\), that is, an element \(\mu \neq 0\) such that \(\mu^\tau = -\mu\). Since we are interested only in the place \(p\), we identify the following commutative diagram

\[
\begin{array}{c}
\iota_1^0(F) \searrow \iota_1^0(E) \swarrow \\
\downarrow \downarrow \downarrow \\
\iota_1^1(F) \searrow \iota_1^0(F^\dagger) \swarrow \\
\downarrow \downarrow \downarrow \\
\iota_1^1(F) \searrow \iota_1^0(F) \swarrow \\
\downarrow \downarrow \downarrow \\
\iota_1^0(F) \searrow \iota_1^1(F) \swarrow \\
\end{array}
\]

with

\[
\begin{array}{c}
E \searrow E_p \swarrow \\
\downarrow \downarrow \downarrow \\
F^\dagger \searrow F_p \swarrow \\
\end{array}
\]

where the closure is taken inside \(C_p\).

Let \(E^\dagger = E \otimes_F F^\dagger\) be a CM field of degree \(4d\) that is a subalgebra of \(B^\dagger\) extending the fixed embedding \(E \hookrightarrow B\). The involution on \(B^\dagger\) induces \(e \mapsto \overline{e}\) that fixes the maximal totally real subfield
The maps

\[\iota^\phi \otimes \iota^j : E \otimes_F F^\dagger \to \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \; ; \; \iota^\psi \otimes \iota^j : E \otimes_F F^\dagger \to \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \]

for \(i = 1, \ldots, d \) and \(j = 1, 2 \) provide 4d different embeddings of \(E^\dagger \) into \(\mathbb{C} \), where \(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \) is the usual multiplication. We choose a CM type

\[\Phi = \{ \iota^2 \otimes \iota^1, \iota^2 \otimes \iota^j, \iota^2 \otimes \iota^1 | i = 2, \ldots, d \} \]

of \(E^\dagger \). Then \(\Phi \) determines a Hodge map \(h^\dagger : \mathbb{S} \to T^\dagger_{\mathbb{R}} \), where \(T^\dagger \) is the subtorus of \(\text{Res}_{E^\dagger/\mathbb{Q}} \mathbb{G}_{m,E^\dagger} \) consisting of elements \(\epsilon \) such that \(e \pi \in \mathbb{G}_{m, \mathbb{Q}} \). We have the Shimura varieties \(M^\dagger_{K^\dagger} = \text{Sh}_{K^\dagger}(T^\dagger, \{ h^\dagger \}) \) that parameterize abelian varieties over \(E^\dagger, \Phi \) with Complex Multiplication by \(E^\dagger \) of type \(\Phi \). It is finite and projective over \(\text{Spec} E^\dagger, \Phi \), where \(E^\dagger, \Phi \) is the reflex field of \((E^\dagger, \Phi) \).

To be more precise, let \(V^\dagger \) be the \(\mathbb{Q} \)-vector space underlying \(E^\dagger \). Define a symplectic form

\[\psi^\dagger(v, w) := \text{Tr}_{F^\dagger/\mathbb{Q}} \left(\sqrt{\lambda} \text{Tr}_{E^\dagger/F^\dagger}(v \overline{w}) \right) \]

for \(v, w \in E^\dagger \). Then \(T^\dagger \) can be identified with the group of \(E^\dagger \)-linear symplectic similitude of \((V^\dagger, \psi^\dagger) \), and \(T^\dagger(\mathbb{Q}_p) \) can be identified with \(\mathbb{Q}_p^\times \times \prod_{i=1}^r E_{p_i}^\times \). The Hodge map \(h^\dagger \) induces a filtration \(0 \subset \text{Fil}^0(V^\dagger_C) \subset V^\dagger_C \) such that

\[t^\dagger(e) = \text{tr}(e; V^\dagger_C / \text{Fil}^0(V^\dagger_C)) = \sum_{i \in \Phi} \iota(e) \]

for \(e \in E^\dagger \). Since we have identified \(E \) (resp. \(F^\dagger \)) with its embedding through \(\iota^1 \) (resp. \(\iota^1 \)), we can identify \(E^\dagger \) with its embedding through \(\iota^1 \otimes \iota^1 \), that is, with \(\iota^1(E) \cdot \iota^1(F^\dagger) \subset \mathbb{C} \).

Lemma 5.1.5. The reflex field \(E^\dagger, \Phi \) is \(E^\dagger \).

Proof. By definition, \(E^\dagger, \Phi \) is the field generated by the elements \(t^\dagger(e) \) for all \(e \in E^\dagger \). Let \(e = (x + y\mu) \times (x' + y'\lambda') \) be an element in \(E^\dagger \) with \(x, y, x', y' \in F \). Then

\[t^\dagger(e) = (x + y\mu)(2x') + d \sum_{i=2}^{d} 2\iota(x)(\iota(x') + \iota(y')\lambda') \]

\[= 2 \text{Tr}_{F/\mathbb{Q}}(xx') + 2 \text{Tr}_{F/\mathbb{Q}}(xy')\lambda' + 2yy'\mu - 2xy'\lambda'. \]

Therefore, \(E^\dagger, \Phi = E^\dagger \). \qed
As before, the algebra $E_p^\dagger = E^\dagger \otimes_{\mathbb{Q}} \mathbb{Q}_p$ decomposes as

$$E_p^\dagger = \left(\bigoplus_{i=1}^{r} E_i^1 \right) \bigoplus \left(\bigoplus_{i=1}^{r} E_i^2 \right) \cong \left(\bigoplus_{i=1}^{r} E_{p,i}^1 \right) \bigoplus \left(\bigoplus_{i=1}^{r} E_{p,i}^2 \right),$$

and also for its modules. Let π^\dagger_1 be the projection of E_p^\dagger to the first factor E_1^\dagger. The additive map t^\dagger extends to a map $t^\dagger_p : E_p^\dagger \to E_p^\dagger$. From the calculation in the above lemma, we find that for $(e_i^j) = (e_1^1, e_1^2, e_2^1, e_2^2) \in E_p^\dagger$,

$$\pi^\dagger_1 \circ t^\dagger_p ((e_i^j)) = \sum_{i=1}^{r} \text{Tr}_{E_{p,i}/\mathbb{Q}_p} (e_i^1) + e_1^1 + e_2^1 - \text{Tr}_{E_{p,i}/F_{p,i}} (e_i^1).$$

(5.6)

Let $\mathcal{O}^\dagger = E^\dagger \cap \mathcal{O}^\dagger$ be the unique maximal $\mathbb{Z}_{(p)}$-order in E^\dagger such that $\overline{\mathcal{O}^\dagger} = \mathcal{O}^\dagger$ and $\mathcal{O}^\dagger_{p,i} = \mathcal{O}_{E^i,p}$ is the ring of integers, where $\mathcal{O}^\dagger_{p,i}$ is the projection of $\mathcal{O}^\dagger \otimes_{\mathbb{Z}_{(p)}} \mathbb{Z}_p$ to the E_i^2 component. For any abelian variety A over an E_{p^\dagger}-scheme S, which is equipped with an action by \mathcal{O}^\dagger, $\text{Lie}_S(A)$ is an E_{p^\dagger}-module, and hence decomposes as the direct sum of $\text{Lie}_S(A)_i^j$ ($i = 1, \ldots, r$, $j = 1, 2$). In view of (5.4) and (5.6), we introduce the following trace condition

$$\text{tr}(e \in \mathcal{O}_{E^i,p} \subset E_i^{\dagger 2}; \text{Lie}_S(A)_i^j) = e_{p^\dagger} \in E_{p^\dagger}; \quad \text{Lie}_S(A)_i^j = 0, i \geq 2.$$

(5.7)

Let

$$K^\dagger = \mathbb{Z}_p^\times \times \prod_{i=1}^{r} \mathcal{O}^\dagger_{E^i,p} \times K_{\dagger,p}$$

be an open compact subgroup of $T^\dagger(\mathbb{A}_{\text{fin}})$, and we denote $M_{00,K^\dagger,p}^\dagger = M_{K^\dagger}^\dagger$. Let $M_{00,K^\dagger,p^\dagger}^\dagger$ be its base change under $\iota_{(p)} \circ (t^\dagger_1 \otimes t^\dagger_1) : E^\dagger \to E_{p^\dagger}$. We fix a sufficiently small compact subgroup $K_{\dagger,p}$ of $T^\dagger(\mathbb{A}_{\text{fin}}^p)$, $M_{00,K_{\dagger,p},p^\dagger}^\dagger$ represents the following functor in the category of locally noetherian schemes over E_{p^\dagger}: for every such scheme S, $M_{00,K_{\dagger,p},p^\dagger}^\dagger(S)$ is the set of equivalence classes of quadruples $(A, \vartheta, j, \eta^p)$, where

- A is an abelian scheme over S of dimension $2d$;
- $\vartheta : A \to A^\vee$ is a prime-to-p polarization;
- $j : \mathcal{O}^\dagger \hookrightarrow \text{End}_S(A) \otimes \mathbb{Z}_{(p)}$ such that (5.7) is satisfied, and $\vartheta \circ j(e) = j(\pi) \circ \vartheta$ for all $e \in \mathcal{O}^\dagger$;
- η^p is a $K_{\dagger,p}$-level structure, that is, a $\pi_1(S, s)$-invariant $K_{\dagger,p}$-orbit of $E^\dagger \otimes \mathbb{A}_{\text{fin}}^p$-linear symplectic similitude $\eta^p : V^\dagger \otimes \mathbb{A}_{\text{fin}}^p \to H^{\dagger}_{1}(A_s, \mathbb{A}_{\text{fin}}^p)$.

The notion of being equivalent is similarly defined as before. Moreover, we can extend this modular
functor to the category of locally noetherian schemes over $\mathcal{O}_{E_p^\circ}$. We omit the detailed definition. One can similarly prove that the extended moduli functor, denoted by $\mathcal{M}_{0,K^1,p}^\dagger$, is connected, and finite, projective, smooth over $\text{Spec} \mathcal{O}_{E_p^\circ}$. Therefore, it is isomorphic to $\text{Spec} \mathcal{O}_{E_p}$ for some finite unramified extension of local fields E°/E_p. We fix an embedding $i^*: E^\circ \hookrightarrow E_p^0$. Let $(\mathcal{E}, \vartheta, j)$ be the universal object over $\mathcal{M}_{0,K^1,p}^\dagger \times_{\mathcal{O}_{E_p^0}} \mathcal{O}_{E_p^0} \cong \text{Spec} \mathcal{O}_{E_p^0}$, and denote $Y = (\mathcal{E}_{p^\circ})^\dagger_1$. Fix a geometric point $s : \mathcal{O}_{E_p^0} \hookrightarrow \mathbb{C}$ of characteristic 0 and an \mathcal{O}^1-generator x of $H^\dagger_{\text{B}}(\mathcal{E}_s, \mathbb{Z}(p))$, where H^\dagger_{B} is the Betti homology. We call the quadruple $(\mathcal{E}, \vartheta, j; x)$ a basic unitary datum.

In what follows, we fix a basic unitary datum $(\mathcal{E}, \vartheta, j; x)$ once and for all. Since $\text{Spec} \mathcal{O}_{E_p^0}$ is simply connected, x extends to a unique section x^p of the lisse $\mathcal{A}_{\text{fin}}^p$-sheaf $H^\dagger_{\text{et}}(\mathcal{E}, \mathcal{A}_{\text{fin}}^p)$ over $\text{Spec} \mathcal{O}_{E_p^0}$, and determines canonically an element x^p of $\bigoplus_{r=2}^\infty (T_p \mathcal{E})^2_r$. For any scheme S over $\text{Spec} \mathcal{O}_{E_p^0}$, we denote by x^p_S and $x^p_{p,S}$ for the corresponding base change respectively.

Let $(\mathcal{E}, \vartheta_E, j_E)$ be the special fiber of $(\mathcal{E}, \vartheta, j)$, where E is an abelian variety over $\text{Spec} \mathbb{F}$. Let $Y = (\mathcal{E}_{p^\circ})^\dagger_1$ and $i_Y : \mathcal{O}_{E_p^\circ} \rightarrow \text{End}(Y)$ be the induced $\mathcal{O}_{E_p^\circ}$-action. Therefore, Y is the special fiber of Y, which is an $\mathcal{O}_{F_p^\circ}$-module over $\text{Spec} \mathbb{F}$.

5.1.4 The nearby space

In this and the next subsections, we assume that p is nonsplit in E, and fix an \mathbb{F}-point s in the supersingular locus of the common neutral component of $\mathcal{M}_{0,K^1,p}^\dagger$ and \mathcal{M}_{0,K^r}, which corresponds to a quintuple $(\mathfrak{A}, \theta_{\mathfrak{A}}, i_{\mathfrak{A}}, \eta^\dagger, \eta^\dagger_{\mathfrak{A}})$. Let

$$\tilde{V}^\dagger = \text{Mor} \left((\mathcal{E}, j_E), (\mathfrak{A}, i_{\mathfrak{A}}) \right) \otimes \mathbb{Q},^1$$

which is an E^\dagger-vector space of dimension 2. The map

$$\text{Mor} \left((\mathcal{E}, j_E), (\mathfrak{A}, i_{\mathfrak{A}}) \right) \times \text{Mor} \left((\mathcal{E}, j_E), (\mathfrak{A}, i_{\mathfrak{A}}) \right) \rightarrow \mathcal{O}^\dagger$$

sending (\tilde{x}, \tilde{y}) to

$$(\tilde{x}, \tilde{y})' := j_{E}^{-1} \circ \theta_{E}^{-1} \circ \tilde{y}^\dagger \circ \theta_{\mathfrak{A}} \circ \tilde{x}$$

induces a E^\dagger-hermitian form on \tilde{V}^\dagger. If we let $(\mathfrak{A}^0, \theta_{\mathfrak{A}^0}, i_{\mathfrak{A}^0})$ be the isogeny class of $(\mathfrak{A}, \theta_{\mathfrak{A}}, i_{\mathfrak{A}})$, then $\tilde{B}^\dagger = \text{End}(\mathfrak{A}^0, i_{\mathfrak{A}^0})$ is a quaternion algebra over F^\dagger. Moreover, the underlying F^\dagger-quadratic spaces of \tilde{V}^\dagger and \tilde{B}^\dagger are isometric. The hermitian form $(-, -)'$ induces a \mathbb{Q}-symplectic form on \tilde{V}^\dagger. If we let \tilde{H}^\dagger be the corresponding group of symplectic similitude, then $\text{Aut}(\mathfrak{A}^0, \theta_{\mathfrak{A}^0}, i_{\mathfrak{A}^0})$ can be identified

1Here $(\mathfrak{A}, i_{\mathfrak{A}})$ really means $(\mathfrak{A}, i_{\mathfrak{A}} | \mathcal{O}^\dagger)$, and we apply the similar convention in what follows.
with $\tilde{H}^1(\mathbb{Q})$. We fix an E-subspace \tilde{V} of V^\dagger of dimension 2 that is stable under the action of $\tilde{H}^1_{\text{der}}(\mathbb{Q})$ and such that the restricted hermitian form $(-,-)|_{V^\dagger}$ takes value in E. Then $\tilde{V}^\dagger = \tilde{V} \otimes_E E^\dagger$, and \tilde{V}_v is isometric to V_v exactly for v away from $\{\iota_1, p\}$. Let $\tilde{H} = \text{Res}_{F/\mathbb{Q}} U(V^\dagger)$. We fix an isometry $\gamma^p = (\gamma_p^p, \gamma_0^p) : \tilde{V} \otimes_F A_{\text{fin}}^p \to V \otimes_F A_{\text{fin}}^p$ such that $\varrho^\ast(\chi^p) \in \bar{\eta}_p^p(\gamma_p^p(\varrho));$ for every element $\varrho \in \tilde{V}$. In particular, γ^p identifies \tilde{H}_{fin}^p with H_{fin}^p.

5.1.5 Integral special subschemes: minimal level

For every admissible $x \in V \otimes A_{\text{fin}, E}$, we have the subscheme $Z(x)_K$ on M_K that is a special cycle introduced in 3.1.2. For $K = K_{p,0}K^p$, let us consider the curve M_{0,K^p,p^*}, which is the base change $M_K \times_E E_{p^*}$, and its subscheme $Z(x)_{0,K^p,p^*}$, which is the corresponding base change of $Z(x)_K$.

Consider $x^\dagger \in V^\dagger$ and $h^\dagger \in H^\dagger(A_{\text{fin}}^p)$, such that

- the $(V^\dagger \cap V \cap A_{\text{fin}, E})$-component of $h^\dagger \cap V \cap A_{\text{fin}, E}$ (inside $V^\dagger \cap V \cap A_{\text{fin}, E}$) contains a K-orbit that has totally positive definite norm in E. Here, $K^\dagger = \mathbb{Z}_p^\times \times O_{B_p^\times} \times K_{p^1, p}^\dagger \times K_{p, p^1}$ and $K = K_{p,0}K^p$ for K^p as in Proposition 5.1.2.

We define a functor $\mathcal{Z}^\dagger(x^\dagger, h^\dagger)^0_{0,K^p_{p^1}, K_{p, p^1}}$ in the category of locally noetherian schemes over $O_{E_{p^*}}$ as follows: for every such scheme S, $\mathcal{Z}^\dagger(x^\dagger, h^\dagger)^0_{0,K^p_{p^1}, K_{p, p^1}}(S)$ is the set of equivalence classes of sextuples $(A, \theta, i, \bar{\eta}_p, \bar{\eta}_p^p, \varrho^A)$ where

- $(A, \theta, i, \bar{\eta}_p, \bar{\eta}_p^p)$ is an element of $M^\dagger_{0,K^p_{p^1}, K_{p, p^1}}(S);$
- $\varrho^A : E \times \text{Spec} O_{E_{p^1}}^0 \to A$ is a quasi-homomorphism that satisfies the following conditions:

1. For any $e \in O^\dagger$, the following diagram commutes:

$$
\begin{array}{ccc}
\mathcal{E} \times \text{Spec} O_{E_{p^1}}^0 & \longrightarrow & A \\
j(e) \downarrow & & \downarrow \iota_A(e) \\
\mathcal{E} \times \text{Spec} O_{E_{p^1}}^0 & \longrightarrow & A;
\end{array}
$$
2. \(q_A \) induces a homomorphism from \(\mathcal{Y} \times_{\text{Spec} \, O_{E_p^0}} S \) to \((A_{p^c})_1^2\).

3. For the geometric point \(s \) defining the \(K^1,\varpi\)-level structure, the map \(\rho_{A_s,*} : H^0_1(E_s,A_p^{\varphi}_{\text{fin}}) \to H^0_1(A_s,A_p^{\varphi}_{\text{fin}}) \) sends \(x_s^p \) into \(\bar{\eta}^p(h^{1,-1}x^1) \).

4. The map \(\rho_{A,s,*} : \bigoplus_{i=2}(T_pE)_i^2 \to \bigoplus_{i=2}(T_pA)_i^2 \otimes O_{E_p}, F_p, \) sends \(x_p,x_s^p \) into \(\bar{\eta}^p(h^{1,-1}x^1) \).

The equivalence relations are defined in the similar way. The evident morphism

\[
\mathcal{Z}^1(x^1,h^1)_{0,K_p^1,K^1,\varpi} \to \mathcal{M}^1_{0,K_p^1,K^1,\varpi} \times_{O_{E_p^0}} O_{E_p^0}
\]

is finite and its image is a 1-dimensional closed subscheme that is stable under the action of the Galois group \(\text{Gal}(O_{E_p^0}/O_{E_p}) \). Therefore, \(\mathcal{Z}^1(x^1,h^1)_{0,K_p^1,K^1,\varpi} \) defines a 1-dimensional closed subscheme \(\mathcal{Z}^1(x^1,h^1)_{0,K_p^1,K^1,\varpi} \) of \(\mathcal{M}^1_{0,K_p^1,K^1,\varpi} \), which only depends on the orbit \(K^1h^{1,-1}x^1 \). Moreover, by definition, the intersection \(\mathcal{Z}^1(x^1,h^1)_{0,K_p^1,K^1,\varpi} \cap M^0_{0,K^1,\varpi} \) inside \(\mathcal{M}^1_{0,K_p^1,K^1,\varpi} \) coincides with the special cycle \(Z(x)_0(K^1,\varpi) \) if \(x \in K^1h^{1,-1}x^1 \) has totally positive definite norm in \(E \). Conversely, for every admissible \(x \in V \otimes A_{F,\text{fin}} \) with \(x_p \in A_p \), we have a 1-dimensional closed subscheme \(\mathcal{Z}(x)_{0,K^1} \) of \(M_{0,K^1} \) obtained by the Hecke translation of \(\mathcal{Z}^1(x^1,h^1)_{0,K_p^1,K^1,\varpi} \cap M^0_{0,K^1,\varpi} \), whose generic fiber is \(Z(x)_{0,K^1,\varpi} \). It only depends on the orbits \(K_p,0,K^1 \).

From now on, we assume that \((p \text{ is nonsplit in } E) \) and \(e(V_p) = 1 \). Following [Car1986, 11], we have the following isomorphisms of sets:

\[
[M^1_{0,K_p^1,K^1,\varpi}]_{\text{ss}}(E) \cong \bar{H}^1(Q) \setminus \left(\mathbb{Z} \times \prod_{i=2}^r B^\times_p/K_p^1 \times \bar{H}^1(A_p^{\varphi}_{\text{fin}})/K^1,\varpi \right)
\]

\[
[M^0_{0,K^1}]_{\text{ss}}(E) \cong \bar{H}^1(Q) \setminus \bar{H}^1_{\text{fin}}/K^1
\]

such that in both cases, the neutral double coset corresponds to the point \(s \). Moreover, we have the following lemma.

Lemma 5.1.6. The special fiber \(\mathcal{Z}^1(x^1,h^1)_{0,K^1,\varpi,K^1,\varpi} \) (resp. \(\mathcal{Z}(x)_{0,K^1} \)) locates in the supersingular locus \([M^1_{0,K_p^1,K^1,\varpi}]_{\text{ss}} \) (resp. \([M^0_{0,K^1}]_{\text{ss}} \)).

Proof. We only need to prove for \(\mathcal{Z}^1(x^1,h^1)_{0,K_p^1,K^1,\varpi} \). Let \(s = (A,\theta,i,\bar{\eta}^p,\bar{\eta}^p_{\varphi},q_A) \) be an \(\mathbb{F}\)-point of \(\mathcal{Z}^1(x^1,h^1)_{0,K_p^1,K^1,\varpi} \). We have a nontrivial homomorphism between \(O_{E_p^0}\)-modules \(q_{A,s,*} : Y \to (A_{p^c})^1_1 = X^1_s \cong (X^1_s)^{\otimes 2} \). Therefore, there is at least one projection \((X^1_s)^{\otimes 2} \to X^1_s\) whose composition with \(q_{A,s,*} \) is nontrivial. Since \(Y \) is formal, \(X^1 \) is formal. The lemma follows. \(\square \)
5.1.6 Remark on the case $F = \mathbb{Q}$

We briefly explain the constructions in the above four subsections in the case $F = \mathbb{Q}$. Therefore, E/\mathbb{Q} is a imaginary quadratic extension. Let ι^0, ι^\bullet be two different embeddings of E into \mathbb{C} such that $\iota_p \circ \iota_{1}^0 : E \hookrightarrow \mathbb{C}_p$ induces the place p°. We identify E with a subfield of \mathbb{C} via the embedding ι^0. If p is split in E, we denote p^\bullet the other place of E above p. We have the hermitian space V over E of dimension 2 and signature $(1, 1)$, the unitary group H over \mathbb{Q}. For a sufficiently small open compact subgroup $K \subset H(\mathbb{A}_{\text{fin}})$, the Shimura curve $\text{Sh}_K(H, X)$ is a smooth and quasi-projective curve defined over $\iota^0(E)$, and is proper if and only if V is anisotropic.

By the Hasse principle, there is a unique up to isometry quaternion algebra B over \mathbb{Q}, such that B, as a \mathbb{Q}-quadratic space (of dimension 4), is isometric to V as an F-quadratic space with the quadratic form $\text{Tr}_{E/\mathbb{Q}}(-, -)$, where $(-, -)$ is the hermitian form on V. We identify two quadratic spaces B and V through a fixed isometry and hence V has both left and right multiplication by B.

We fix an embedding $E \hookrightarrow B$, through which the action of E induced from the left multiplication of B coincides with the E-vector space structure of V. We let $\tilde{H}^\dagger = B^\times$, which is different from the case $F \neq \mathbb{Q}$. Then similarly, we have the Shimura curve $\text{Sh}_{K^\dagger}(H^\dagger, X^\dagger)$ defined over \mathbb{Q}. We can view V as a symplectic space over \mathbb{Q} and \tilde{H}^\dagger the group of E-linear symplectic similitude.

Let

$$\text{Sh}(H)_{n,K^p;p^\circ} = \text{Sh}_{K_{p,n,K^p}}(H, X) \times_{E} E_{p^\circ}; \quad \text{Sh}(H^\dagger)_{n,K^p;p^\circ} = \text{Sh}_{K_{p,n,K^p}}(H^\dagger, X^\dagger) \times_{\mathbb{Q}} \mathbb{Q}_{p^\circ}.$$

We have the following proposition that is parallel to Proposition 5.1.2.

Proposition 5.1.7. Let $K^p \subset H^p_{\text{fin}}$ be an open compact subgroup that is decomposable and sufficiently small. Then there is an open compact subgroup $K^\dagger_{p} \subset H^\dagger_{\text{fin}}$, such that the geometric neutral components $\text{Sh}(H)^0_{0,K^p;p^\circ}$ and $\text{Sh}(H^\dagger)^0_{0,K^\dagger;p^\circ}$ are defined and isomorphic over $E^0_{p^\circ}$.

We are going to define a functor $\mathcal{M}^\dagger_{0,K^\dagger;p}$ in the category of locally noetherian schemes over \mathbb{Z}_p. There are two case: the anisotropic case, i.e., B is division, and the isotropic case, i.e., B is isomorphic to the matrix algebra. In the anisotropic case, for every \mathbb{Z}_p-scheme S, define $\mathcal{M}^\dagger_{0,K^\dagger;p}(S)$ to be the set of equivalence classes of quadruples $(A, \theta, i, \bar{\eta}^p)$ where

- A is an abelian surface over S;
- $\theta : A \to A^\vee$ is a prime-to-p polarization;
- $i : \mathbb{O}_B \hookrightarrow \text{End}_S(A)$ of a monomorphism of rings such that $\det(i(b); \text{Lie}_S(A)) = \text{Nm} b$;
• $\bar{\eta}^p$ is a $K^{1,p}$-level structure, that is, a $\pi_1(S,s)$-invariant $K^{1,p}$-orbit of $B \otimes A_{\text{fin}}^p$-linear symplectic similitude $\eta^p : V \otimes A_{\text{fin}}^p \to H^1(A,s,A_{\text{fin}}^p)$.

In the isotropic case, for every \mathbb{Z}_p-scheme S, define $\mathcal{M}_0^{1,0}(S)$ to be the set of equivalence classes of pairs $(A^p, \bar{\eta}^p)$ where A^p is a generalized elliptic curve over S, and $\bar{\eta}^p$ is a $K^{1,p}$-level structure (cf. [K-M1985]). In both cases, the equivalence relation is described by prime-to-p isogenies, and $\mathcal{M}_0^{1,0}(\mathbb{Z}_p)$ is represented by a smooth and projective scheme $\mathcal{M}_0^{1,0}$ over \mathbb{Z}_p. Thus we obtain a scheme \mathcal{M}_0 that is smooth and projective over $\text{Spec} \mathcal{O}_{E_{p^\infty}}$ whose generic fiber is (the Baily–Borel compactification of) $\text{Sh}(H)_{0,K^{1,p}p^\infty}$. By construction, the neutral components of $\mathcal{M}^{1,0} \times_{\mathcal{M}^{0,0}} \mathcal{O}_{E'_{p^\infty}}$ and $\mathcal{M}^{1,0} \times_{\mathcal{M}^{0,0}} \mathcal{O}_{p^\infty}$ are isomorphic. In the isotropic case, we will denote $A = (A^p)^{\dagger}$, $\bar{\eta}^p = (\bar{\eta}^p)^{\dagger}$ when A^p is an elliptic curve. Moreover, we have the canonical polarization $\theta : A \to A^\vee$ and the $\mathcal{O}_B = \text{Mat}_2(\mathbb{Z})$-action $i : \mathcal{O}_B \to \text{End}_S(A)$.

When $F = \mathbb{Q}$, in the basic unitary datum $(\mathcal{E}, \vartheta, j; x)$, \mathcal{E} is an elliptic curve over $\text{Spec} \mathcal{O}_{E_{p^\infty}}$ with the principal polarization ϑ and the \mathcal{O}_E-action $j : \mathcal{O}_E \to \text{End}_{\mathcal{O}_{E_{p^\infty}}}(\mathcal{E})$. Let $\mathcal{Y} = (\mathcal{E}_{p^\infty}, \mathcal{E}^\circ)$. Let (E, ϑ_E, j_E) be the special fiber of $(\mathcal{E}, \vartheta, j)$, where E is an elliptic curve over $\text{Spec} \mathbb{F}$. Let $Y = E_{p^\infty}$ and $i_Y : \mathcal{O}_{E_{p^\infty}} \to \text{End}(Y)$ be the induced $\mathcal{O}_{E_{p^\infty}}$-action. Therefore, Y is the special fiber of \mathcal{Y}.

We now assume that p is non-split in E. For every admissible $x \in V \otimes A_{\text{fin}}$ with $x_p \in \Lambda_p$, we can similarly define a 1-dimensional closed subscheme $Z(x)_{0,K^p}$ of M_{0,K^p}, whose generic fiber is $Z(x)_{0,K^{1,p}}$. It only depends on the orbits $K_{0,p}K^p$. In the isotropic case, $Z(x)_{0,K^p}$ is disjoint from the set of cusps. If we further assume that $\epsilon(V_p) = 1$, then we have the following isomorphism of sets:

$$[M_{0,K^p}]_{ss}(\mathbb{F}) \cong \hat{H}(\mathbb{Q}) \backslash \hat{H}_{\text{fin}}^p / K^p,$$

such that the neutral double coset corresponds to the point s. Moreover, we have that the special fiber $[Z(x)_{0,K^p}]_{sp}$ locates in the supersingular locus $[M_{0,K^p}]_{ss}$.

5.2 Local intersection numbers

In this section, we study the formal scheme \mathcal{N} and its special formal subschemes $Z(x)$. Therefore, p will be a finite place of F that is non-split in E and such that $\epsilon(V_p) = 1$.

5.2.1 p-adic uniformization of supersingular locus

Recall that we have fixed an \mathbb{F}-point s on the common neutral component of $\mathcal{M}^{1,0} \times_{\mathcal{M}^{0,0}} \mathcal{O}_{E_{p^\infty}}$ and M_{0,K^p}, which corresponds to a quintuple $(A, \theta_A, i_A, \bar{\eta}^p, \eta^p)$. Let $X = (A_{p^\infty})^{\dagger}$ and $i_X : \text{Mat}_2(\mathcal{O}_p) \to \text{End}(X)$
be the induced $\text{Mat}_2(\mathcal{O}_{F_p})$-action. Then X^\dag is a formal \mathcal{O}_{F_p}-module of dimension 1 and height 2.

We define a functor \mathcal{N} in the category of schemes over $\text{Spec} \mathcal{O}_{F_p}$, where ϖ is locally nilpotent: for every such scheme S, $\mathcal{N}(S)$ is the set of equivalence classes of pairs (G, ρ_G) where

- G is an \mathcal{O}_{F_p}-module over S of dimension 1 and height 2;
- $\rho_G : X^\dag \times_{\text{Spec} \mathcal{F}} S_\text{sp} \to G \times_S S_\text{sp}$ is a quasi-isogeny of height 0 (which is in fact an isomorphism).

Here, $S_\text{sp} = S \times_{\text{Spec} \mathcal{O}_{F_p}} \text{Spec} \mathcal{F}$.

Two pairs (G, ρ_G) and $(G', \rho_{G'})$ are equivalent if there is an isomorphism $G' \to G$ sending ρ_G to $\rho_{G'}$. Then \mathcal{N} is represented by the formal scheme \mathcal{N}, which is isomorphic to $\text{Spf} R_{F_p,2}$, where $R_{F_p,2} = \mathcal{O}_{F_p}[\![t]\!]$. Let $\mathcal{N}' = \mathcal{N} \times_{\mathcal{O}_{F_p}} \mathcal{O}_{E_{p^2}}$.

By the theorem of Serre–Tate, the formal completion of $\mathcal{M}^\dag_{0,K^p_\varpi,1+1}$ (resp. $\mathcal{M}_{0,K^p_\varpi,ss}$) at s is canonically isomorphic to \mathcal{N} (resp. \mathcal{N}'). Therefore, if we denote by $[\mathcal{M}^\dag_{0,K^p_\varpi,1+1}]^\wedge$ (resp. $[\mathcal{M}_{0,K^p_\varpi,ss}]^\wedge$) the formal completion along the supersingular locus, then we have the following p-adic uniformization:

$$\mathcal{M}^\dag_{0,K^p_\varpi,1+1,ss} \times \mathcal{O}_{F_p} / \mathcal{O}_{E_{p^2}} \cong \tilde{H}(\mathcal{N}) \backslash \mathcal{M}^\dag_{0,K^p_\varpi,1+1} / \mathcal{O}_{E_{p^2}} \cong \tilde{H}(\mathcal{N}') \times \tilde{H}^p_{\text{fin}} / K^p.$$

Such uniformization is a special case of those considered in [RZ1996].

5.2.2 Special formal subschemes

Recall that we have the E^\dag-hermitian space \tilde{V}^\dag and an E-subvector space \tilde{V}. The obvious morphism

$$\text{Mor} \left((E, j_E, (A, i_A)) \right) \to \text{Mor} \left((Y, j_Y, (X, i_X)) \right)$$

in fact identifies the later $\mathcal{O}_{E_{p^2}}$-module as the maximal lattice Λ^- in $\tilde{V}_{p^2} \cong V^-$. For every

$$\tilde{x} \in \text{Mor} \left((Y, j_Y, (X, i_X)) \right)_{\text{reg}} := \text{Mor} \left((Y, j_Y, (X, i_X)) \right) - \{0\},$$

we define a subfunctor $\mathcal{F}(\tilde{x})$ of \mathcal{N} as follows: for every scheme S in the previously mentioned category, $\mathcal{F}(\tilde{x})(S)$ is the set of equivalence classes of $(G, \rho_G) \in \mathcal{N}(S)$ such that the following composed homomorphism

$$\left(Y \times_{\text{Spec} \mathcal{O}_{F_{p^2}}} \text{Spec} \mathcal{F} \right) \times_{\text{Spec} \mathcal{F}} S_\text{sp} = Y \times_{\text{Spec} \mathcal{F}} S_\text{sp} \to X \times_{\text{Spec} \mathcal{F}} S_\text{sp} \xrightarrow{\tilde{x}'} G^\dag \times_S S_\text{sp}$$

is an \mathcal{O}_{F_p}-module of dimension 1 and height 2;
extends to a homomorphism \(y \times_{\text{Spec} A_{/R}} S \to G^d \). Then \(\mathcal{Z}(\bar{x}) \) is represented by a closed formal subscheme \(\mathcal{Z}(\bar{x}) \) of \(\mathcal{N} \). In fact, one can show that it is a relative divisor of \(\mathcal{N} \) by the same argument in [KR2011, Proposition 3.5]. We will use the same notation for the base change of \(\mathcal{Z}(\bar{x}) \) in \(\mathcal{N}' \).

Let \(\phi = \phi_{g,\infty} \otimes (\otimes_{v \in \Sigma_{\text{fin}}} \phi_v) \) such that

- \(\phi_{g,\infty} := \otimes_{v} (\otimes_{v \in \Sigma_{\text{fin}}} \phi_v) \) is in \((V(A_{/\text{fin}}))^K \);
- \(\phi_p = \phi_{p,\infty}^0 \) is the characteristic function of the self-dual lattice \(\Lambda^+ \) of \(\Lambda_p \);
- \(\phi(0) = 0 \).

Let \(g = (g_v) \in H'(A_F) \) such that \(g_p \in n(b_p)\mathcal{X}_p' \) for some unipotent element \(n(b_p) \in \mathcal{N}'(F_p') \). Consider the generating series

\[
Z_p(g) = \sum_{x \in K \setminus V(A_{/\text{fin}})-\{0\}} (\omega_\chi(g) \phi)(x) Z(x)_K
= \sum_{x \in K \setminus V(A_{/\text{fin}})-\{0\}} \psi_p(b_p T(x)) (\phi_p^0 \otimes (\omega_\chi(g) \phi_p))(x) Z(x)_{K_p,0,K^p}.
\]

Define

\[
Z_{g_p}(g)_{0,K^p} = \sum_{x \in K \setminus V(A_{/\text{fin}})-\{0\}} \psi_p(b_p T(x)) (\phi_p^0 \otimes (\omega_\chi(g) \phi_p))(x) Z(x)_{0,K^p},
\]

whose generic fiber is the base change of \(Z_p(g) \) to \(E_{p^\circ} \). Moreover, its completion at the \(\mathbb{F} \)-point \(s \) is

\[
[Z_{g_p}(g)_{0,K^p}]_{s}^\wedge = \sum_{\bar{x} \in V} \psi_p(b_p \bar{T}(\bar{x})) (\phi_p^0 \otimes (\omega_\chi(g) \phi_p)) (\bar{x}) \mathcal{Z}(\bar{x})_s.
\] \hspace{1cm} (5.8)

Here, \(\phi_p^0 \) is the characteristic function of \(\text{Mor}((\mathcal{X},j_{\mathcal{X}}), (\mathcal{X},i_{\mathcal{X}})) \), and in particular, the notation \(\mathcal{Z}(\bar{x})_s \) makes sense since \(\phi(0) = 0 \).

5.2.3 A formula for local intersection multiplicity

In this and the next subsections, we will assume that \(p \) is not divided by 2 and is \textit{inert} in \(E \). For every pair \((\bar{x}_1, \bar{x}_2) \in \text{Mor}((\mathcal{Y},j_{\mathcal{Y}}), (\mathcal{X},i_{\mathcal{X}})) \) that are linearly independent, the formal divisors \(\mathcal{Z}(\bar{x}_1) \) and \(\mathcal{Z}(\bar{x}_2) \) intersects properly at the unique closed point of \(\mathcal{N} \). We would like to calculate the intersection number \(\mathcal{Z}(\bar{x}_1) \cdot \mathcal{Z}(\bar{x}_2) \). Assuming that \((\bar{y}_1, \bar{y}_2) = (\bar{x}_1, \bar{x}_2)g \) for some \(g \in \text{GL}_2(\mathcal{O}_{E_{p^\circ}}) \) such that \((\bar{y}_1, \bar{y}_2) \)}
has the moment matrix

\[T \left((\bar{y}_1, \bar{y}_2) \right) = \begin{pmatrix} \varpi^a \\ \varpi^b \end{pmatrix} \]

with \(a\) nonnegative even and \(b\) positive odd. If we denote by \(\text{Def}(X^\circ, (\bar{x}_1, \bar{x}_2))\) the subring of \(\text{Def}(X^\circ) = \mathcal{O}_{\mathcal{F}_p[[t]]}\) where \((\bar{x}_1, \bar{x}_2)\) deforms, then

\[\mathcal{Z}(\bar{x}_1) \cdot \mathcal{Z}(\bar{x}_2) = \text{length}_{\mathcal{O}_{\mathcal{F}_p}} \text{Def}(X^\circ, (\bar{x}_1, \bar{x}_2)) = \mathcal{Z}(\bar{y}_1) \cdot \mathcal{Z}(\bar{y}_2). \]

Therefore, we only need to study the intersection number \(\mathcal{Z}(\bar{y}_1) \cdot \mathcal{Z}(\bar{y}_2)\).

Let \(Y^\tau\) be the unique (up to isomorphism) formal \(\mathcal{O}_{\mathcal{F}_p}\)-module of dimension 1 and height 2 with an \(\mathcal{O}_{E^\circ}\)-action \(j_{Y^\tau}\), such that

- As \(\mathcal{O}_{F_p}\)-modules, there is an isomorphism \(Y \cong Y^\tau\) (and we fix such an isomorphism); and
- \(j_{Y^\tau}\) is given by the composition \(\mathcal{O}_{E^\circ} \xrightarrow{\tau} \mathcal{O}_{E^\circ} \xrightarrow{j_{Y^\tau}} \text{End}(Y) \cong \text{End}(Y^\tau)\).

By [KR2011, Lemma 4.2], there is an isomorphism

\[\rho_X : Y \times Y^\tau \to X \]

that commutes with \(\mathcal{O}_{E^\circ}\)-actions, such that as elements of \(\text{Hom}_{\mathcal{O}_{E^\circ}}(Y, Y \times Y^\tau)\),

\[\rho_X^{-1} \circ \bar{y}_\alpha = \begin{cases} \text{inc}_{\alpha} \circ \Pi^a & \alpha = 1 \\ \text{inc}_{\alpha} \circ \Pi^b & \alpha = 2, \end{cases} \]

where

- \(\text{inc}_{\alpha}\) (\(\alpha = 1, 2\)) denotes the inclusion of \(Y\) into the \(\alpha\)-th component of \(Y \times Y^\tau \cong Y \times Y\); and
- \(\Pi\) is a fixed uniformizer of the division algebra \(\text{End}(Y)\).

In what follows, we will identify \(X\) with \(Y \times Y^\tau\) via the isomorphism \(\rho_X\).

For an integer \(s \geq 0\), let \(F_s\) be a quasi-canonical lifting of level \(s\), which is an \(\mathcal{O}_{F_p}\)-module over \(\text{Spf} \mathcal{O}_{\mathcal{F}_p}\), unique up to the Galois action (cf. [Gro1986]). Therefore, it defines a morphism \(\text{Spf} \mathcal{O}_{\mathcal{F}_p} \to \mathcal{N}\) that is a closed immersion. Let \(\mathcal{Z}_s\) be the divisor of \(\mathcal{N}\) defined by the image, which is independent of \(F_s\) we choose. We have the following proposition generalizing [KR2011, Proposition 8.1] from \(\mathbb{Q}_p\) to \(F_p\).
Proposition 5.2.1. As divisors on \mathcal{N}, we have

$$\mathcal{Z}(\tilde{y}_1) = \sum_{s=0}^{a \text{ even}} \mathcal{Z}_s; \quad \mathcal{Z}(\tilde{y}_2) = \sum_{s=1}^{b \text{ odd}} \mathcal{Z}_s.$$

Proof. The original proof of [KR2011, Proposition 8.1] works again for one direction. Namely,

$$\sum_{s=0}^{a \text{ even}} \mathcal{Z}_s \leq \mathcal{Z}(\tilde{y}_1); \quad \sum_{s=1}^{b \text{ odd}} \mathcal{Z}_s \leq \mathcal{Z}(\tilde{y}_2).$$

To prove the other direction, we need only to prove that the intersection multiplicities of both sides in two cases with the special fiber $\mathcal{N}_{sp} = \text{Spf} \mathbb{F}[[t]]$ are the same. For the left-hand side, we have

$$\sum_{s=0}^{a \text{ even}} \mathcal{Z}_s \cdot \mathcal{N}_{sp} = \sum_{s=0}^{a \text{ even}} [\mathbb{O}_{F_p}^\times : U_{F_p}] = \frac{q^{a+1} - 1}{q - 1};$$

$$\sum_{s=1}^{b \text{ odd}} \mathcal{Z}_s \cdot \mathcal{N}_{sp} = \sum_{s=1}^{b \text{ odd}} [\mathbb{O}_{F_p}^\times : U_{F_p}] = \frac{q^{b+1} - 1}{q - 1},$$

where q is the cardinality of the residue field of F_p. Then the assertion follows from the following proposition that generalizes [KR2011, Proposition 8.2].

Proposition 5.2.2. For $\tilde{y} \in \text{Hom}_{\mathbb{O}_{E_p}}(Y, Y \times Y^\tau)$, the intersection multiplicity

$$\mathcal{Z}(\tilde{y}) \cdot \mathcal{N}_{sp} = \frac{q^{v+1} - 1}{q - 1},$$

where $v \geq 0$ is the valuation of $(\tilde{y}, \tilde{y})'$, i.e., $(\tilde{y}, \tilde{y})' \in \mathcal{O}_{F_p}^\times \mathcal{O}_{F_p}^\times$.

We keep the assumptions and notations in the above subsection. The results in [ARG2007] cited in the proof of [KR2011, Proposition 8.4] also work for F_p, not just \mathbb{Q}_p. Therefor, for $0 < s \leq b$ odd, we have

$$\mathcal{Z}(\tilde{y}_1) \cdot \mathcal{Z}_s = \begin{cases} \frac{q^{a+1} - 1}{q - 1} & a < s; \\ \frac{q^{a} - 1}{q - 1} + \frac{1}{2}(a + 1 - s)[\mathbb{O}_{F_p}^\times : U_{F_p}] & a \geq s. \end{cases}$$

Summing over s, we get the following local arithmetic Siegel-Weil formula at a good finite place.

Theorem 5.2.3. For every pair $(\tilde{x}_1, \tilde{x}_2) \in \text{Mor}(\mathbb{Y}, j\mathbb{Y}), (\mathbb{X}, i\mathbb{X})_{\text{reg}}^2$ that are linearly independent, the intersection multiplicity $\mathcal{Z}(\tilde{x}_1) \cdot \mathcal{Z}(\tilde{x}_2)$ depends only on the $\text{GL}_2(\mathbb{O}_{F_p})$-equivalence class of the
moment matrix $T = T((\tilde{x}_1, \tilde{x}_2))$. Moreover, if

$$T \sim \begin{pmatrix} \varpi^a \\ \varpi^b \end{pmatrix} \quad 0 \leq a < b,$$

then we have

$$H_p(T) := \mathcal{Z}(\tilde{x}_1) \cdot \mathcal{Z}(\tilde{x}_2) = \frac{1}{2} \sum_{l=0}^{a} q^l (a + b + 1 - 2l),$$

where q is the cardinality of the residue field of F_p.

5.2.4 Proof of Proposition 5.2.2

We generalize the proof of [KR2011, Proposition 8.2] to the case $F_p \neq \mathbb{Q}_p$, still by using the theory of windows and displays of p-divisible groups developed by T. Zink in [Zin2001, Zin2002]. In the proof, we simply write $F = F_p$, $E = E_p$. Moreover, we let e and f be the ramification index and the extension degree of residue fields of F/\mathbb{Q}_p, respectively. In particular, $q = p^f$. Let $R = \mathbb{F}[[t]]$ and $A = W[[t]]$, where $W = W(\mathbb{F})$ is the Witt ring. We extend the Frobenius automorphism σ on W to A by letting $\sigma(t) = t^p$. For any $s \geq 1$, we let $R_s = R/t^s$ and $A_s = A/t^s$. Then A (resp. A_s) is a frame of R (resp. R_s). The category of formal p-divisible groups over R is equivalent to the category of pairs (M, α) where

- M is a free A-module of finite rank; and
- $\alpha : M \to M^{(\sigma)} := A^\sigma \otimes_A M$ is an A-linear injective homomorphism such that $\text{coker} \, \alpha$ is a free R-module.

The baby case would be the one where $f = 1$. Consider the p-divisible group Y over \mathbb{F} of dimension 1 and (absolute) height $2e$ with action by O_E. It corresponds to the pair (N, β), where

$$N = N_0 \oplus N_1 = O_{\bar{F}_0} n_0 \oplus O_{\bar{F}_0} n_1$$

is the $\mathbb{Z}/2$-graded free $O_{\bar{F}_0} = O_F \otimes_{\mathbb{Z}_p} W$-module of rank 2 (that is a free W-module of rank $2e$), and $\beta(n_0) = \varpi n_1$, $\beta(n_1) = n_0$. We extend the Frobenius automorphism on W to $O_{\bar{F}_0}$ O_F-linearly. Similarly as in the proof of [KR2011, Proposition 8.2], the p-divisible group $X = Y \times Y^\tau$ over \mathbb{F} corresponds to (M, α) described there, and its universal deformation is (M, α_t). The only difference is that we should replace p by ϖ. The rest of the proof follows in the same way.
Now we treat the general case and hence assume that \(f \geq 2 \). Consider the \(p \)-divisible group \(Y \) over \(\mathbb{F} \). It corresponds to the pair \((N, \beta)\), where \(N \) is a \(\mathbb{Z}/2 \)-graded free \(\mathcal{O}_F \otimes \mathbb{Z}_p \) \(W \)-module of rank 2.

Since

\[
\mathcal{O}_F \otimes \mathbb{Z}_p W = \bigoplus_{j=0}^{f-1} \mathcal{O}_F^{(\sigma^j)} := \bigoplus_{j=0}^{f-1} \mathcal{O}_F \otimes W(k, \sigma^j) W,
\]

where \(k \) is the residue field of \(F \), we can write

\[
N = \left(\bigoplus_{j=0}^{f-1} \mathcal{O}_F^{(\sigma^j)} e_{0,j} \right) \bigoplus \left(\bigoplus_{j=0}^{f-1} \mathcal{O}_F^{(\sigma^j)} e_{1,j} \right),
\]

and

- \(\beta(e_{i,j}) = e_{i,j+1} \) for \(i = 1, 2, \ 0 \leq j < f - 1; \)
- \(\beta(e_{0,f-1}) = e_{1,0}; \)
- \(\beta(e_{1,f-1}) = \varpi e_{0,0}. \)

Similarly, the \(p \)-divisible group \(Y^\tau \) corresponds to \((N^\tau, \beta^\tau)\), which we write as

\[
N^\tau = \left(\bigoplus_{j=0}^{f-1} \mathcal{O}_F^{(\sigma^j)} e_{0,j}^\tau \right) \bigoplus \left(\bigoplus_{j=0}^{f-1} \mathcal{O}_F^{(\sigma^j)} e_{1,j}^\tau \right),
\]

and

- \(\beta^\tau(e_{i,j}^\tau) = e_{i,j+1}^\tau \) for \(i = 0, 1, \ 0 \leq j < f - 1; \)
- \(\beta^\tau(e_{0,f-1}^\tau) = e_{0,0}^\tau; \)
- \(\beta^\tau(e_{1,f-1}^\tau) = \varpi e_{1,0}^\tau. \)

We extend \((N, \beta)\) (resp. \((N^\tau, \beta^\tau)\)) to \(\mathbb{F}[[t]] \) by scalar, which we still denote by the same notations.

The \(p \)-divisible group \(X \) corresponds the the direct sum \((M, \alpha) := (N, \beta) \oplus (N^\tau, \beta^\tau)\). Under the basis

\[
\{ e_{0,0}, e_{1,0}^\tau, \ldots, e_{0,f-1}, e_{1,f-1}^\tau; e_{1,0}, e_{0,0}^\tau, \ldots, e_{1,f-1}, e_{0,f-1}^\tau \},
\]

we extend \((M, \alpha)\) to \(\mathbb{F}[[t]] \) by scalar.
the matrix of α is

$$
\alpha = \begin{pmatrix}
\omega \\
1 \\
\vdots \\
1 \\
1 \\
\vdots \\
1 \\
\end{pmatrix}.
$$

Let (M, α_t) corresponds to the universal deformation of (X, i_X) over $F[[t]]$. Then under the same basis,

$$
\alpha_t = \begin{pmatrix}
1 \\
1 \\
1 \\
\vdots \\
1 \\
\end{pmatrix} \cdot \alpha.
$$

Explicitly, we have

$$
\alpha_t(e_{i,j}) = e_{i,j+1} \quad i = 0, 1 \text{ and } j = 0, \ldots, f - 2;
$$

$$
\alpha_t(e_{0,f-1}) = e_{1,0} - te_{1,0};
$$

$$
\alpha_t(e_{1,f-1}) = \omega e_{0,0};
$$

$$
\alpha_t(e_{i,j}^\tau) = e_{i,j+1}^\tau \quad i = 0, 1 \text{ and } j = 0, \ldots, f - 2;
$$

$$
\alpha_t(e_{1,f-1}^\tau) = e_{0,0}^\tau + te_{0,0};
$$

$$
\alpha_t(e_{0,f-1}^\tau) = \omega e_{1,0}^\tau.
$$
If we denote by $\sigma^k(\alpha) : M^k \to M^{k+1}$ the induced homomorphism for $k \geq 0$. Then formally, we have

\[
\sigma^k(\alpha)^{-1}(e_{i,j}) = e_{i,j-1} \quad i = 1, 2 \text{ and } j = 1, \ldots, f-1;
\]
\[
\sigma^k(\alpha)^{-1}(e_{0,0}) = \frac{1}{\varpi} e_{1,f-1};
\]
\[
\sigma^k(\alpha)^{-1}(e_{1,0}) = e_{0,f-1} + \frac{t^p}{\varpi} e_{0,1};
\]
\[
\sigma^k(\alpha)^{-1}(e_{i,j}) = e_{i,j-1} \quad i = 1, 2 \text{ and } j = 1, \ldots, f-1;
\]
\[
\sigma^k(\alpha)^{-1}(e_{1,0}) = \frac{1}{\varpi} e_{0,f-1};
\]
\[
\sigma^k(\alpha)^{-1}(e_{0,0}) = e_{1,f-1} - \frac{t^p}{\varpi} e_{1,f-1}.
\]

Now let \tilde{y} correspond to the graded A_1-linear homomorphism $\gamma : N \otimes A_1 \to M$. Then the length $\mathcal{Z}(\tilde{y}) \cdot \mathcal{N}_{sp}$ of the deformation space of γ is the maximal number a such that there exists a diagram

\[
\begin{array}{c}
N \xrightarrow{\beta} N^{(\sigma)} \\
\tilde{\gamma} \downarrow \quad \downarrow \tilde{\gamma}^{(\sigma)} \\
M \xrightarrow{\alpha_t} M^{(\sigma)},
\end{array}
\]

which commutes modulo t^a, and $\tilde{\gamma}$ lifts γ.

Case i: $v = 2r$ is even. We may assume that $\gamma = \varpi^r \text{inc}_1$ that is represented by the following $4f \times 2f$ matrix

\[
X(0) = \begin{pmatrix}
\varpi^r & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & \varpi^r & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \varpi^r \\
0 & 0 & \cdots & 0
\end{pmatrix}.
\]

If $r = 0$, in order to lift γ to $\tilde{\gamma}$ mod t^p, we search for a $4f \times 2f$ matrix $X(1)$ with entries in A_p such that $X(1) \equiv X(0)$ in A_1 and satisfies

\[
\alpha_t \circ X(1) = \sigma(X(1)) \circ \beta.
\]
But \(\sigma(X(1)) = \sigma(X(0)) = X(0) \). Therefore, we need to find the largest integer \(a \leq p \) such that \(\alpha_t^{-1} \circ X(0) \circ \beta \) has integral entries \(\mod t^a \). Since the entry at the place \((e_{0,f-1}, e_{0,f-1}^\tau)\) is \(\frac{t}{\varpi} \), the largest \(a \) is just 1. It follows that when \(v = r = 0 \), the proposition holds.

If \(r > 0 \), we first show that we can lift \(\gamma \) to \(\tilde{\gamma} \mod t^{q^2r} \). By induction, we introduce \(X(k) \) for \(k \geq 1 \), i.e., the one satisfying \(X(k+1) \equiv X(k) \mod A_{p^k} \), and

\[
\alpha_t \circ X(k+1) = \sigma(X(k+1)) \circ \beta.
\]

Since \(\sigma(X(k+1)) = \sigma(X(k)) \), we formally have

\[
X(k+1) = \alpha_t^{-1} \circ \sigma(X(k)) \circ \beta.
\]

We need to show that

\[
X(2rf) = \alpha_t^{-1} \circ \sigma(\alpha_t^{-1} \circ \cdots \circ \sigma^{2rf-1}(\alpha_t^{-1} \circ X(0) \circ \beta^{2rf})
\]

has integral entries. Let \(\gamma_{i,j} \) (resp. \(\gamma_{i,j}^\tau \)) be the entry of \(X(2rf) \) \(\mod \varpi \) at the place \((e_{i,j}, e_{i,j}^\tau)\) (resp. \((e_{i,j}, e_{i,j}^\tau)\)). Then among all these terms, the only nonzero terms are

\[
x_{0,j,0,j} = (-1)^{r-1}t^{(q^{2r-2}+q^{2r-3}+\cdots+1)}
\]

\[
x_{1,j,1,j} = (-1)^{r}t^{(q^{2r-1}+q^{2r-2}+\cdots+1)}
\]

which implies that we can lift \(\gamma \) to \(\tilde{\gamma} \mod t^{q^2r} \). Next, we consider the lift of \(\gamma \) to \(\tilde{\gamma} \mod t^{pq^2r} \). Therefore, we consider the matrix

\[
X(2rf+1) = \alpha_t^{-1} \circ \sigma(X(2rf)) \circ \beta.
\]

It has exactly one entry that is not integral: the place \((e_{0,f-1}, e_{0,f-1}^\tau)\), whose non-integral part is

\[
\frac{t}{\varpi}(-1)^{r}t^{p^{f-1}(q^{2r-1}+q^{2r-2}+\cdots+1)} = (-1)^{r}t^{q^2r+q^{2r-1}+\cdots+1}.
\]

It turns out that the length \(\mathcal{Z}(\tilde{\gamma}) \cdot \mathcal{M}_{sp} \) is exactly \(q^{2r+1-1} = q^{r+1-1} \).

Case ii: \(v = 2r + 1 \) is odd. We may assume that \(\gamma = \varpi^s \text{inc}_2 \circ \Pi \), where \(\Pi \) is the endomorphism of \(Y \) determined by \(\Pi(e_{0,j}) = e_{0,j} \) and \(\Pi(e_{1,j}) = \varpi e_{0,j} \) for \(j = 0, \ldots, f-1 \). Then \(\gamma \) is represented by
the following \(4f \times 2f\) matrix
\[
\begin{pmatrix}
0 & \cdots & 0 \\
\varpi^s & \cdots & 0 \\
0 & \cdots & 0 \\
0 & \cdots & \varpi^{s+1}
\end{pmatrix}.
\]

Similarly, we introduce the matrix \(Y(k)\) for \(k \geq 0\). We first show that \(\gamma\) can be lifted to \(\tilde{\gamma}\) mod \(t^{q^2s+1}\), i.e., the matrix
\[
Y((2s+1)f) = \alpha_i^{-1} \circ \sigma(\alpha_i)^{-1} \circ \cdots \circ \sigma((2s+1)f-1)(\alpha_i)^{-1} \circ Y(0) \circ \beta^{(2s+1)f}
\]
has integral entries. Let \(y_{i,j'; j'}\) (resp. \(y_{i,i'; j'}\)) be the entry of \(Y((2s+1)f)\) mod \(\varpi\) at the place \((e_i,j,e_{i'},j')\) (resp. \((e_i,j,e_{i'},j')\)). Then among all these terms, the only nonzero terms are
\[
y_{0,0,0,j} = (-1)^s p^{f-1-j(q^{2s-1}+q^{2s-2}+\cdots+1) - j = 0, \ldots, f-1;}
y_{1,j,1,j} = (-1)^{s+1} p^{f-1-j(q^{2s}+q^{2s-1}+\cdots+1) - j = 0, \ldots, f-1},
\]
which implies that we can lift \(\gamma\) to \(\tilde{\gamma}\) mod \(t^{q^2s+1}\). Next we consider the lift of \(\gamma\) to \(\tilde{\gamma}\) mod \(t^{q^2s+1}\).

Therefore, we consider the matrix
\[
Y((2s+1)f+1) = \alpha_i^{-1} \circ \sigma(Y((2s+1)f)) \circ \beta.
\]
It has exactly one entry which is not integral: the place \((e_{0,f-1},e_{0,f-1})\), whose non-integral part is
\[
\frac{t}{\varpi} (-1)^{s+1} p^{f-1-j(q^{2s}+q^{2s-1}+\cdots+1)} = \frac{(-1)^{s+1}}{\varpi} t^{q^{2s+1}+q^{2s}+\cdots+1}.
\]
It turns out that the length $\mathcal{Z}(\tilde{y}) \cdot \mathcal{M}_p$ is exactly $2^{2r+2-1} \frac{q^r+q^{r-1}+1}{q-1}$. Therefore, the proposition is proved.

5.3 Comparison

5.3.1 Non-archimedean Whittaker integrals

We calculate certain Whittaker integrals $W_T(s, g, \Phi)$ and their derivatives (at $s = 0$) at a non-archimedean place when T is of rank 2.

Assume that E/F is unramified and $p > 2$. We fix a selfdual \mathcal{O}_E-lattice Λ^+ in V^+ and let $\phi^{0+} \in S(V^+)$ (resp. $\Phi^{0+} \in S((V^+)^2)$) be the characteristic function of Λ^+ (resp. $(\Lambda^+)^2$). Let ψ be the unramified character of F. For $T \in \text{Her}_2(E)$ that is nonsingular, we consider the Whittaker integral

$$W_T(s, g, \Phi^{0+}) = \int_{\text{Her}_2(E)} \varphi_{\Phi^{0+}, s}(wn(u)g)\psi_T(n(u))^{-1}du \quad (5.9)$$

for $\text{Re } s > 1$, where du is the selfdual measure with respect to ψ. Write $g = n(b)m(a)k$ under the Iwasawa decomposition of H''. Then

$$(5.9) = \int_{\text{Her}_2(E)} \left(\omega'_{1}(wn(u)n(b)m(a)k)\Phi^{0+} \right) (0)\lambda_P(wn(u)n(b)m(a)k)^s \psi(-\text{tr } Tu)du$$

$$= \psi(\text{tr } Tb) \int_{\text{Her}_2(E)} \lambda_P(wn(u)m(a))^s \psi(-\text{tr } Tu)du$$

$$= \psi(\text{tr } Tb) |\det a|^{-s} W_{\tau_a^{-1}\tau_a}(s, e, \Phi^{0+}).$$

Therefore, we only need to consider the integral $W_T(s, e, \Phi^{0+})$. If T is not in $\text{Her}_2(\mathcal{O}_E)$, then $W_T(s, e, \Phi^{0+})$ is identically 0. For $T \in \text{Her}_2(\mathcal{O}_E)$, it is well-known (e.g., [Kud1997, Appendix]) that for an integer $r > 1$, $W_T(r, e, \Phi^{0+}) = \gamma_{V^+} \alpha_F(1_{2+r}, T)$, where γ_{V^+} is the Weil constant and α_F is the classical representation density (for hermitian matrices). By [Hir1999], we see that for $r \geq 0$,

$$\alpha_F(1_{2+r}, T) = P_F(1_2, T; (-q)^{-r})$$

for a polynomial $P_F(1_2, T; X) \in \mathbb{Q}[X]$. By analytic continuation, we see that

$$W_T(s, e, \Phi^{0+}) = \gamma_{V^+} P_F(1_2, T; (-q)^{-s}).$$
If \(\text{ord}(\det T) \) is odd, \(i.e. \), \(T \) cannot be represented by \(V^+ \), then \(W_T(0, e, \Phi^+; \cdot) = P_F(1_2, T; 1) = 0 \). Taking derivative at \(s = 0 \), we have

\[
W_T'(0, e, \Phi^+) = -\gamma_V + \log q \cdot \frac{d}{dX} P_F(1_2, T; X) \big|_{X=1}.
\]

Moreover, we have the following results.

Proposition 5.3.1 (Hironaka, [Hir1999]). Suppose that \(T \) is \(\text{GL}_2(\mathcal{O}_E) \)-equivalent to \(\text{diag}\{\varpi^a, \varpi^b\} \) with \(0 \leq a < b \). Then

\[
P_F(1_2; T; X) = (1 + q^{-1}X)(1 - q^{-2}X) \sum_{l=0}^{a} (qX)^l \left(\sum_{k=0}^{a+b-2l} (-X)^k \right).
\]

Corollary 5.3.2. If \(a + b \) is odd, then

\[
W_T'(0, e, \Phi^+) = \gamma_V - b_2(0)^{-1} \log q \cdot \frac{1}{2} \sum_{l=0}^{a} q^l(a + b - 2l + 1).
\]

5.3.2 Comparison on Shimura curves

In this subsection, we calculate the local height paring \(\langle \hat{Z}_0, \varphi_1(g), \hat{Z}_0, \varphi_2(g) \rangle_p \) at a finite place \(p \) of \(E \) that is good. Recall that we have a (compactified) Shimura curve \(M_K \) constructed from the hermitian space \(V \), and assume that \(K \) is sufficiently small and decomposable. We also assume that \(\varphi_\alpha (\alpha = 1, 2) \) are decomposable and \(K = K_pK^p \)-invariant.

Let \(S \subset \Sigma_{\text{fin}} \) be a finite subset of cardinality at least 2, such that for every place \(p \in \Sigma_{\text{fin}} - S \), we have

- \(p \nmid 2 \); \(p \) is inert or split in \(E \);
- \(\epsilon(\mathbb{V}_p) = 1 \);
- \(\varphi_{\alpha, p} = \varphi^0_p \) (\(\alpha = 1, 2 \)) are the characteristic function of a selfdual lattice \(\Lambda_p = \Lambda^+ \subset \mathbb{V}_p \);
- \(K_p = K_{p, 0} \) is the subgroup of \(\text{U}(\mathbb{V}_p) \) stabilizing \(\Lambda_p \), \(i.e. \), \(K_p \) is a hyperspecial maximal compact subgroup;
- \(\chi \) and \(\psi \) are both unramified at \(p \).

We say a finite place \(p \) of \(E \) is **good** if it is not lying over some place in \(S \). Assume that \(\varphi_\alpha(0) = 0 \). Consider the generating series \(Z_{\varphi_\alpha}(g) \) for \(\alpha = 1, 2 \). Write \(g_{\alpha, p} = n(b_{\alpha, p})m(a_{\alpha, p})k_{\alpha, p} \) in the Iwasawa decomposition, and choose some element \(e_\alpha \in E^\times \) such that \(e_\alpha^{-1}a_{\alpha, p} \in \mathcal{O}_{E_p}^\times \). Let \(\bar{g}_\alpha = m(e_\alpha^{-1}g_{\alpha, p} \), and
we have \(\tilde{g}_{\alpha,p} = n(\hat{g}_{\alpha,p})k_{\alpha,p} \) in the Iwasawa decomposition. Then \(Z_{\phi_{\alpha}}(g_{\alpha}) = Z_{\phi_{\alpha}}(\tilde{g}_{\alpha}) \). As in 5.2.2, we have the series \(Z_{\phi_{\alpha}}(g_{\alpha})_{0,K^p} \) for \(\alpha = 1, 2 \). We let \(Z_{\phi_{\alpha}}(g_{\alpha}) = Z_{\phi_{\alpha}}(\tilde{g}_{\alpha})_{0,K^p} \). The following is the main theorem of this chapter.

Theorem 5.3.3. Suppose that \(\phi_{1,v} \otimes \phi_{2,v} \in S(V^2_v)_{\text{reg}} \) for at least one place \(v \in S \), and \(g_{\alpha} \in P'vH'(A^S_F) \) for \(\alpha = 1, 2 \). Let \(p \) be a finite place that is not in \(S \), \(M_{K^p,p} = M_{0,K^p} \) the smooth local model introduced in 5.1.2, and \(Z_{\phi_{\alpha}}(g_{\alpha}) \) the series introduced above. Then we have

1. If \(p \) is nonsplit in \(E \), then
 \[
 E_p(0, i(g_1, g_2^v), \phi_1 \otimes \phi_2) = -\text{Vol}(K)(\hat{Z}_{\phi_1}(g_1), \hat{Z}_{\phi_2}(g_2))_{p^v},
 \]
 where
 - by definition,
 \[
 \langle \hat{Z}_{\phi_1}(g_1), \hat{Z}_{\phi_2}(g_2) \rangle_{p^v} = \log q^2(Z_{\phi_1}(g_1) \cdot Z_{\phi_2}(g_2));
 \]
 - \(E_p(0, i(g_1, g_2^v), \phi_1 \otimes \phi_2) \) is defined in (2.14); and
 - \(\text{Vol}(K) \) is the defined in Definition 4.3.3.

2. If \(p \) is split in \(E \), then
 \[
 Z_{\phi_1}(g_1) \cdot Z_{\phi_2}(g_2) = 0.
 \]

Combining this with Theorem 4.3.4, we have the following corollary.

Corollary 5.3.4. Assume that

- \(\phi_{\alpha} = \phi_{\alpha,\text{fin}}^0 \) (\(\alpha = 1, 2 \)) are decomposable as above;
- \(\phi_{1,S} \otimes \phi_{2,S} \) is in \(S(V^2_S)_{\text{reg}} \), i.e., \(\phi_{1,v} \otimes \phi_{2,v} \in S(V^2_v)_{\text{reg}} \) for every \(v \in S \);
- \(\phi_{1,v} \otimes \phi_{2,v} \in S(V^2_v)_{\text{reg,d,v}} \) for every \(v \in S \) that is nonsplit and some \(d_v \geq d_{\psi_v} \) (cf. 2.4.2);
- \(g_{\alpha} \in eSH'(A^S_F) (\alpha = 1, 2) \);
- the local model \(M_{K^p,p} \) is \(M_{0,K^p} \) for all finite places \(p^v \) above \(p \) that are not in \(S \).

Then
\[
E'(0, i(g_1, g_2^v), \phi_1 \otimes \phi_2) = -\text{Vol}(K) \sum_{\substack{v^v \mid v\vphantom{^v} \in S}} \langle \hat{Z}_{\phi_1}(g_1), \hat{Z}_{\phi_2}(g_2) \rangle_{v^v},
\]
where the Green functions used in archimedean places are those defined in (4.55), which are not the admissible Green functions in the sense in 3.4.1.

Proof of Theorem 5.3.3. 1. By Lemma 5.1.6, the special fiber of $Z_{\phi_\alpha}(g_\alpha)$ locates in the supersingular locus $[M_{0, K^p}]_{ss}$. If we denote by $[Z_{\phi_\alpha}(g_\alpha)]_{sp}^\ast$ ($\alpha = 1, 2$) the completion along the special fiber, then

$$Z_{\phi_1}(g_1) \cdot Z_{\phi_2}(g_2) = [Z_{\phi_1}(g_1)]_s^\ast \cdot [Z_{\phi_2}(g_2)]_s^\ast = [Z_{\phi_1}(\tilde{g}_1)_{0, K^p}^\ast \cdot [Z_{\phi_2}(\tilde{g}_2)_{0, K^p}^\ast (5.10)$$

Let \tilde{h}_i ($i = 1, \ldots, l$) be a set of representatives of the double coset $[M_{0, K^p}]_{ss}(\mathbb{F}) \cong \tilde{H}/(\mathbb{Q}) \tilde{H}_{\text{fin}}^p/K^p$. Then

$$\sum_{i=1}^l \left(\sum_{\tilde{x}_1 \in V} \psi_p(\tilde{b}_{1,p} T(\tilde{x}_1)) \left(\tilde{\phi}_p^\ast \cdot \left(\omega_\chi(\tilde{g}_1, \tilde{h}_i) \phi_\alpha^p \right) \right)(\tilde{x}_1) \tilde{\mathcal{Z}}(\tilde{x}_1) \right)$$

where we recall that $\left(\omega_\chi(\tilde{h}_i) \phi_\alpha \right)(x) = \phi_\alpha(\tilde{h}_i^{-1}x)$. By (5.8),

$$(5.11) = \sum_{(\tilde{x}_1, \tilde{x}_2) \in (V \cap \text{Mor}((Y_{\mathbb{A}}, j_Y), (X_{\mathbb{A}}, i_X)))^2} \psi_p(\text{tr} \tilde{b}_p T((\tilde{x}_1, \tilde{x}_2)))$$

$$\sum_{i=1}^l \left(\omega_\chi^\prime (\tilde{g}_1, \tilde{g}_2) \phi_\alpha^p \right)(\tilde{h}_i^{-1}(\tilde{x}_1, \tilde{x}_2)) \tilde{\mathcal{Z}}(\tilde{x}_1) \cdot \tilde{\mathcal{Z}}(\tilde{x}_2),$$

where

$$\tilde{b}_p = \begin{pmatrix} \tilde{b}_{1,p} & 0 \\ 0 & \tilde{b}_{2,p} \end{pmatrix}.$$

Let \tilde{x}_T be a representative of the pairs $(\tilde{x}_1, \tilde{x}_2)$ such that $T((\tilde{x}_1, \tilde{x}_2)) = T$. Then

$$(5.12) = \psi_p(\text{tr} \tilde{b}_p T) \sum_{\tilde{h}_i \in \tilde{H}_{\text{fin}}^p/K^p} \left(\omega_\chi^\prime (\tilde{g}_1, \tilde{g}_2) \phi_\alpha^p \right) (\tilde{h}_i^{-1}\tilde{x}_T) H_p(T).$$

By Theorem 5.2.3, Corollary 5.3.2, and following the same steps in the proof of Theorem 4.3.4,
we obtain that

\[- \text{Vol}(K) \log q^2 (\mathcal{Z}_{\phi_1}(g_1) \cdot \mathcal{Z}_{\phi_2}(g_2)) = E_p(0, \iota(\tilde{g}_1, \tilde{g}_2^\vee), \phi_1 \otimes \phi_2).\] (5.13)

Let

\[e = \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}.\]

By definition,

\[
(5.13) \begin{align*}
&= \sum_{\text{Diff}(T, \mathcal{V})=\{p\}} W'_T(0, \iota(\tilde{g}_{1,p}, \tilde{g}_{2,p}^\vee), \phi_{1,p} \otimes \phi_{2,p}) \prod_{v \neq p} W_T(0, \iota(\tilde{g}_{1,v}, \tilde{g}_{2,v}^\vee), \phi_{1,v} \otimes \phi_{2,v}) \\
&= \sum_{\text{Diff}(T, \mathcal{V})=\{p\}} W'_{e^T e_T}(0, \iota(\tilde{g}_{1,p}, \tilde{g}_{2,p}^\vee), \phi_{1,p} \otimes \phi_{2,p}) \prod_{v \neq p} W_{e^T e_T}(0, \iota(\tilde{g}_{1,v}, \tilde{g}_{2,v}^\vee), \phi_{1,v} \otimes \phi_{2,v}) \\
&= \sum_{\text{Diff}(T, \mathcal{V})=\{p\}} W'_T(0, \iota(\tilde{g}_{1,p}, \tilde{g}_{2,p}^\vee), \phi_{1,p} \otimes \phi_{2,p}) \prod_{v \neq p} W_T(0, \iota(\tilde{g}_{1,v}, \tilde{g}_{2,v}^\vee), \phi_{1,v} \otimes \phi_{2,v}) \\
&= E_p(0, \iota(\tilde{g}_1, \tilde{g}_2^\vee), \phi_1 \otimes \phi_2).
\end{align*}
\]

Therefore, (1) is proved.

2. It will be proved in a more general context in Lemma 6.1.1.
Chapter 6

Comparison at finite places: bad reduction

In this chapter, we discuss the local height paring \(\langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{p^*} \) on certain model \(\mathcal{M}_K \) at every bad place \(p \in S \). We will assume that

- \(\phi_\alpha = \phi_\infty^0 \phi_{\alpha, \text{fin}} (\alpha = 1, 2) \) are decomposable;
- \(\phi_{\alpha, S} \in S(\mathcal{V}_S)_{\text{reg}} (\alpha = 1, 2) \);
- \(\phi_{1, S} \otimes \phi_{2, S} \) is in \(S(\mathcal{V}_S^2)_{\text{reg}} \);

and \(g_\alpha \in e_S H'(A_S^\infty) \) for \(\alpha = 1, 2 \).

In 6.1, we discuss the contribution of the local height paring at a finite place \(p \in S \) that is split in \(E \). In 6.2, we discuss the contribution of the local height paring at a finite place \(p \in S \) that is nonsplit in \(E \) and such that \(\epsilon(V_p) = 1 \). In 6.3, we discuss the contribution of the local height paring at a finite place \(p \in S \) that is nonsplit in \(E \) and such that \(\epsilon(V_p) = -1 \).
6.1 Split case

In this section, we discuss the contribution of the local height paring at a finite place \(p \) in \(S \) that is split in \(E \). Let \(p^o \) be a place in \(\Sigma^\circ \) lying over \(p \).

6.1.1 Integral models and ordinary reduction

Let \(K = K_p \mathbb{K}^p \) be an open compact subgroup of \(H(\mathbb{A}_{\mathrm{fin}}) \) with \(\mathbb{K}^p \) sufficiently small and \(K_p = K_{p,n} \) for \(n \geq 0 \). Therefore, \(M_K = M_{n,K^p} \). In 6.1.2, we construct a smooth integral model \(M_{0,K^p} \) for \(M_{0,K^p,p} \) on which there is a \(p \)-divisible group \(X \). Then \(X^p \rightarrow M_{0,K^p} \) is an \(\mathcal{O}_{F_p} \)-module of dimension 1 and height 2. Recall that a Drinfeld \(\varpi \)-structure for \(K \) satisfies \(\varpi \cdot \mathbb{Z} \subseteq \mathbb{Z} \). In this section, we discuss the contribution of the local height paring at a finite place \(p \) in \(S \) that is split in \(E \). Let \(p^o \) be a place in \(\Sigma^\circ \) lying over \(p \).

Let \(k = \mathbb{K}_p \mathbb{K}^p \) be the universal scheme over \(M_{n,K^p} \) and also the smooth locus. We denote by \(M_{sp} \) the set of irreducible components of \(M_{n,K^p} \), hence to \(\mathbb{K} \). The set of irreducible components on each connected component of \(M_{n,K^p} \), that is, the Igusa curves, corresponds to the set \(\mathbb{P}(V_p)/K_{p,n} \). Here, \(\mathbb{P}(V_p) \) is the set of all rank 1 \(E_p \cong F_p \oplus F_p \)-submodules in \(V_p \), where \(U(V_p) \) acts from right by \(l \cdot h = h^{-1}l \) for \(l \in \mathbb{P}(V_p) \) and \(h \in U(V_p) \). Together, the set of irreducible components of \(M_{n,K^p} \) can be identified with

\[
\text{Ig}_{n,K_p} = \mathbb{P}(V_p)/K_{p,n} \times \left(E^1_{E}/\nu(K) \right).
\]

We consider special cycles. We keep the same notations for the base change of special cycles \(Z(x)_K \) and the generating series \(Z_{\phi^o}(g_n) \) on \(M_{n,K^p} \). We let \(Z(x)K \) (resp. \(Z_{\phi^o}(g_n) \)) be the Zariski closure of \(Z(x)K \) (resp. \(Z_{\phi^o}(g_n) \)) in \(M_{n,K^p} \). Since \(p \) is split in \(E \), the special fiber \([Z_{\phi^o}(g_n)]_{sp} \) is contained in the ordinary locus \([M_{n,K^p}]_{ord} \). Let \(\mathbb{P}(V)^+ \) be the set of totally positive definite \(E \)-lines in \(V \). Then
the set of geometric special points of $M_{n,K}$ (also of $M_{n,K}'$ and $M'_{n,K}$) can be identified with

$$
\text{Sp}_K = H(Q)\backslash \mathbb{P}(V)^+ \times H(\mathcal{A}_{\text{fin}})/K = \prod_{l \in H(Q)\backslash \mathbb{P}(V)^+} H_i(Q)\backslash H(\mathcal{A}_{\text{fin}})/K,
$$

and the set $[M'_{n,K}]_{\text{ord}}(F)$ can be identified with

$$
\prod_{l \in H(Q)\backslash \mathbb{P}(V)} H_i(Q)\backslash ((N_l \cup U(V_p)/K_p, n) \times H^p_{\text{fin}}/K^p),
$$

where $N_l \subset U(V_p)$ is the unipotent radical of the parabolic subgroup stabilizing l. The reduction map

$$
\text{Sp}_K \to [M'_{n,K}]_{\text{ord}}(F) \to I_{g_{n,K}}
$$

is given by

$$(l, h) \mapsto (l, h_p, h^p) \mapsto (h_p^{-l} l, \nu(h_p h^p))
$$

(cf. [Zha2001b, 5.4] for a discussion).

6.1.2 Coherence for intersection numbers

We compute the local height pairing on the integral model $M'_{n,K}$. Write $\tilde{Z}_{\phi_\alpha} = \mathcal{Z}_{\phi_\alpha}(g_\alpha) + \mathcal{V}_{\phi_\alpha}(g_\alpha)$ for some divisor $\mathcal{V}_{\phi_\alpha}(g_\alpha)$ supported on the special fiber as in 3.4.3. We have

$$(\log q)^{-1} (\tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2))_{p^\alpha}
$$

$$
= (\mathcal{Z}_{\phi_1}(g_1) + \mathcal{V}_{\phi_1}(g_1)) \cdot (\mathcal{Z}_{\phi_2}(g_2) + \mathcal{V}_{\phi_2}(g_2)) - E(g_2, \phi_2)\omega_K + E(g_2, \phi_2)\omega_K
$$

$$
= \mathcal{Z}_{\phi_1}(g_1) \cdot (\mathcal{Z}_{\phi_2}(g_2) + \mathcal{V}_{\phi_2}(g_2)) - E(g_2, \phi_2)\omega_K + E(g_2, \phi_2)(\mathcal{Z}_{\phi_1}(g_1) + \mathcal{V}_{\phi_1}(g_1)) \cdot \omega_K
$$

$$
= \mathcal{Z}_{\phi_1}(g_1) \cdot \mathcal{Z}_{\phi_2}(g_2) + \mathcal{Z}_{\phi_1}(g_1) \cdot \mathcal{V}_{\phi_2}(g_2) + E(g_2, \phi_2)\mathcal{V}_{\phi_1}(g_1) \cdot \omega_K,
$$

where q is the cardinality of the residue field of F_p. First, we have the following simple lemma.

Lemma 6.1.1. Under the weaker hypotheses that $\phi_{1,v} \otimes \phi_{2,v} \in \mathcal{S}(\mathcal{V}_v^2)_{\text{reg}} = \mathcal{S}(V^2_v)_{\text{reg}}$ and $g_\alpha \in P'_vH'(\mathcal{A}_v^p) (\alpha = 1, 2)$ for some finite place v other than p, $\mathcal{Z}_{\phi_1}(g_1)$ and $\mathcal{Z}_{\phi_2}(g_2)$ do not intersect.

Proof. It follows immediately from the first map in (6.1). \qed

Second, we define a function $\nu(\bullet, \phi_2, g_2)$ on $V_p - \{0\}$ in the following way. For any nonzero $x \in V_p$, let l_x be the line spanned by x that is an element in $\mathbb{P}(V_p)$. Set $\nu(x, \phi_2, g_2)$ to be the coefficient of the
geometric irreducible component represented by \((l_x, 1)\) in \(Ig_{n, K^s}\) in \(V_{\phi_2}(g_2)\). It is a locally constant function and
\[
\nu(\bullet, \phi_1, p; \phi_2, g_2) = \frac{\Vol(\det K)}{\Vol(K)} \phi_{1, p} \otimes \nu(\bullet, \phi_2, g_2)
\]
extends to a function in \(S(V_p)\) such that \(\nu(0, \phi_1, p; \phi_2, g_2) = 0\) since \(\phi_1(0) = 0\). Then the intersection number
\[
Z_{\phi_1}(g_1) \cdot V_{\phi_2}(g_2) = \sum_{x \in K \backslash V \otimes A_{\text{fin}}} (\omega_\chi(g_1) \phi_1)(x) Z(x)_K \cdot V_{\phi_2}(g_2)
\]
(6.3)
\[
= \sum_{x \in K \backslash V \otimes A_{\text{fin}}} \frac{\Vol(K)}{\Vol(K \cap H(A_{\text{fin}})_x)} \left(\nu(\bullet, \phi_1, p; \phi_2, g_2) \otimes (\omega_\chi(g_1^p) \phi_1^p) \right)(x)
\]
(6.4)
since \(g_1 \in e_p H'(A_F^p)\). If we let
\[
E(s, g, \nu(\bullet, \phi_1, p; \phi_2, g_2) \otimes \phi_1^p) = \sum_{\gamma \in P'(F) \backslash H'(F)} (\omega_\chi(\gamma g) \left(\nu(\bullet, \phi_1, p; \phi_2, g_2) \otimes \phi_1^p \right))(0) \lambda_{P'}(\gamma g)^{-\frac{s}{2}}
\]
be an Eisenstein series that is holomorphic at \(s = \frac{1}{2}\). Then we have
\[
(6.3) = E(s, g_1, \nu(\bullet, \phi_1, p; \phi_2, g_2) \otimes \phi_1^p) \big|_{s = \frac{1}{2}} - W_0(1, g_1, \nu(\bullet, \phi_1, p; \phi_2, g_2) \otimes \phi_1^p)
\]
by the standard Siegel–Weil argument, which is similar to Proposition 3.4.1. For simplicity, we write
\[
E_{(p^s)}(\phi_1, g_1; \phi_2, g_2) = \log q \left(E(s, g_1, \nu(\bullet, \phi_1, p; \phi_2, g_2) \otimes \phi_1^p) \big|_{s = \frac{1}{2}} - W_0(1, g_1, \nu(\bullet, \phi_1, p; \phi_2, g_2) \otimes \phi_1^p) \right).
\]
Finally, we let
\[
A_{(p^s)}(g_1, \phi_1) = \log q(V_{\phi_1}(g_1) \cdot \omega_K).
\]
Then we have the following proposition.

Proposition 6.1.2. Suppose that \(\phi_\alpha, \mathfrak{s} \in S(\mathcal{V}_S)_{\text{reg}}\) \((\alpha = 1, 2)\), \(\phi_1, \mathfrak{s} \otimes \phi_2, \mathfrak{s}\) is in \(S(\mathcal{V}_S^2)_{\text{reg}}\), and \(g_\alpha \in e_{\mathfrak{s}} H'(A_F^s)\) for \(\alpha = 1, 2\). Then
\[
(\tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2))_{p^s} = E_{(p^s)}(\phi_1, g_1; \phi_2, g_2) + A_{(p^s)}(g_1, \phi_1)E(g_2, \phi_2).
\]
6.2 Quasi-split case

In this section, we discuss the contribution of the local height paring at a finite place p in S that is nonsplit in E and such that $\epsilon(V_p) = 1$. Let p° be the only place in Σ_{fin} lying over p. We identify V_p with $\text{Mat}_2(F_p)$ and the lattice Λ^+ with $\text{Mat}_2(\mathcal{O}_{F_p})$.

6.2.1 Integral models and supersingular reduction

Let $K = K_p K^p$ be an open compact subgroup of $H(\mathbb{A}_{\mathrm{fin}})$ with K^p sufficiently small and $K_p = K_{p,n}$ for n large such that F^n_p contains E_{p°. Therefore, $M_K = M_{n,K^p}$. In 5.1.2, we construct a smooth integral model M_0 for M_0,K^p; p° on which there is a p-divisible group X. Let M_n for n large such that F^n_p contains E_{p°. Therefore, $M_{K^p} = M_{n,K^p}$. In 5.1.2, we construct a smooth integral model M_0 for M_0,K^p; p° on which there is a p-divisible group X. Let M_n for n large such that F^n_p contains E_{p°.

Let $K = K_p K^p$ be an open compact subgroup of $H(\mathbb{A}_{\mathrm{fin}})$ with K^p sufficiently small and $K_p = K_{p,n}$ for n large such that F^n_p contains E_{p°. Therefore, $M_K = M_{n,K^p}$. In 5.1.2, we construct a smooth integral model M_0 for M_0,K^p; p° on which there is a p-divisible group X. Let M_n for n large such that F^n_p contains E_{p°.

Let $\mathcal{X} \cong \text{Spf } R_{F_p,2}$. Let $\mathcal{R}_{F_p,2,n}$ be the normalization of $\mathcal{R}_{F_p,2}$ in $\mathcal{R}_{F_p,2,n}$. The set of connected components of $\mathcal{R}_{F_p,2,n}$ is parameterized by coset $\mathcal{O}_{\mathcal{F}^\times_p} / \nu(K^\dagger_{p,n})$. Let $\mathcal{A}_{p,n}$ be the neutral connected component of $\text{Spf } R_{F_p,2,n}$ with the Galois group

\[K_{p,n} := \ker \left(\text{GL}(\Lambda^+ / \varpi^n \Lambda^+) \to \text{GL}(\mathcal{O}_{F_p} / \varpi^n \mathcal{O}_{F_p}) \right), \]

which fits into the following exact sequence

\[1 \to K_{p,n} \to K_{p,0} \to K_{p,n} \to E_p^{\times,1} / \nu(K_{p,n}) \to 1. \]
We define the universal p-divisible group X'_n over \mathcal{N}'_n by the following Cartesian diagram

\[
\begin{array}{ccc}
X'_n & \to & \mathcal{N}'_n \\
\downarrow & & \downarrow \\
\chi^\text{univ} \times_{\mathcal{O}_{\tilde{F}_p}} \mathcal{O}_{\tilde{F}_p} & \to & \mathcal{N} \times_{\mathcal{O}_{\tilde{F}_p}} \mathcal{O}_{\tilde{F}_p}.
\end{array}
\]

Moreover, we have the universal Drinfeld ϖ^n-structure

\[
\alpha'_{n,\eta} : \Lambda^{+,\hat{\beta}}/\varpi^n \Lambda^{+,\hat{\beta}} \to X'^{\eta}_{n,\eta}[\varpi^n](\mathcal{N}'_n)
\]

for $X'^{\eta}_{n,\eta}$. In particular, we have the following p-adic uniformization for the completion of M'_{n,K^p} along the supersingular locus

\[
[M'_{n,K^p}]_{\text{ss}} \cong \tilde{H}(\mathbb{Q}) \backslash \left(\mathcal{N}'_n \times E_{p^\infty}^{x,1}/\nu(K_{p,n}) \times \tilde{H}_p^p/K^p \right).
\]

In 5.1.5, we have defined a 1-dimensional closed subscheme $\mathcal{Z}(x_0)_{0,K^p}$ of M_{0,K^p} whose generic fiber is $Z(x_0)_{0,K^p,p^\infty}$, for a $K_{p,0}K^p$-orbit $K_{p,0}K^px_0$ in $V(A_{F,\text{fin}})$ that is admissible. Define $\mathcal{Z}'(x_0)_{n,K^p}$ by the following Cartesian diagram

\[
\begin{array}{ccc}
\mathcal{Z}'(x_0)_{n,K^p} & \to & M'_{n,K^p} \\
\downarrow & & \downarrow \\
M_{n,K^p} \times_{\mathcal{O}_{E_p^{\infty}}} \mathcal{O}_{F_p} & \to & M_{0,K^p} \times_{\mathcal{O}_{E_p^{\infty}}} \mathcal{O}_{F_p}.
\end{array}
\]

It is easy to see that the $K_{p,n}K^p$-orbits inside $K_{p,0}K^px_0$ are parameterized by the finite group $\overline{K}_{p,n}$. For every such orbit $K_{p,n}K^px$, we define $\mathcal{Z}(x)_{n,K^p}$ to be the union of irreducible components of $\mathcal{Z}'(x_0)_{n,K^p}$ whose generic fiber contributes to the special divisor $Z(x)_{n,K^p} \times_{E_p^{\infty}} F_{p^\infty}$ on the generic fiber M'_{n,K^p}.

In 5.2.2, we have defined $\mathcal{Z}(\tilde{x})$ that is a formal divisor of \mathcal{N}', for $\tilde{x} \in \text{Mor}((Y,j_Y),(X,i_X))_{\text{reg}}$.
Define $\mathscr{X}'(\bar{x})_n$ by the following Cartesian diagram

$$
\begin{array}{ccc}
\mathscr{X}'(\bar{x})_n & \rightarrow & \mathcal{M}'_n \\
\downarrow & & \downarrow \\
\mathscr{X}(\bar{x}) \times_{\mathcal{O}_{\hat{F}_p}} \mathcal{O}_{\hat{F}_p} & \rightarrow & \mathcal{N} \times_{\mathcal{O}_{\hat{F}_p}} \mathcal{O}_{\hat{F}_p}.
\end{array}
$$

If we denote by \hat{Y} the completion of Y along the special fiber, we have a universal homomorphism

$$[\bar{x}] : \hat{Y} \times_{\text{Spf } \mathcal{O}_{\hat{F}_p}} \mathscr{X}'(\bar{x})_n \rightarrow \mathcal{X}'_n \mid \mathscr{X}'(\bar{x})_n$$

of p-divisible groups over the formal scheme $\mathscr{X}'(\bar{x})_n$. Pick up any geometric point z of characteristic 0 on $\mathscr{X}'(\bar{x})_n$ and choose a similitude $\mathcal{X}'_{n,z} \cong \Lambda^+$ of $\mathcal{O}_{\hat{F}_p}$-symplyctic modules that induces the universal Drinfeld ϖ_n-structure $\alpha'_{n,\eta}$ at the point s. Then $[\bar{x}]_*(x_p)$ defines a $K_{p,n}$-orbit in $\Lambda^+ \subset V_p$ such that $Ht(\bar{x}) = Ht(x)$ for every x in the orbit. Here,

- x_p is induced from x in the fixed unitary data;
- $Ht(\bar{x})$ is the integer h (≥ 0) such that $\frac{1}{2} \text{Tr}_{\mathcal{E}_{p,v}/\mathcal{F}_p}(\bar{x},\bar{x})' \in \varpi^h \mathcal{O}_{\hat{F}_p}$;
- $Ht(x)$ is the largest integer h (≥ 0) such that $\text{det} x \in \varpi^h \mathcal{O}_{\hat{F}_p}$.

Therefore, we have the following decomposition

$$\mathscr{X}'(\bar{x})_n = \bigcup_{x \in K_{p,n} \setminus \Lambda^+} \mathscr{X}(\bar{x},x)_n$$

into (finitely many) formal divisors of \mathcal{M}'_n.

Let $\phi = \phi_\infty \otimes (\otimes_{v \in \Sigma_{\text{fin}}} \phi_v)$ such that

- $\phi_{\text{fin}} := \otimes_{v \in \Sigma_{\text{fin}} \setminus \{p\}} \phi_v$ is in $\mathcal{S}(V(\Lambda_{\hat{F}_p,\text{fin}}))^{K_p}$;
- ϕ_p is in $\mathcal{S}(V_p)_{\text{reg}} \cap \mathcal{S}(V_p)^{K_{p,n}}$, and its support is contained in Λ^+.

In particular, $\phi(0) = 0$. Consider the generating series

$$Z_\phi(c_p g^p) = \sum_{x \in K_{p,n} \setminus V(\Lambda_{\hat{F}_p,\text{fin}}) \setminus \{0\}} (\phi_p \otimes (\omega_\chi(g^p) \phi^p))(x) Z(x)_{K_{p,n} \setminus K_p}.$$
Define

$$Z_\phi(e_p g^n)_{n,K^p} = \sum_{x \in K_{p,n} \setminus V(A_F, \text{fin}) \setminus \{0\}} (\phi_p \otimes (\omega_\chi(g^p) \phi^p))(x) Z_{n,K^p},$$

whose generic fiber is the base change of $Z_\phi(e_p g^n)$ to F^n. Moreover, its completion at the closed point s_n of \mathscr{M}_n is

$$[Z_\phi(e_p g^n)_{n,K^p}]_{s_n}^\wedge = \sum_{x \in V} \sum_{x \in K_{p,n} \setminus \Lambda^+} (\omega_\chi(g^p) \phi^p)(x) \phi_p(x) \mathcal{Z}((\hat{x}, x))_n. \quad (6.5)$$

6.2.2 Coherence for intersection numbers

Define the subset

$$\text{Red}^n_{q_s} = \left\{ (x_1, x_2; \tilde{x}_1, \tilde{x}_2) \right\} \subset (\Lambda^+) \times \text{Mor} ((Y, jY), (X, iX))^2_{\text{reg}}$$

by the conditions that

- $\text{Ht}(x_\alpha) = \text{Ht}(\tilde{x}_\alpha)$ for $\alpha = 1, 2$;

- K_{p,n,x_1} and K_{p,n,x_2} are linearly independent.

Then by definition, for $(x_1, x_2; \tilde{x}_1, \tilde{x}_2) \in \text{Red}^n_{q_s}$, the formal divisors $\mathcal{Z}(\tilde{x}_1, x_1)_n$ and $\mathcal{Z}(\tilde{x}_2, x_2)_n$ will intersect properly. We let

$$m(x_1, x_2; \tilde{x}_1, \tilde{x}_2) = \mathcal{Z}(\tilde{x}_1, x_1)_n \cdot \mathcal{Z}(\tilde{x}_2, x_2)_n$$

be the intersection multiplicity, which is a well-defined continuous function on $\text{Red}^n_{q_s}$. The following lemma is straightforward.

Lemma 6.2.1. Suppose that for $\alpha = 1, 2$, $\phi_{\alpha,p} \in S(V_p)^{\text{reg}} \cap S(V_p)^{K_{p,n}}$ whose support is contained in Λ^+ and such that $\phi_{1,p} \otimes \phi_{2,p}$ is in $S(V^2_p)^{\text{reg}}$. Then the following function

$$\mu(\tilde{x}_1, \tilde{x}_2; \phi_{1,p} \otimes \phi_{2,p}) = \sum_{x_1 \in K_{p,n} \setminus \Lambda^+} \sum_{x_2 \in K_{p,n} \setminus \Lambda^+} (\phi_{1,p} \otimes \phi_{2,p})(x_1, x_2)m(x_1, x_2; \tilde{x}_1, \tilde{x}_2)$$

that is a priori defined on $\text{Mor} ((Y, jY), (X, iX))^2_{\text{reg}}$ is a Schwartz function in $S(V^2_p)$ via extension by zero.
Let \(h_{p,j} \in K_{p,0} \) \((j = 1, \ldots, m)\) be a set of representatives of the coset \(K_{p,n} \setminus K_{p,0}/K_{p,n} \), and define

\[
\bar{\mu}(\bar{x}_1, \bar{x}_2; \phi_{1,p} \otimes \phi_{2,p}) = \sum_{j=1}^{m} \mu \left(\bar{x}_1, \bar{x}_2; \omega'(h_{p,j}) \left(\phi_{1,p} \otimes \phi_{2,p} \right) \right),
\]

whose value does not depend on the representatives we choose.

We return to our original assumption for this chapter that \(\phi_{\alpha,S} \in S(V_S)_{\text{reg}} \) \((\alpha = 1, 2)\), \(\phi_{1,S} \otimes \phi_{2,S} \) is in \(S(V_S^{\otimes 2})_{\text{reg}} \), and \(g_{\alpha} \in c_S H(A_S) \) for \(\alpha = 1, 2 \). Choose some element \(e_\alpha \in E^* \) such that \(\omega'(m(e_\alpha)) \phi_{\alpha,p} \) is supported on \(\Lambda^+ \) for \(\alpha = 1, 2 \). We have

\[
Z_{\phi_{\alpha}}(g_{\alpha}) = \sum_{x_{\alpha} \in K \setminus V_{\text{fin}}} (\omega'(g_{\alpha}) \phi_{\alpha}) (x_{\alpha}) Z_{(x_{\alpha})} K = \sum_{x_{\alpha} \in K \setminus V_{\text{fin}}} (\omega'(g_{\alpha}) \phi_{\alpha}) (x_{\alpha} e_{\alpha}) Z_{(x_{\alpha})} K.
\]

Therefore, we can add one more assumption that \(\phi_{\alpha,p} \) is in \(S(V_p)_{\text{reg}} \cap S(V_p)_{K}^{\dagger,n} \), and its support is contained in \(\Lambda^+ \). We let \(\tilde{Z}_{\phi_{\alpha}}(g_{\alpha}) = \tilde{Z}_{\phi}(e_p g_{\alpha}^p)_{n,K}^p \) and denote by \([\tilde{Z}_{\phi}(g_{\alpha})]_{n,K}^{\dagger,p} \) its completion along the special fiber that is contained in the supersingular locus \([\mathcal{M}_{n,K}^p]_{ss} \). We have a similar decomposition as (6.2).

First, we consider

\[
Z_{\phi_1}(g_1) \cdot Z_{\phi_2}(g_2) = [Z_{\phi_1}(g_1)]_{n,K}^{\dagger,p} \cdot [Z_{\phi_2}(g_2)]_{n,K}^{\dagger,p} = [Z_{\phi_1}(e_p g_1^p)]_{n,K}^{\dagger,p} \cdot [Z_{\phi_2}(e_p g_2^p)]_{n,K}^{\dagger,p}.
\]

Let \(\tilde{h}_i^p \in \tilde{H}_{n,K}^p \) \((i = 1, \ldots, l)\) be a set of representatives of the double coset \(\tilde{H} \setminus \tilde{H}_{n,K}^p / K^p \).

Then

\[
(6.6) = \sum_{i=1}^{l} \sum_{j=1}^{m} \left[Z_{\omega'(h_{p,j} \tilde{h}_i^p)}(e_p g_1^p)_{n,K}^p \right]_{n,K}^{\dagger,p} \cdot \left[Z_{\omega'(h_{p,j} \tilde{h}_i^p)}(e_p g_2^p)_{n,K}^p \right]_{n,K}^{\dagger,p}.
\]
By (6.5),

\[
(6.7) = \sum_{i=1}^{l} \sum_{j=1}^{m} \left(\sum_{\tilde{x}_1 \in V} \sum_{x_1 \in K_{p,n} \setminus \Lambda^+} (\omega_\chi (g_1^p) \phi_1^p) (\tilde{h}_{i,j}^{-1} \tilde{x}_1) \phi_{1,p} (h_{p,j}^{-1} x_1) \cdot \mathcal{Z}(\tilde{x}_1, x_1)_n \right) \\
\cdot \left(\sum_{\tilde{x}_2 \in V} \sum_{x_2 \in K_{p,n} \setminus \Lambda^+} (\omega_\chi (g_2^p) \phi_2^p) (\tilde{h}_{i,j}^{-1} \tilde{x}_2) \phi_{2,p} (h_{p,j}^{-1} x_2) \cdot \mathcal{Z}(\tilde{x}_2, x_2)_n \right) \\
= \sum_{i=1}^{l} \sum_{(\tilde{x}_1, \tilde{x}_2) \in \tilde{V}^2} (\omega_\chi (\iota(g_1^p, g_2^p, \psi)) (\phi_1^p \otimes \phi_2^p)) (\tilde{h}_{i,j}^{-1} (\tilde{x}_1, \tilde{x}_2)) \cdot \tilde{\mu}(\tilde{x}_1, \tilde{x}_2; \phi_{1,p} \otimes \phi_{2,p}).
\]

We define

\[
\Phi^{\text{hor}} = \sum_{i=1}^{l} \left(\omega_\chi (\tilde{h}_{i,j}^p) (\phi_1^p \otimes \phi_2^p) \right) \otimes \tilde{\mu}(\cdot; \phi_{1,p} \otimes \phi_{2,p})
\]

that is a function in \(S(\tilde{V}(\mathbb{A}_F)^2)\). Then

\[
(6.8) = \sum_{(\tilde{x}_1, \tilde{x}_2) \in \tilde{V}^2} (\omega_\chi (\iota(g_1^p, g_2^p, \psi)) \Phi^{\text{hor}})((\tilde{x}_1, \tilde{x}_2)).
\]

We define the following theta series

\[
\theta^{\text{hor}}_{(p^a)}(\cdot; \phi_1, \phi_2) = \log q \sum_{(\tilde{x}_1, \tilde{x}_2) \in \tilde{V}^2} (\omega_\chi (\iota(g_1^p, g_2^p, \psi)) \Phi^{\text{hor}})((\tilde{x}_1, \tilde{x}_2)),
\]

where \(q\) is the cardinality of the residue field of \(E_\mathcal{P}^a\). Then in summary, we have the following lemma.

Lemma 6.2.2. Under the previous assumption, we have

\[
\log q (Z_{\phi_1}(g_1) \cdot Z_{\phi_2}(g_2)) = \theta^{\text{hor}}_{(p^a)}(\iota(g_1^p, g_2^p); \phi_1, \phi_2).
\]

Second, we consider

\[
Z_{\phi_1}(g_1) \cdot \mathcal{V}_{\phi_2}(g_2) = [Z_{\phi_1}(g_1)]^{\Lambda}_n \cdot \mathcal{V}_{\phi_2}(g_2) = [Z_{\phi_1}(e_p g_1^p)]^{\Lambda}_n \cdot \mathcal{V}_{\phi_2}(g_2).
\]

(6.9)
Let $\tilde{h}_i^p \in \tilde{H}^p_{\text{fin}}$ ($i = 1, \ldots, l$) and $h_{p,j} \in K_{p,0}$ ($j = 1, \ldots, m$) be as above. Then

$$
(6.9) = \sum_{i=1}^{l} \sum_{j=1}^{m} \left[Z_{\omega_X(h_{p,j}, \tilde{h}_i^p)} \phi_1 \left(e_p g_1^p \right)_{n,K_{p,0}} \right] \cdot V_{\omega_X(h_{p,j}, \tilde{h}_i^p)} \phi_2 (g_2)
$$

$$
= \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{\tilde{x}_i \in V} \sum_{x_i \in K_{p,0} \setminus \Lambda^+} \left(\omega_X(g_1^p, \phi_1^p) \left(\tilde{h}_i^p \right) \cdot h_{p,j}^{-1} x_1 \right) \phi_1, \phi_2 (g_2).
$$

(6.10)

The function

$$
\nu(\tilde{x}_1; \phi_1, \phi_2, g_2) = \sum_{j=1}^{m} \phi_1, \phi_2 (g_2) (h_{p,j}^{-1} x_1) \cdot V_{\omega_X(h_{p,j}, \tilde{h}_i^p)} \phi_2 (g_2),
$$

which is originally defined for $\tilde{x}_1 \in \text{Mor} \left((Y, j_Y), (X, i_X) \right)_{\text{reg}}$, can be extended by zero to a function in $S(\tilde{V}_p)$. Then

$$
(6.10) = \sum_{i=1}^{l} \sum_{\tilde{x}_i \in V} \left(\omega_X(g_1^p, \phi_1^p) \left(\tilde{h}_i^p \right) \cdot \nu(\tilde{x}_1; \phi_1, \phi_2, g_2). \right)
$$

(6.11)

We define

$$
\phi^{\text{ver}} = \sum_{i=1}^{l} \left(\omega_X(g_1^p, \phi_1^p) \left(\tilde{h}_i^p \right) \cdot \nu(\tilde{x}_1; \phi_1, \phi_2, g_2). \right)
$$

that is a function in $S(\tilde{V}(\mathbb{A}_F))$. Then

$$
(6.11) = \sum_{\tilde{x}_i \in V} \omega_X(g_1^p, \phi_1^p) \phi^{\text{ver}} (\tilde{x}_1).
$$

We define the following theta series

$$
\theta^{\text{ver}}(\bullet; \phi_1, \phi_2, g_2) = \log q \sum_{\tilde{x}_1 \in V} \omega_X(\bullet; \phi_1^p, \phi_2^p) (\tilde{x}_1).
$$

Then in summary, we have the following lemma.

Lemma 6.2.3. Under the previous assumption, we have

$$
\log q \left(Z_{\phi_1} (g_1) \cdot V_{\phi_2} (g_2) \right) = \theta^{\text{ver}}(g_1; \phi_1, \phi_2, g_2)
$$

that is a theta series for $g_1 \in e_p H'(\mathbb{A}_F)$.

Finally, we let

\[A_{(p^\alpha)}(g_1, \phi_1) = \log q(V_{\phi_1}(g_1) \cdot \omega_K). \]

Then in summary, we have the following proposition.

Proposition 6.2.4. For \(\phi_1, S \otimes \phi_2, S \in S(V^*_S)_{\text{reg}} \) and \(g_\alpha \in e_S H'(A^s_F) \) \((\alpha = 1, 2), \)

\[(\hat{Z}_{\phi_1}(g_1), \hat{Z}_{\phi_2}(g_2)) \in \theta_{(p^\alpha)}(\iota(g_1, g_2^\vee); \phi_1, \phi_2) + \theta_{(p^e)}(g_1, \phi_1, \phi_2, g_2) + A_{(p^\alpha)}(g_1, \phi_1)E(g_2, \phi_2). \]

6.3 Nonsplit case

In this section, we discuss the contribution of the local height paring at a finite place \(p \) in \(S \) that is nonsplit in \(E \) and such that \(\epsilon(V_p) = -1 \). Let \(p^\alpha \) be the only place in \(\Sigma^0_{\text{fin}} \) lying over \(p \). We identify \(V_p \) with \(B_p \), the unique division quaternion algebra over \(F_p \), and the lattice \(\Lambda^- \) with \(\mathcal{O}_{B_p} \).

6.3.1 Integral models and Čerednik–Drinfeld uniformization: minimal level

Let \(K = K_p K^p \) be an open compact subgroup of \(H(A_{\text{fin}}) \) with \(K^p \) sufficiently small and \(K_p = K_{p, n} \). In this subsection, we study the case where \(n = 0 \). In 5.1.2, we introduce the integral model \(\mathcal{M}_{0, K^p} \) defined over \(\text{Spec} \, \mathcal{O}_{E^p} \), whose generic fiber is \(M_{0, K^p, E^p} \). We fix an \(F \)-point \(s \) on the common neutral component of \(\mathcal{M}^l_{0, K^p, E^p} \) and \(\mathcal{M}_{0, K^p} \), which corresponds to a quintuple \((A, \theta, i, \eta, \eta^p)\). Repeat the process of 5.1.4, we obtain the \(E \)-hermitian space \(\tilde{V} \) with a fixed isometry \(\gamma^p = (\gamma^p, \gamma^p) : \tilde{V} \otimes F \to \mathcal{A}_{p, \text{fin}} \to V \otimes F \mathcal{A}_{p, \text{fin}} \), and the reductive \(\tilde{H} = \text{Res}_{F/Q} U(\tilde{V}). \)

Let \(X = X_s = (A_{p^\alpha})^l \) and \(i_X : \mathcal{O}_{B_p} \to \text{End}(X) \) be the induced \(\mathcal{O}_{B_p} \)-action. Then \((X, i_X)\) is a special formal \(\mathcal{O}_{B_p} \)-module over \(\text{Spec} \, F \) (cf. [Dri1976, BC1991, KR2000]). In particular \(X \) is of dimension 2 and height 4. Then \(\text{Aut}(X, i_X) \) acts on \(\text{Mor}((Y, j_Y), (X, i_X)) \) and can be identified with \(\text{GL}_2(\mathcal{O}_{F_p}) \). For every integer \(h \), we define a functor \(\Omega^h \) in the category of schemes over \(\text{Spec} \, \mathcal{O}_{F_p} \) where \(\varpi \) is locally nilpotent: for every such scheme \(S \), \(\Omega^h(S) \) is the set of equivalence classes of pairs \((X, \rho_X)\) where

- \(X \) is a special formal \(\mathcal{O}_{B_p} \)-module over \(S \);
- \(\rho_X : X \times \text{Spec} \, F \to X \times \text{Spec} \, F \) is a quasi-isogeny of height \(h \) of special formal \(\mathcal{O}_{B_p} \)-modules.

According to Drinfeld [Dri1976], this functor is represented by a formal scheme \(\Omega^h \) over \(\text{Spf} \, \mathcal{O}_{F_p} \). Let
\[\Omega = \Omega^{01} \text{ and } \Omega' = \Omega \times_{\mathcal{O}_{F_p^{0}}} \mathcal{O}_{\tilde{E}_p^{0}}. \]

If we denote by \(\mathcal{M}_{0,K_p^{1},p,K^{1},p}^{\dagger} \) (resp. \(\mathcal{M}_{0,K^{r}}^{\dagger} \)) the formal completion along the special fiber, then we have the following Čerednik–Drinfeld uniformization (cf. [Dri1976, BC1991, RZ1996]):

\[
\mathcal{M}_{0,K_p^{1},p,K^{1},p}^{\dagger} \times_{\mathcal{O}_{F_p^{0}}} \mathcal{O}_{\tilde{E}_p^{0}} \cong \hat{H}^{1}(\mathbb{Q}) \left\{ \prod_{h \in \mathbb{Z}} \Omega^{h} \times \prod_{i=2}^{r} B^{\times}_{p} / K^{1}_{p} \times \hat{H}^{1}(\mathcal{A}_{\text{fin}}^{p}) / K^{1}_{p} \right\} ;
\]

\[
\mathcal{M}_{0,K^{r}}^{\dagger} \times_{\mathcal{O}_{E_p^{0}}} \mathcal{O}_{\tilde{E}_p^{0}} \cong \hat{H}(\mathbb{Q}) \backslash \Omega' \times \hat{H}_{\text{fin}}^{0} / K^{p}.
\]

In fact, the above isomorphisms underly the corresponding uniformization for the universal \(p \)-divisible groups. For example, let \(X^{\text{univ}} \to \Omega \) and \(X' \to \Omega' \) be the universal special formal \(\mathcal{O}_{B_p} \)-modules, respectively. Then we have the following commutative diagram:

\[
\xymatrix{ [X]^{\dagger}_{\text{sp}} \times_{\mathcal{O}_{E_p^{0}}} \mathcal{O}_{\tilde{E}_p^{0}} \ar[r]_{\sim} \ar[d] & \hat{H}(\mathbb{Q}) \times \hat{H}_{\text{fin}}^{0} / K^{p} \ar[d] \\
[\mathcal{M}_{0,K^{r}}^{\dagger}]_{\text{sp}} \times_{\mathcal{O}_{E_p^{0}}} \mathcal{O}_{\tilde{E}_p^{0}} \ar[r]_{\sim} & \hat{H}(\mathbb{Q}) \backslash \Omega' \times \hat{H}_{\text{fin}}^{0} / K^{p}.}
\]

For every nonzero element \(\tilde{x} \in \text{Mor}((Y, j_Y), (X, i_X)) \), we define a subfunctor \(\mathcal{Z}(\tilde{x}) \) of \(\Omega^{0} \) as follows: for every scheme \(S \) in the previously mentioned category, \(\mathcal{Z}(\tilde{x})(S) \) is the set of equivalence classes of \((X, \rho_X) \in \mathcal{O}^{0}(S) \) such that the following composed homomorphism

\[
\left(y \times_{\text{Spec} \mathcal{O}_{F_p^{0}}} \text{Spec} \mathbb{F} \right) \times_{\text{Spec} \mathbb{F}} S_{\text{sp}} = Y \times_{\text{Spec} \mathbb{F}} S_{\text{sp}} \xrightarrow{\tilde{x}} X \times_{\text{Spec} \mathbb{F}} S_{\text{sp}} \xrightarrow{\rho_X} X \times S \to S_{\text{sp}}
\]

extends to a homomorphism \(y \times_{\text{Spec} \mathcal{O}_{F_p^{0}}} S \to X \). Then \(\mathcal{Z}(\tilde{x}) \) is represented by a closed formal subscheme \(\mathcal{Z}(\tilde{x}) \) of \(\Omega^{0} \). We denote by \(\mathcal{Z}(\tilde{x})^{\text{hor}} \) the horizontal part of the associated divisor of \(\mathcal{Z}(\tilde{x}) \), which is empty if \((\tilde{x}, \tilde{x}) = 0 \).

6.3.2 Integral models and Čerednik–Drinfeld uniformization: higher level

Let \(K = K_p K^{p} \) be an open compact subgroup of \(H(\mathcal{A}_{\text{fin}}) \) with \(K^{p} \) sufficiently small and \(K_p = K_{p,n} \) for \(n \) large such that \(F_p^{n} \) contains \(E_p^{*} \). Therefore, \(M_K = M_{n,K^{r}} \).

Let \(\Omega_{n,\eta} = \mathcal{X}_{\eta}^{\text{univ}}[\varpi^{n}] - \mathcal{X}_{\eta}^{\text{univ}}[\varpi^{n-1}] \) be the étale covering over the generic fiber \(\Omega_{\eta} \), viewed as a rigid space, with the Galois group \(K_{p,0}^{\dagger} / K_{p,n}^{\dagger} = (\mathcal{O}_{B_p} / \varpi^{0} \mathcal{O}_{B_p})^{\times} \). Let \(\Omega_{n} \) be the normalization of \(\Omega \times_{\mathcal{O}_{F_p^{0}}} \mathcal{O}_{\tilde{F}_p^{0}} \) in \(\Omega_{n,\eta} \times_{\mathcal{F}_p^{0}} \tilde{F}_p^{0} \), whose set of connected components is parameterized by the coset

\footnote{This is not to be confused with the differential form \(\Omega \) in Chapter 4}
\[\mathcal{O}_{F_p} / \nu(K_{p,n}) \]. Let \(\Omega'_n \) be the neutral connected component of \(\Omega_n \), which is finite over \(\Omega' \times \mathcal{O}_{E_0} \mathcal{O}_{\hat{F}_p} \).

The formal scheme \(\Omega'_n \) is not regular but has double points. We replace \(\Omega'_n \) by blowing up all its double points and denote by the same notation. It is easy to see that

\[
\left(M_{n,K} \times E \mathcal{F}_p \right) \text{rig} \cong \tilde{H}(\mathbb{Q}) \setminus \left(\Omega'_{n,n} \times E_{p^1}^{F_p} / \nu(K_{p,n}) \right) \times \tilde{H}_{\text{fin}}^p / \mathcal{K}^p.
\]

The group \(\tilde{H}(\mathbb{Q}) \) acts on \(\Omega'_n \) by the universal property of normalization and blowing-up of double points. The quotient

\[
\tilde{H}(\mathbb{Q}) \setminus \left(\Omega'_{n,n} \times E_{p^1}^{F_p} / \nu(K_{p,n}) \right) \times \tilde{H}_{\text{fin}}^p / \mathcal{K}^p
\]

is regular, flat and projective over \(\text{Spf} \mathcal{O}_{\hat{F}_p} \) (for sufficiently small \(\mathcal{K}^p \)). By Grothendieck Existence Theorem, we have a regular scheme \(M_{n,K} \) that is flat and projective over \(\text{Spec} \mathcal{O}_{\hat{F}_p} \), and a morphism \(p_n : M_{n,K} \to M_{0,K} \times \mathcal{O}_{E_0} \mathcal{O}_{\hat{F}_p} \), such that the following diagram commutes:

\[
\begin{array}{ccc}
[M_{n,K}]_{\mathcal{O}_{\hat{F}_p}} & \xrightarrow{\sim} & \tilde{H}(\mathbb{Q}) \setminus \left(\Omega'_{n,n} \times E_{p^1}^{F_p} / \nu(K_{p,n}) \right) \times \tilde{H}_{\text{fin}}^p / \mathcal{K}^p \\
[p_n]_{\mathcal{O}_{\hat{F}_p}} & & \\
[M_{0,K}]_{\mathcal{O}_{\hat{F}_p}} \times \mathcal{O}_{E_0} \mathcal{O}_{\hat{F}_p} & \xrightarrow{\sim} & \left(\tilde{H}(\mathbb{Q}) \setminus \Omega' \right) \times \tilde{H}_{\text{fin}}^p / \mathcal{K}^p \times \mathcal{O}_{\hat{F}_p} \mathcal{O}_{\hat{F}_p}.
\end{array}
\]

Define \(\mathcal{Z}'(\tilde{x})_n \) by the following Cartesian diagram

\[
\begin{array}{ccc}
\mathcal{Z}'(\tilde{x})_n & \rightarrow & \Omega'_n \\
\downarrow & & \downarrow \\
\mathcal{Z}(\tilde{x})_{\text{hor}} \times \mathcal{O}_{\hat{F}_p} \mathcal{O}_{\hat{F}_p} & \rightarrow & \Omega \times \mathcal{O}_{\hat{F}_p} \mathcal{O}_{\hat{F}_p}.
\end{array}
\]

By the similar argument as in 6.2.1, we have the following decomposition

\[
\mathcal{Z}'(\tilde{x})_n = \bigcup_{x \in K_{p,n} \setminus \Lambda^-} \mathcal{Z}(\tilde{x}, x)_n
\]

into (finitely many) formal divisors of \(\Omega'_n \).

In 5.1.5, we have defined a 1-dimensional closed subscheme \(\mathcal{Z}(x_0)_{0,K^p} \) of \(M_{0,K^p} \) whose generic fiber is \(Z(x_0)_{0,K^p} \), for a \(K_{p,0}K^p \)-orbit \(K_{p,0}K^p x_0 \) in \(V(\mathcal{A}_{F,\text{fin}}) \) that is admissible. Define \(\mathcal{Z}'(x_0)_{n,K^p} \) by
the following Cartesian diagram

\[
\begin{array}{ccc}
Z'(x_0)_{n,K^p} & \longrightarrow & M_{n,K^p} \\
\downarrow & & \downarrow \\
Z(x_0)_{0,K^p, \text{hor}} \times_{\mathcal{O}_{E_p}} \mathcal{O}_{F_p^0} & \longrightarrow & M_{0,K^p, \text{hor}} \times_{\mathcal{O}_{E_p}} \mathcal{O}_{F_p^0},
\end{array}
\]

where \(Z(x_0)_{0,K^p, \text{hor}}\) denotes the horizontal part of the associated divisor. For every orbit \(K_{p,0}K^p x_0\) inside \(K_{p,0}K^p x_0\), we define \(Z(x)_{n,K^p}\) to be the union of irreducible components of \(Z'(x_0)_{n,K^p}\) whose generic fiber contributes to the special divisor \(Z(x)_{n,K^p} \times_{E_p} F^n_p\) on the generic fiber \(M_{n,K^p} \times_{E} F^n_p\).

Let \(\phi = \phi^1_\infty \otimes (\otimes_{v \in \Sigma_{\text{fin}}} \phi_v)\) such that

- \(\phi^1_\infty := \otimes_{v \in \Sigma_{\text{fin}} - \{p\}} \phi_v\) is in \(S(V(A_{F, \text{fin}}))^K_p\);
- \(\phi_p\) is in \(S(V_p)_{\text{reg}} \cap S(V_p)^{K_p}_{1,n}\), and its support is contained in \(\Lambda^-\).

In particular, \(\phi(0) = 0\). Consider the generating series

\[
Z_{\phi}(e_p g^p) = \sum_{x \in K_{p,n,K^p} \setminus V(A_{F, \text{fin}}) - \{0\}} (\phi_p \otimes (\omega_\chi(g^p)\phi^p))(x) Z(x)_{K_{p,n,K^p}}.
\]

Define

\[
Z_{\phi}(e_p g^p)_{n,K^p} = \sum_{x \in K_{p,n,K^p} \setminus V(A_{F, \text{fin}}) - \{0\}} (\phi_p \otimes (\omega_\chi(g^p)\phi^p))(x) Z(x)_{n,K^p},
\]

whose generic fiber is the base change of \(Z_{\phi}(e_p g^p)\) to \(F^n_p\). Moreover, its completion along the neutral component is (the image of)

\[
\sum_{\tilde{x} \in V} \sum_{x \in K_{p,n} \setminus \Lambda^-} (\omega_\chi(g^p)\phi^p)(\tilde{x}) \phi_p(x) \mathcal{Z}(\tilde{x}, x)_n.
\]

6.3.3 Coherence for intersection numbers

Let \(\text{Mor}((Y, j_Y), (X, i_X))_{\text{reg}} \subset \text{Mor}((Y, j_Y), (X, i_X))\) be the subset consisting of \(\tilde{x}\) with \((\tilde{x}, \tilde{x}) \neq 0\).

Define the subset

\[
\text{Red}^n = \{(x_1, x_2; \tilde{x}_1, \tilde{x}_2) \in (\Lambda^-)^2 \times \text{Mor}((Y, j_Y), (X, i_X))^2\}
\]

by the conditions that
Then by definition, for \((x_1, x_2; \tilde{x}_1, \tilde{x}_2) \in \text{Red}^\text{ns}_n\), the formal divisors \(\mathcal{Z}(\tilde{x}_1, x_1)_n\) and \(\mathcal{Z}(\tilde{x}_2, x_2)_n\) will intersect properly. We let

\[m(x_1, x_2; \tilde{x}_1, \tilde{x}_2) = \mathcal{Z}(\tilde{x}_1, x_1)_n \cdot \mathcal{Z}(\tilde{x}_2, x_2)_n \]

be the intersection multiplicity, which is a well-defined continuous function on \(\text{Red}^\text{ns}_n\). The following lemma is straightforward.

Lemma 6.3.1. Suppose that for \(\alpha = 1, 2\), \(\phi_{\alpha, p} \in \mathcal{S}(V_p)_{\text{reg}} \cap \mathcal{S}(V^2_p)_{\mathcal{K}^\dagger_{p,n}}\) whose support is contained in \(\Lambda^-\) and such that \(\phi_{1, p} \otimes \phi_{2, p}\) is in \(\mathcal{S}(V^2_p)_{\text{reg}}\). Then the following function

\[
\mu(\tilde{x}_1, \tilde{x}_2; \phi_{1, p} \otimes \phi_{2, p}) = \sum_{x_1 \in K_{p,n} \setminus \Lambda^-} \sum_{x_2 \in K_{p,n} \setminus \Lambda^-} (\phi_{1, p} \otimes \phi_{2, p})(x_1, x_2) m(x_1, x_2; \tilde{x}_1, \tilde{x}_2)
\]

that is a priori defined on \(\text{Mor}((Y, j_Y), (X, i_X))^2_{\text{reg}}\) is a Schwartz function in \(\mathcal{S}(V^2_p)\) via extension by zero.

The remaining discussion follows similarly as in 6.2.2. We sketch the process. Let \(h_{p,j} \in K_{p,0}\) \((j = 1, \ldots, m)\) be similarly defined previously. Let

\[
\bar{\mu}(\tilde{x}_1, \tilde{x}_2; \phi_{1, p} \otimes \phi_{2, p}) = \sum_{j=1}^m \mu(\tilde{x}_1, \tilde{x}_2; \omega_\chi^{\prime}(h_{p,j}, (\phi_{1, p} \otimes \phi_{2, p}))
\]

whose value does not depend on the representatives we choose.

We return to our original assumption for this chapter that \(\phi_{\alpha, S} \in \mathcal{S}(V_S)_{\text{reg}}\) \((\alpha = 1, 2)\), \(\phi_{1, S} \otimes \phi_{2, S}\) is in \(\mathcal{S}(V^2_S)_{\text{reg}}\), and \(g_\alpha \in e_S H'(\Lambda^S_p)\) for \(\alpha = 1, 2\). Choose some element \(e_\alpha \in E^\times\) such that \(\omega_\chi(m(e_\alpha)) \phi_{\alpha, p}\) is supported on \(\Lambda^+\) for \(\alpha = 1, 2\). We have

\[
Z_{\phi_\alpha}(g_\alpha) = \sum_{x_\alpha \in K \setminus V^\text{fin}} (\omega_\chi(g_\alpha) \phi_\alpha)(x_\alpha e_\alpha) Z(x_\alpha)_K.
\]

Therefore, we can add one more assumption that \(\phi_{\alpha, p}\) is in \(\mathcal{S}(V_p)_{\text{reg}} \cap \mathcal{S}(V_p)_{\mathcal{K}^\dagger_{p,n}}\), and its support is contained in \(\Lambda^-\). We let \(Z_{\phi_\alpha}(g_\alpha) = Z_\phi(e_p g^{\phi}_\alpha)_n, K^p\) and denote by \([Z_\phi(g_\alpha)]_\text{sp}\) its completion along the special fiber. We have a similar decomposition as (6.2).
First, we consider

\[\mathcal{Z}_{\phi_1}(g_1) \cdot \mathcal{Z}_{\phi_2}(g_2) = [\mathcal{Z}_{\phi_1}(g_1)]_{\mathfrak{h}_p} \cdot [\mathcal{Z}_{\phi_2}(g_2)]_{\mathfrak{h}_p} = [\mathcal{Z}_{\phi_1}(e_p g_1^p)]_{n, K^p} \cdot [\mathcal{Z}_{\phi_2}(e_p g_2^p)]_{n, K^p} \] \tag{6.13}

Let \(\tilde{h}_i^p \in \tilde{H}_\text{fin}^p \) \((i = 1, \ldots, \ell)\) be a set of representatives of the double coset \(\tilde{H}(\mathbb{Q}) \backslash \tilde{H}_\text{fin}^p / K^p \). We assume that \(\tilde{h}_1^p \) is the identity.

Then

\[\sum_{i=1}^{\ell} \sum_{j=1}^{m} \left(\sum_{x_1 \in V} \mathcal{Z}_{\omega(h, h^p)} \phi_1 (\tilde{h}_i^p, x_1) \phi(x_1) \right) \]

where the subscript \(h \) means that we take completion along the component indexed by \(h \). By (6.12),

\[\sum_{i=1}^{\ell} \sum_{j=1}^{m} \left(\sum_{x_1 \in V} \sum_{x_2 \in \mathcal{V}} (\omega(h, h^p) \phi_2) (\tilde{h}_i^p, x_2) \phi(x_2) \right) \]

We define

\[\phi_{\text{hor}} = \sum_{i=1}^{\ell} \left(\omega(h, h^p) \phi_1 \otimes \phi_2 \right) \otimes \tilde{\mu}(\phi, \phi_1, \phi_2) \]

that is a function in \(\mathcal{S}(ilde{V}(\mathcal{A} F)^2) \). Then

\[\sum_{(x_1, x_2) \in \mathcal{V}^2} (\omega(h, h^p) \phi_1 \otimes \phi_2) \phi_{\text{hor}} ((x_1, x_2)) \]

We define the following theta series

\[\theta^\text{hor}_{(p^r)} (\bullet; \phi_1, \phi_2) = \log q \sum_{(x_1, x_2) \in \mathcal{V}^2} (\omega(h, h^p) \phi_1 \otimes \phi_2) \phi_{\text{hor}} ((x_1, x_2)) \]

where \(q \) is the cardinality of the residue field of \(E_f^p \). Then in summary, we have the following lemma.
Lemma 6.3.2. Under the previous assumption, we have

\[\log q(Z_{\phi_1}(g_1) \cdot Z_{\phi_2}(g_2)) = q_{\text{hor}}^{(p)}(\iota(g_1, g_2^\vee); \phi_1, \phi_2). \]

Second, we consider

\[Z_{\phi_1}(g_1) \cdot V_{\phi_2}(g_2) = [Z_{\phi_1}(g_1)]_{\text{sp}}^\phi \cdot V_{\phi_2}(g_2) = [Z_{\phi_1}(e_p g_1)]_{\text{sp}}^\phi \cdot V_{\phi_2}(g_2). \] (6.16)

Let \(\bar{h}_i^p \in \bar{H}_\text{fin}^p \) \((i = 1, \ldots, l)\) and \(h_{p,j} \in K_{p,0} \) \((j = 1, \ldots, m)\) be as above. Then

\[
(6.16) = \sum_{i=1}^l \sum_{j=1}^m [Z_{\omega_\chi(h_{p,j}, \bar{h}_i^p)}(e_p g_1^p)]_{\text{sp}}^\phi \cdot V_{\omega_\chi(h_{p,j}, \bar{h}_i^p)}(g_2) \\
= \sum_{i=1}^l \sum_{j=1}^m \sum_{\bar{x}_1 \in V} \sum_{x_1 \in K_{p,n} \setminus \Lambda^- \atop (x_1, x_1) = (\bar{x}_1, \bar{x}_1)'} (\omega_\chi(g_1^p) \phi_1^p)(\bar{h}_i^p x_1) \phi_1^p(h_{p,j}^{-1} x_1) \mathcal{Z}_{\phi_1, p}^1(x_1, x_1) \cdot V_{\omega_\chi(h_{p,j}, \bar{h}_i^p)}(g_2).
\] (6.17)

The function

\[\nu(\bar{x}_1; \phi_{1,p}, \phi_2, g_2) = \sum_{j=1}^m \sum_{x_1 \in K_{p,n} \setminus \Lambda^\circ \atop (x_1, x_1) = (\bar{x}_1, \bar{x}_1)'} \phi_1^p(h_{p,j}^{-1} x_1) \mathcal{Z}_{\phi_1, p}^1(x_1, x_1) \cdot V_{\omega_\chi(h_{p,j})}(g_2), \]

which is originally defined for \(\bar{x}_1 \in \text{Mor}((Y, jY), (X, iX))_{\text{reg}} \), can be extended by zero to a function in \(S(\bar{V}_p) \). Then

\[
(6.17) = \sum_{i=1}^l \sum_{\bar{x}_1 \in V} (\omega_\chi(\bar{h}_i^p) \phi_1^p)(\bar{h}_i^p x_1) \nu(\bar{x}_1; \phi_{1,p}, \phi_2, g_2).
\] (6.18)

We define

\[\phi^{\text{ver}} = \sum_{i=1}^l (\omega_\chi(\bar{h}_i^p) \phi_1^p) \otimes \nu(\bullet; \phi_{1,p}, \phi_2, g_2) \]

that is a function in \(S(\bar{V}(A_F)) \). Then

\[
(6.18) = \sum_{\bar{x}_1 \in V} (\omega_\chi(g_1^p) \phi^{\text{ver}})(\bar{x}_1).
\]
We define the following theta series

$$
\theta_{\varphi_1, \phi_2, g_2}^{ver}(\varphi_1, \phi_2, g_2) = \log q \sum_{x_1 \in \hat{V}} (\omega(p^2)(x_1))^\varphi_1 \phi_2 (x_1).
$$

Then in summary, we have the following lemma.

Lemma 6.3.3. Under the previous assumption, we have

$$
\log q (\mathcal{Z}_{\phi_1}(g_1) \cdot \mathcal{V}_{\phi_2}(g_2)) = \theta_{\varphi_1, \phi_2, g_2}^{ver}(g_1; \phi_1, \phi_2, g_2)
$$

that is a theta series for $g_1 \in e_p H'(A_F^p)$.

Finally, we let

$$A_{\varphi_1}(g_1, \phi_1) = \log q (\mathcal{V}_{\phi_1}(g_1) \cdot \omega_K).$$

Then in summary, we have the following proposition.

Proposition 6.3.4. For $\phi_1, \phi_2, \phi_3, \phi_4 \in \mathcal{S}(V_S)^\text{reg}$ and $g_\alpha \in e_S H'(A_F^S)$ ($\alpha = 1, 2$),

$$
\langle \mathcal{Z}_{\phi_1}(g_1), \mathcal{Z}_{\phi_2}(g_2) \rangle_p^\varphi = \theta_{\varphi_2, g_2}^{\text{hor}}(\nu(g_1, g_2^\varphi); \phi_1, \phi_2) + \theta_{\varphi_1, \phi_2, g_2}^{\text{ver}}(g_1; \phi_1, \phi_2, g_2) + A_{\varphi_1}(g_1, \phi_1) E(g_2, \phi_2).
$$
Chapter 7

Arithmetic inner product formula: the main theorem

We finish the proof of the main theorem, i.e., the arithmetic inner product formula for $n = 1$ in this chapter. In 7.1, we introduce the general theory of holomorphic projection for the group $U(1, 1)_F$, and compute such projection for the analytic kernel function. In particular, this process will relate the archimedean local terms to admissible height pairings (at archimedean places) and leaves local terms at finite places unchanged. Based on all these previous results, we come to the final stage of the proof in 7.2.
7.1 Holomorphic projection

In this section, we define and compute the holomorphic projection of the analytic kernel function $E'(0, \nu(g_1, g_2), \phi_1 \otimes \phi_2)$, and study its relation with the geometric kernel function when $n = 1$. We follow the general theory in the case of GL_2 in [GZ1986, Zha2001a, Zha2001b, YZZa]. In what follows, $n = 1$ and $H' = H_1$ in particular.

7.1.1 Holomorphic and quasi-holomorphic projection: generality

Let $\ell = (t, \lambda) \in \mathbb{Z}^{2r}$ be a sequence of integers. We denote by $A_0(H') \subset A(H')$ the subspace of cusp forms. Let $A_0^0(H') \subset A_0(H')$ be the subspace consisting of those cusp forms of weight $(1 + \ell, 1 - \ell)$ (cf. Definition 2.1.2). Let Z' be the center of H', which is isomorphic to $E^{r, 1}$. We define a character ζ^t of Z'_∞ by letting $\zeta^t(z) = z^{2\ell}$. Let $A(H', \zeta^t) \subset A(H')$ be the subspace consisting of the forms that have archimedean central character ζ^t. It is clear that $A_0^0(H') \subset A(H', \zeta^t)$. Recall that $F^+ \subset F$ is the subset of totally positive elements. For each fixed $t \in F^+$, the t-th Whittaker functions (with respect to the standard additive character) of all members of $A_0^0(H')$ are the same one, namely, the function W_ℓ^t defined by

$$W_\ell^t(n(b)m(a)[k_1, k_2]) = \prod_{x \in \mathcal{X}_\infty} \exp \left(2\pi i t (b_i + i a_i a_i^{-1}) \right) (a_i, \varpi_i) k_1^{1+t_i} k_2^{-t_i},$$

where $a = (a_i) \in E^\infty, b = (b_i) \in F^\infty$, and $[k_1, k_2] = ([k_1, k_2]) \in \mathcal{X}'_\infty$.

We denote by $A_0^0(H' \times H') \subset A_0(H' \times H')$ the subspace consisting of cusp forms $f(\bullet, \bullet)$ such that for every $g \in H'(A_F)$, both $f(g, \bullet)$ and $f(\bullet, g)$ are in $A_0^0(H')$. The space $A_0(H' \times H')$ is a Hilbert space with norm given by the Petersson inner product $\langle -, - \rangle_{H' \times H'}$.

Definition 7.1.1 (Holomorphic projection). We define a linear map

$$\text{Pr} : A(H' \times H', \zeta^t) \rightarrow A_0^0(H' \times H'),$$

which sends f to the unique element $\text{Pr}(f)$ in the later space satisfying $\langle f, f' \rangle_{H' \times H'} = \langle \text{Pr}(f), f' \rangle_{H' \times H'}$ for every $f' \in A_0^0(H' \times H')$.

Let ψ' be a character of $F \setminus A_F$ such that $\psi'_\infty(x) = \psi_\infty(tx)$ for $t \in F_\infty^\times$. We recall that ψ_∞ is the standard additive character at archimedean places as assumed in the beginning of Chapter 3.
automorphic form \(f \in \mathcal{A}(H' \times H', \zeta^t) \), we define

\[
f_{\psi', s}(g_1, g_2) = (4\pi)^2 W^t_1(g_1, g_2) W^t_2(g_2, g_2) \int_{[Z'(F_\infty)N'(F_\infty) \setminus H'(F_\infty)]^2} \lambda_{P'}(h_1)^s \lambda_{P'}(h_2)^s f_{\psi'}(h_1, g_1, h_2, g_2, h_1, h_2).
\]

Proposition 7.1.2. Suppose that \(f \in \mathcal{A}(H' \times H', \zeta^t) \) has the following asymptotic behavior: for some \(\epsilon > 0 \),

\[
f(m(a_1)g_1, m(a_2)g_2) = O_{g_1, g_2} \left(|a_1a_2|^{-\epsilon} \right)
\]
as \(|a_1a_2| \to \infty \) for \(a_\alpha \in \mathcal{A}_K^\times (\alpha = 1, 2) \). Then the holomorphic projection \(\text{Pr}(f) \) has the \(\psi'-\text{Whittaker function} \)

\[
\text{Pr}(f)_{\psi'}(g_1, g_2) = \lim_{s \to 0^+} f_{\psi', s}(g_1, g_2).
\]

Proof. Let \(\zeta_\alpha (\alpha = 1, 2) \) be two automorphic characters of \(Z'(A_F) \) such that \(\zeta_{\alpha, \infty} = \zeta^t \). Consider two \(\psi'-\text{Whittaker functions} \) \(W^\alpha(g_\alpha) = W^t_1(g_\alpha, \infty) W^t_2(\infty) \) \((\alpha = 1, 2) \) of \(H'(A_F) \) with central character \(\zeta_\alpha \), such that \(W^t_2(\infty) \) is compactly supported modulo \(Z'(A_F, \infty)N'(A_{F, \infty}) \). We define the Poincaré series to be

\[
P_{W^\alpha}(g_\alpha) = \lim_{s \to 0^+} \sum_{\gamma \in Z'(F)N'(F) \setminus H'(F)} W^\alpha(\gamma g_\alpha) \lambda_{P'}(\gamma g_{\alpha, \infty})^s.
\]

For a function \(f' \in \mathcal{A}(H' \times H', \zeta^t) \), we let

\[
f'_{\zeta_1, \zeta_2}(g_1, g_2) = \int_{[Z(F) \setminus Z'(A_F)]^2} f'(g_1 z_1, g_2 z_2) \zeta_1^{-1}(z_1) \zeta_2^{-1}(z_2) dz_1 dz_2.
\]

Assume that \(f \) has the asymptotic behavior as in the proposition. Then on one hand,

\[
\langle f, P_{W^1} \otimes P_{W^2} \rangle_{H' \times H'}
= \int_{[Z'(A_F)H'(F) \setminus H'(A_F)]^2} f_{\zeta_1, \zeta_2}(g_1, g_2) P_{W^1}(g_1) P_{W^2}(g_2) dg_1 dg_2
= \lim_{s \to 0^+} \int_{[Z'(A_F)N'(F) \setminus H'(A_F)]^2} f_{\zeta_1, \zeta_2}(g_1, g_2) W^t_1(g_1) W^t_2(g_2) \lambda_{P'}(g_1, \infty)^s \lambda_{P'}(g_2, \infty)^s dg_1 dg_2
= \lim_{s \to 0^+} \int_{[Z'(A_F)N'(A_F) \setminus H'(A_F)]^2} (f_{\zeta_1, \zeta_2})_\psi(g_1, g_2) W^t_1(g_1) W^t_2(g_2) \lambda_{P'}(g_1, \infty)^s \lambda_{P'}(g_2, \infty)^s dg_1 dg_2. \tag{7.1}
\]
On the other hand, we have

\[
\langle \text{Pr}(f), P_{W^1} \otimes P_{W^2} \rangle_{H' \times H'} = \int \int_{Z'(F_v) \cap (F_v) \cap (F_v)} W^t_1(g_1)W^t_2(g_2)W^t_{\text{fin}}(g_1)W^t_{\text{fin}}(g_2) dg_1 dg_2
\]

\[
= (4\pi)^{-2d} \int \int_{Z'(A_{F,\text{fin}}) \cap (A_{F,\text{fin}}) \cap (A_{F,\text{fin}})} (\text{Pr}(f))_{\zeta_1,\zeta_2} \psi'(g_1, g_2) W^t_{\text{fin}}(g_1)W^t_{\text{fin}}(g_2) dg_1, dg_2, d_{g_1, g_2, \text{fin}}.
\]

(7.2)

Since, by definition, \(\langle \text{Pr}(f), P_{W^1} \otimes P_{W^2} \rangle_{H' \times H'} = \langle f, P_{W^1} \otimes P_{W^2} \rangle_{H' \times H'} \), (7.1) and (7.2) are equal for all \((\zeta_1, \zeta_2)\) and \((W^t_{\text{fin}}, W^t_{\text{fin}})\). Therefore, the proposition follows.

For general \(f \in A(H' \times H', \zeta_1^t) \) that may not have the asymptotic behavior as in Proposition 7.1.2, we propose the following definition.

Definition 7.1.3. For \(f \in A(H' \times H', \zeta_1^t) \), we define

\[
\text{\tilde{Pr}}(f) g_1, g_2 = \text{const}_{s=0} f_{\psi', s}(g_1, g_2),
\]

where \text{const}_{s=0} denotes the constant term at \(s = a \) (possibly after meromorphic continuation around \(a \)). We define the *quasi-holomorphic projection* of \(f \) to be

\[
\text{\tilde{Pr}}(f)(g_1, g_2) = \sum_{\psi'} \text{\tilde{Pr}}(f)_{\psi'}(g_1, g_2),
\]

where the sum is taken over all nontrivial characters of \(F \setminus A_F \).

In fact, the same definition still makes sense if \(f \) is only left invariant under \(N'(F) \times N'(F) \). In some middle steps of later calculation, we need to apply \(\text{\tilde{Pr}} \) to such functions or even currents.

Then Proposition 7.1.2 amounts equivalently to say that if \(f \) satisfies the asymptotic behavior there, we have \(\text{\tilde{Pr}}(f) = \text{Pr}(f) \).
7.1.2 Siegel–Fourier expansion of Eisenstein series on $\text{U}(2, 2)$

We study the (Siegel–)Fourier expansion of the Eisenstein series $E(s, g, \Phi)$ at $g = e \in H''(\mathbb{A}_F) = H_2(\mathbb{A}_F)$ for $\Phi = \phi_1 \otimes \phi_2 \in S(\mathbb{V})$, where \mathbb{V} is a hermitian space of rank 2 over \mathbb{A}_E. By definition

$$
E(s, g, \phi_1 \otimes \phi_2) = \sum_{\gamma \in P(F) \setminus H''(F)} (\omega_{\chi}(\gamma g)(\phi_1 \otimes \phi_2))(0) \lambda_{P}(\gamma g)^s,
$$

which is absolutely convergent when $\text{Re } s > 1$. The following lemma is straightforward.

Lemma 7.1.4. The group $H''(F)$ is the disjoint union of the following cosets:

1. $\begin{pmatrix} 1 & b_{11} & b_{12} \\ b_{21} & b_{22} & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \in \text{Her}_2(E);$

2. $\begin{pmatrix} 1 & 0 & 0 \\ c & 1 & 0 \\ 1 & -c & 1 \end{pmatrix}, \quad c \in E, \ b_{22} \in F;$

3. $P(F)$,

where we recall that

$$
\mathbf{w}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}; \quad \mathbf{w}_{2,1} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.
$$

In particular, we have

$$
E(s, g, \phi_1 \otimes \phi_2) = E^2(s, g, \phi_1 \otimes \phi_2) + E^3(s, g, \phi_1 \otimes \phi_2) + \sum_{c \in E} E^{1,c}(s, g, \phi_1 \otimes \phi_2),
$$
where

\[E^2(s, g, \phi_1 \otimes \phi_2) = \sum_{b \in \text{Her}_2(E)} (\omega_\chi(w_2 n(b)))(\phi_1 \otimes \phi_2) \]

\[(0) \lambda_P(w_2 n(b))^s; \]

\[E^{1,c}(s, g, \phi_1 \otimes \phi_2) = \sum_{b_{22} \in F} \left(\omega_\chi \left(w_{2,1} \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \right) \right) n \left(\begin{pmatrix} 0 & 0 \\ 0 & b_{22} \end{pmatrix} \right) (\phi_1 \otimes \phi_2) \]

\[(0) \lambda_P \left(w_{2,1} \begin{pmatrix} 1 \\ c \end{pmatrix} \right) n \left(\begin{pmatrix} 0 & 0 \\ 0 & b_{22} \end{pmatrix} \right) \]

\[E^0(s, g, \phi_1 \otimes \phi_2) = (\omega(g)(\phi_1 \otimes \phi_2))(0) \lambda_P(g)^s. \]

They are all invariant under the left translation by \(N(F) \).

Let \(T \) be an element in \(\text{Her}_2(E) \). We calculate

\[E^\beta_T(s, e, \phi_1 \otimes \phi_2) := \int_{N(F) \setminus N(A_F)} E^\beta(s, n(b'), \phi_1 \otimes \phi_2) \psi(\text{tr} T b')^{-1} dn \]

for \(\beta = 2, 0, \) and \(1, c \) for \(c \in E \), respectively.

For \(\beta = 2 \), we have

\[E^2_T(s, e, \phi_1 \otimes \phi_2) = \int_{N(A_F)} E^2(s, n(b'), \phi_1 \otimes \phi_2) \psi(\text{tr} T b')^{-1} dn. \] \hspace{1cm} (7.3)

For \(\beta = 0 \), we have

\[E^0_T(s, e, \phi_1 \otimes \phi_2) = \begin{cases} (\phi_1 \otimes \phi_2)(0) & \text{if } T = 0_2; \\ 0 & \text{otherwise}. \end{cases} \] \hspace{1cm} (7.4)

Now we calculate for \(\beta = 1, c \) with \(c \in F \). To simplify the formulae, we ignore the term \(\lambda_P(\bullet)^s \) in the following calculation. We have

\[E^{1,c}_T(s, e, \phi_1 \otimes \phi_2) \]

\[= \int_{b_{11} \in F \setminus A_F} \int_{b_{12} \in E \setminus A_E} \int_{b_{22} \in A_F} \left(\omega_\chi \left(w_{2,1} \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \right) \right) n \left(\begin{pmatrix} b_{11} & b_{12} \\ b_{12}^* & b_{22} \end{pmatrix} \right) (\phi_1 \otimes \phi_2) \]

\[(0) \psi \left(\text{tr} T \begin{pmatrix} b_{11} & b_{12} \\ b_{12}^* & b_{22} \end{pmatrix} \right)^{-1} db_{11} db_{12} db_{22}. \] \hspace{1cm} (7.5)
Change variables
\[
\begin{pmatrix} b_{11} & b_{12} \\ b_{12}^r & b_{22} \end{pmatrix} \mapsto \begin{pmatrix} 1 & c^r \\ c & 1 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{12}^r & b_{22} \end{pmatrix} \begin{pmatrix} 1 & c^r \\ c & 1 \end{pmatrix}.
\]

Then
\[
(7.5) = \int_{b_{11} \in F \setminus A_F} \int_{b_{12} \in E \setminus A_E} \int_{b_{22} \in A_F} \left(\omega_X \left(w_{2,1} n \left(\begin{pmatrix} b_{11} & b_{12} \\ b_{12}^r & b_{22} \end{pmatrix} \right) m \left(\begin{pmatrix} 1 & c^r \\ c & 1 \end{pmatrix} \right) \right) (\phi_1 \otimes \phi_2) \right) (0)
\]
\[
\psi \left(\begin{pmatrix} \text{tr} \begin{pmatrix} 1 & -c^r \\ 1 & 1 \end{pmatrix} \end{pmatrix} T \begin{pmatrix} 1 & 1 \\ -c & 1 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{12}^r & b_{22} \end{pmatrix} \right)^{-1} db_{11} db_{12} db_{22}
\]
\[
= \int_{b_{11} \in F \setminus A_F} \int_{b_{12} \in E \setminus A_E} \int_{b_{22} \in A_F} \left(\omega_X \left(w_{2,1} n \left(\begin{pmatrix} 0 & 0 \\ 0 & b_{22} \end{pmatrix} \right) m \left(\begin{pmatrix} 1 & c \end{pmatrix} \right) \right) (\phi_1 \otimes \phi_2) \right) (0)
\]
\[
\psi \left(\begin{pmatrix} \text{tr} \begin{pmatrix} 1 & -c^r \\ 1 & 1 \end{pmatrix} \end{pmatrix} T \begin{pmatrix} 1 & 1 \\ -c & 1 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{12}^r & b_{22} \end{pmatrix} \right)^{-1} db_{11} db_{12} db_{22}.
\]

Therefore, \(E_T^{1,c}(s, e, \phi_1 \otimes \phi_2) = 0\) unless
\[
T = \begin{pmatrix} 1 & c^r \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix} \begin{pmatrix} 1 \\ c \end{pmatrix}
\]
for some \(t \in F\). In the later case,
\[
E_T^{1,c}(s, e, \phi_1 \otimes \phi_2)
\[
= \int_{b \in A_F} \int_{x \in \mathbb{V}} \left(\omega_X \left(n \left(\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \right) m \left(\begin{pmatrix} 1 & c \end{pmatrix} \right) \right) (\phi_1 \otimes \phi_2) \right) (0, x) \psi((tb)^{-1} db dx
\]
\[
= \int_{b \in A_F} \int_{x \in \mathbb{V}} \left(\omega_X \left(m \left(\begin{pmatrix} 1 \\ c \end{pmatrix} \right) \right) (\phi_1 \otimes \phi_2) \right) (0, x) \psi((q(x) - t)b) db dx
\]
\[
= \int_{b \in A_F} \int_{x \in \mathbb{V}} \phi_1(ce \phi_2(x)) \psi((q(x) - t)b) db dx. \quad (7.6)
\]

We remark that in the above calculation, all terms involving \(\lambda_P(\bullet)^*\) are ignored. In particular, when \(c = 0\),
\[
E_T^{1,0}(s, e, \phi_1 \otimes \phi_2) = \phi_1(0) \times W_t(s + \frac{1}{2}, e, \phi_2). \quad (7.7)
\]
7.1.3 Holomorphic projection of analytic kernel functions

We apply 7.1.1 to the analytic kernel function $E'(0, i(g_1, g_2^\vee), \phi_1 \otimes \phi_2)$. Here, $\phi_\alpha = \phi_\alpha^0 \otimes \phi_{\alpha, \text{fin}}$ is in $\mathcal{S}(\mathbb{V})$ for a totally positive definite incoherent hermitian space over \mathbb{A}_E of rank 2. Let $\chi' = \chi | Z'_\infty$, which is $\zeta^{\frac{k}{2}}$. Then the analytic kernel function is in $A(H' \times H', \chi')$. Unfortunately, it does not have the asymptotic behavior in Proposition 7.1.2. To find its holomorphic projection, we introduce the following function

$$F(s; g_1, g_2; \phi_1, \phi_2) = E(s + \frac{1}{2}, g_1, \phi_1)E(s + \frac{1}{2}, g_2, \phi_2) \in A(H' \times H', \chi^0),$$

which is holomorphic at $s = 0$.

Proposition 7.1.5. The difference

$$E'(0, i(g_1, g_2^\vee), \phi_1 \otimes \phi_2) - F(0; g_1, g_2; \phi_1, \phi_2)$$

has the asymptotic behavior in Proposition 7.1.2.

Proof. Since the problem is symmetric in g_1 and g_2, we prove the asymptotic behavior only in g_1. Moreover, we can assume that a_1 has 1 as its finite part. Let $a = \text{diag}[a_\infty, 1]$ with $a_\infty \in E^\times$. We consider the behavior of the difference

$$E'(0, m(a), \tilde{\phi}_1 \otimes \tilde{\phi}_2) - F'(0; m(a_\infty), e; \tilde{\phi}_1, \tilde{\phi}_2)$$

as $|a_\infty| \to \infty$, where $\tilde{\phi}_\alpha = \omega_\chi(g_a)\phi_\alpha$ for $\alpha = 1, 2$. We apply the calculation in 7.1.2 to $\tilde{\phi}_1 \otimes \tilde{\phi}_2$. We see that the following terms

$$\frac{d}{ds} |_{s=0} E^2_T(s, m(a), \tilde{\phi}_1 \otimes \tilde{\phi}_2), \quad T \in \text{Her}_2(E);$$

$$\frac{d}{ds} |_{s=0} E^1_{T,c}(s, m(a), \tilde{\phi}_1 \otimes \tilde{\phi}_2), \quad c \neq 0, T \in \text{Her}_2(E)$$

are bounded by $O(\log |a|)$. Therefore, we only need to consider the difference

$$\frac{d}{ds} |_{s=0} \left(E^0_T(s, m(a), \tilde{\phi}_1 \otimes \tilde{\phi}_2) + \sum_{t \in F} E^{1,0}_{t, \text{diag}}(s, m(a), \tilde{\phi}_1 \otimes \tilde{\phi}_2) - F(s; m(a_\infty), e; \tilde{\phi}_1, \tilde{\phi}_2) \right).$$

(7.9)
By (7.4) and (7.7), we have on the one hand,

\[E^0_T(s, m(a), \bar{\phi}_1 \otimes \bar{\phi}_2) + \sum_{t \in \mathcal{P}} E^1_{\text{diag}(0, t)}(s, m(a), \bar{\phi}_1 \otimes \bar{\phi}_2) \]

\[= \left(\omega_{\chi}(a_\infty)\bar{\phi}_1 \right)(0)|a_\infty|^s \times \bar{\phi}_2(0) + \sum_{t \in \mathcal{P}} \left(\omega_{\chi}(a_\infty)\bar{\phi}_1 \right)(0)|a_\infty|^s \times W_t(s + \frac{1}{2}, e, \bar{\phi}_2) \]

\[= \left(\omega_{\chi}(a_\infty)\bar{\phi}_1 \right)(0)|a_\infty|^s \times E(s + \frac{1}{2}, e, \bar{\phi}_2). \]

On the other hand,

\[F(s; m(a_\infty), e; \bar{\phi}_1, \bar{\phi}_2) = \left(\omega_{\chi}(a_\infty)\bar{\phi}_1 \right)(0)|a_\infty|^s + \sum_{t \in \mathcal{P}} W_t(s + \frac{1}{2}, m(a_\infty), \bar{\phi}_1) \times E(s + \frac{1}{2}, e, \bar{\phi}_2). \]

Therefore,

\[(7.9) = \sum_{t \in \mathcal{P}} W_t(\frac{1}{2}, m(a_\infty), \bar{\phi}_1) \times E(\frac{1}{2}, e, \bar{\phi}_2) + \sum_{t \in \mathcal{P}} W_t(\frac{1}{2}, m(a_\infty), \bar{\phi}_1) \times E'(\frac{1}{2}, e, \bar{\phi}_2), \]

which is bounded by \(O(\log |a|) \). The proposition then follows. \(\square \)

By the above proposition, we have

\[\Pr(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2)) \]

\[= \Pr(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2) - F'(0; g_1, g_2; \phi_1, \phi_2)) + \Pr(F'(0; g_1, g_2; \phi_1, \phi_2)) \]

\[= \widehat{\Pr}(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2) - F'(0; g_1, g_2; \phi_1, \phi_2)) + \Pr(F'(0; g_1, g_2; \phi_1, \phi_2)). \quad (7.10) \]

Since

\[F'(0; g_1, g_2; \phi_1, \phi_2) = E'(\frac{1}{2}, g_1, \phi_1)E(\frac{1}{2}, g_2, \phi_2) + E(\frac{1}{2}, g_1, \phi_1)E'(\frac{1}{2}, g_2, \phi_2), \]

its holomorphic projection vanishes. Therefore,

\[(7.10) = \widehat{\Pr}(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2) - F'(0; g_1, g_2; \phi_1, \phi_2)) \]

\[= \widehat{\Pr}(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2)) - \widehat{\Pr}(F'(0; g_1, g_2; \phi_1, \phi_2)) \]

\[= \widehat{\Pr}(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2)) - \widehat{\Pr}\left(E'(\frac{1}{2}, g_1, \phi_1)E(\frac{1}{2}, g_2, \phi_2)\right) - \widehat{\Pr}\left(E(\frac{1}{2}, g_1, \phi_1)E'(\frac{1}{2}, g_2, \phi_2)\right). \]
But for \(\{ \alpha, \alpha' \} = \{ 1, 2 \} \),

\[
\widetilde{\Pr} \left(E'(\frac{1}{2}, g_\alpha, \phi_\alpha)E(\frac{1}{2}, g_{\alpha'}, \phi_{\alpha'}) \right) = \widetilde{\Pr} \left(E'(\frac{1}{2}, g_\alpha, \phi_\alpha) \right) \widetilde{\Pr} \left(E(\frac{1}{2}, g_{\alpha'}, \phi_{\alpha'}) \right) = \widetilde{\Pr} \left(E'(\frac{1}{2}, g_\alpha, \phi_\alpha) \right) E_\ast(\frac{1}{2}, g_{\alpha'}, \phi_{\alpha'}),
\]

where

\[
E_\ast(\frac{1}{2}, g_\alpha, \phi_\alpha) = \sum_{\iota \in \mathcal{P}} W_\iota(\frac{1}{2}, g_\alpha, \phi_\alpha) = E(\frac{1}{2}, g_\alpha, \phi_\alpha) - (\omega_\chi(g_\alpha)\phi_\alpha)(0).
\]

In summary, we have the following proposition.

Proposition 7.1.6. Assume that there is a finite place \(p \) such that \(\phi_{\alpha,p}(0) = 0 \) for \(\alpha = 1, 2 \). Then for \(g_\alpha \in P_F^\ast H'(\mathbb{A}_F^p) \),

\[
\text{Pr} \left(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2) \right) = \widetilde{\Pr} \left(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2) \right) - \widetilde{\Pr} \left(E'(\frac{1}{2}, g_1, \phi_1) \right) E(\frac{1}{2}, g_2, \phi_2) - E(\frac{1}{2}, g_1, \phi_1) \widetilde{\Pr} \left(E'(\frac{1}{2}, g_2, \phi_2) \right).
\]

7.1.4 Quasi-holomorphic projection of analytic kernel functions

We calculate \(\widetilde{\Pr}(E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2)) \) for \(g_\alpha \in \epsilon_S H'(\mathbb{A}_F^S) \) under the following assumptions:

- \(\phi_\alpha = \phi^{0}_{\infty, \phi_{\alpha, \text{fin}}} \) (\(\alpha = 1, 2 \)) are decomposable;
- \(\phi_{1,S} \otimes \phi_{2,S} \) is in \(S(\mathbb{V}_S^2)_{\text{reg}} \);
- \(\phi_{1,v} \otimes \phi_{2,v} \in S(\mathbb{V}_v^2)_{\text{reg,dv}} \) for every \(v \in S \) that is nonsplit and some \(d_v \geq d_{\phi_v} \) (cf. 2.4.2).

Then we recall the formula (2.22)

\[
E'(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2) = \sum_{v \notin S} E'_v(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2).
\]

If we apply the formula defining \(\widetilde{\Pr} \) to the above summation, all terms except \(E'_v(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2) \) for \(\iota \in \Sigma_\infty \) will not change. Therefore, we fix a \(\iota \in \Sigma_\infty \) and consider \(\widetilde{\Pr}(E'_v(0, \iota(g_1, g_2^\gamma), \phi_1 \otimes \phi_2)) \). By Theorem 4.3.4, it amounts to consider

\[
\widetilde{\Pr}(-2 \text{Vol}(K)((Z_{\phi_1}(g_1), \Xi_{\phi_1}(g_1),),(Z_{\phi_2}(g_2), \Xi_{\phi_2}(g_2)))_{\text{Sh}}).
\]
For simplicity, we will omit the term $-2\text{Vol}(K)$ in the following computation. Recall (4.56),

$$
\langle (Z_{\phi_1}(g_1), \Xi_{\phi_1}(g_1)), (Z_{\phi_2}(g_2), \Xi_{\phi_2}(g_2)) \rangle_{\text{sh}_K}
$$

$$
= \sum_{i=1}^{l} \int_{(H(Q) \cap K) \setminus D} \sum_{x_1 \in V^n, T(x_1) \in \text{Her}_n^+(E)} \langle (\omega_{\chi} (g_1) \phi_1) (T(x_1), h_i^{-1} x_1) \Xi_{x_1 a(g_1)} \rangle
\sum_{x_2 \in V^n, T(x_2) \in \text{Her}_n^+(E)} \langle (\omega_{\chi} (g_2) \phi_2) (T(x_2), h_i^{-1} x_2) \Xi_{x_2 a(g_2)} \rangle,
$$

where $a(g_\alpha)$ is denoted as a_α before. Since it is symmetric in g_1 and g_2, we only need to compute

$$
\tilde{\text{Pr}} \left(\sum_{x \in V^n, T(x) \in \text{Her}_n^+(E)} (\omega_{\chi} (\bullet) \phi) (T(x), x) \Xi_{x a(\bullet)} \right). \tag{7.11}
$$

By Definition 7.1.3,

$$
(7.11) = \sum_{t \in F^+} \tilde{\text{Pr}} \left(\sum_{T(x) = t} (\omega_{\chi} (\bullet) \phi) (t, x) \Xi_{x a(\bullet)} \right). \tag{7.12}
$$

For each term,

$$
\tilde{\text{Pr}} \left(\sum_{T(x) = t} (\omega_{\chi} (\bullet) \phi) (t, x) \Xi_{x a(\bullet)} \right) = \text{const}_{s \to 0} (4\pi t)^{L_x} W_t^{L_x} (g_\alpha) \sum_{T(x) = t} \int_{Z(N) \setminus H'} \lambda_{P^+(h)} (\omega_{\chi} (g^h) \phi) (t, x) \Xi_{x a(h)} dh. \tag{7.12}
$$

Taking substitution $y = \alpha z$, we have

$$
(7.12) = \text{const}_{s \to 0} (4\pi t)^{L_x} W_t^{L_x} (g_\alpha) \sum_{T(x) = t} (\omega_{\chi} (g^h) \phi) (t, x) \int_0^\infty \Xi_x \sqrt{y} y^s \exp(-4\pi t y) dy
$$

$$
= \text{const}_{s \to 0} (4\pi t)^{L_x} \sum_{T(x) = t} (\omega_{\chi} (g) \phi) (t, x) \int_0^\infty \Xi_x \sqrt{y} y^s \exp(-4\pi t y) dy. \tag{7.13}
$$

Let

$$
\delta_x (z) = \frac{R(x, z)}{2t} = -\frac{(x, x)}{(x, z)}.
$$
Then

\[
(7.13) = \text{const}_{s \to 0}(4\pi t) \sum_{T(x)=t} (\omega_\chi(g)\phi)(t, x) \int_1^\infty \left(\int_1^\infty \frac{\exp(-4\pi tyu\delta_x(z))}{u} dy \right)^s \exp(-4\pi ty) dy
\]

\[
= \text{const}_{s \to 0}(4\pi t) \sum_{T(x)=t} (\omega_\chi(g)\phi)(t, x) \int_1^\infty \frac{1}{u} \left(\int_1^\infty \exp(-4\pi y(1+u\delta_x(z))) dy \right) du
\]

\[
= \text{const}_{s \to 0}(4\pi t) \sum_{T(x)=t} (\omega_\chi(g)\phi)(t, x) \frac{\Gamma(1+s)}{(4\pi t)^{1+s}} \int_1^\infty \frac{du}{u(1+u\delta_x(z))^{1+s}}
\]

\[
= \text{const}_{s \to 1} \sum_{T(x)=t} (\omega_\chi(g)\phi)(t, x) \int_1^\infty \frac{du}{u(1+u\delta_x(z))^{1+s}}. \quad (7.14)
\]

Following [GZ1986], we introduce the Legendre function of the second type as follows

\[
Q_{s-1}(t) = \int_0^\infty \left(t + \sqrt{t^2 - 1} \cosh u \right)^{-s} du, \quad t > 1, s > 0.
\]

Then the admissible Green function attach to the divisor \(\sum_{T(x)=t} (\omega_\chi(g)\phi)(t, x)Z_x \) is

\[
\Xi_{adm,\phi}(g) = \text{const}_{s \to 1} 2 \sum_{T(x)=t} (\omega_\chi(g)\phi)(t, x)Q_{s-1}(1+2\delta_x(z)).
\]

By [GZ1986], we have

\[
\int_1^\infty \frac{du}{u(1+uc)^s} = 2Q_{s-1}(1+2c) + O(c^{-s-1}), \quad c \to +\infty. \quad (7.15)
\]

Combining (7.14), (7.15), Corollary 5.3.4 and Proposition 7.1.6, we have the following proposition.

Proposition 7.1.7. Assume the three assumptions on \(\phi_\alpha \) at the beginning of the subsection. Then the following identity

\[
\Pr \left(E'(0, 1(g_1, g_2), \phi_1 \otimes \phi_2) \right)
\]

\[
= -\text{Vol}(K) \sum_{v^\alpha | v, v \in \mathcal{S}} \langle \tilde{Z}_{\phi_1}(g_1), \tilde{Z}_{\phi_2}(g_2) \rangle_{v^\alpha} - \tilde{\Pr} \left(E'(1, g_1, \phi_1) \right) E(1, g_2, \phi_2) - E(1, g_1, \phi_1) \tilde{\Pr} \left(E'(1, g_2, \phi_2) \right)
\]

holds for \(g_\alpha \in e_\mathcal{H}'(\Lambda_{\mathcal{H}}^0) \). In particular, the archimedean local height paring is computed via admissible Green functions.
7.2 Proof of the main theorem

We prove the arithmetic inner product formula for \(n = 1 \).

7.2.1 Difference of kernel functions

We assume that

- \(\phi_\alpha = \phi_\infty^0 \phi_{\alpha, \text{fin}} \) (\(\alpha = 1, 2 \)) are decomposable;
- \(\phi_{\alpha, S} \in \mathcal{S}(\mathbb{V}_S)_{\text{reg}} \) (\(\alpha = 1, 2 \));
- \(\phi_1, \phi_2 \in \mathcal{S}(\mathbb{V}_S^2)_{\text{reg}} \);
- \(\phi_{1, v} \otimes \phi_{2, v} \in \mathcal{S}(\mathbb{V}_S^2)_{\text{reg}, d_v} \) for every \(v \in S \) that is nonsplit and some \(d_v \geq d_{\phi_v} \) (cf. 2.4.2).

Let

\[
\mathcal{E}(g_1, g_2; \phi_1 \otimes \phi_2) = \text{Pr} \left(E'(0, 1(g_1, g_2^\vee), \phi_1 \otimes \phi_2) \right) - \mathcal{E}(g_1, g_2; \phi_1 \otimes \phi_2),
\]

which is a function in \(\mathcal{A}(H' \times H', \chi') \). By (3.15), Propositions 6.1.2, 6.2.4, 6.3.4 and 7.1.7, we have that for \(g_\alpha \in \in \mathcal{S}H'(\Lambda_{F^\alpha}) \) (\(\alpha = 1, 2 \)), \(\mathcal{E}(g_1, g_2; \phi_1 \otimes \phi_2) \) is the sum of the following terms:

\[
\mathcal{E}_I(g_1, g_2; \phi_1 \otimes \phi_2) = -E(g_1, \phi_1)A(g_2, \phi_2) - A(g_1, \phi_1)E(g_2, \phi_2) - CE(g_1, \phi_1)E(g_2, \phi_2);
\]

\[
\mathcal{E}_{II}(g_1, g_2; \phi_1 \otimes \phi_2) = \sum_{p^r \mid p \in S} A_{(p^r)}(g_1, \phi_1)E(g_2, \phi_2);
\]

\[
\mathcal{E}_{III}(g_1, g_2; \phi_1 \otimes \phi_2) = \sum_{p^r \mid p \text{ split}} E_{(p^r)}(g_1, \phi_1; g_2, \phi_2);
\]

\[
\mathcal{E}_{IV}(g_1, g_2; \phi_1 \otimes \phi_2) = \sum_{p^r \mid p \text{ non-split}} \theta_{\text{hor}}(\psi(g_1, g_2^\vee); \phi_1, \phi_2) + \theta_{\text{ver}}(g_1, \phi_1; g_2, \phi_2);
\]

\[
\mathcal{E}_\triangledown(g_1, g_2; \phi_1, \phi_2) = -\text{Pr} \left(E'\left(\frac{1}{2}, g_1, \phi_1\right) \right) E\left(\frac{1}{2}, g_2, \phi_2\right) - E\left(\frac{1}{2}, g_1, \phi_1\right) \text{Pr} \left(E'\left(\frac{1}{2}, g_2, \phi_2\right) \right).
\]

Let \(\pi \) be an irreducible cuspidal automorphic representation of \(H' \) such that \(\pi_\infty \) is a discrete series of weight \((1 - \frac{\epsilon}{2}) + (1 + \frac{\epsilon}{2}) \), and \(\epsilon(\pi, \chi) = -1 \). Then for every \(f \in \pi \) and \(f^\vee \in \pi^\vee \), the integral

\[
\iint_{\mathcal{E}_{H'(\Lambda_F^\alpha)}} f(g_1) f^\vee(g_2^\vee) \chi^{-1} (\det g_2) \mathcal{E}_\triangledown(g_1, g_2; \phi_1 \otimes \phi_2) = 0,
\]

for \(\triangledown = I, II, III, IV, V \). This is due to the facts that each term inside \(\mathcal{E}_{\triangledown} \) involves only Eisenstein series, automorphic characters or theta series in \(g_\alpha \in \mathcal{S}H'(\Lambda_{F^\alpha}) \) for at least one \(\alpha \), and that \(\mathcal{S}H'(\Lambda_{F^\alpha}) \)
is a dense subset of $H'(F)\backslash H'(_A F)$.

7.2.2 The final step

From the above subsection, we obtain the following identity.

$$\int\int_{[H'(F)\backslash H'(_A F)]^2} f(g_1) f^\vee(g_2) \chi^{-1} (\det g_2) E'(0, i(g_1, g_2), \phi \otimes \phi^\vee)$$

$$= \int\int_{[H'(F)\backslash H'(_A F)]^2} f(g_1) f^\vee(g_2) \chi^{-1} (\det g_2) E(g_1, g_2^\vee; \phi \otimes \phi^\vee)$$

$$= \Vol(K) \int\int_{[H'(F)\backslash H'(_A F)]^2} f(g_1) f^\vee(g_2) \langle \Theta_{\phi}(g_1), \Theta_{\phi^\vee}(g_2) \rangle_{NT}$$

$$= \langle \Theta^f_{\phi}, \Theta^f_{\phi^\vee} \rangle_{NT}, \quad (7.16)$$

where (ϕ, ϕ^\vee) satisfy the assumptions in the previous subsection.

Theorem 7.2.1 (Arithmetic inner product formula). Let π be an irreducible cuspidal automorphic representation of $H_1(_A F), \chi$ a character of $E^* \Delta_E^* \backslash \Delta_E^*$, such that π_∞ is a discrete series representation of weight $(1 - \frac{k}{2}, 1 + \frac{k}{2})$, $\epsilon(\pi, \chi) = -1$. Let \mathbb{V} be a totally positive definite incoherent hermitian space over \mathbb{A}_E of rank 2. For each $f \in \pi$ and $\phi \in S(\mathbb{V})^{U_\infty}$, we have the arithmetic theta lifting Θ^f_{ϕ}.

Then

1. If \mathbb{V} is not isometric to $\mathbb{V}(\pi, \chi)$, then Θ^f_{ϕ} is always trivial.

2. If $\mathbb{V} \cong \mathbb{V}(\pi, \chi)$, then for every $f \in \pi$, $f^\vee \in \pi^\vee$ and every $\phi, \phi^\vee \in S(\mathbb{V})^{U_\infty}$ that are decomposable, we have

$$\langle \Theta^f_{\phi}, \Theta^f_{\phi^\vee} \rangle_{NT} = \frac{\mathcal{L}(\frac{1}{2}, \pi, \chi)}{\mathcal{L}(2, \epsilon_{E/F})} \prod_v Z^*(0, \chi_v, f_v, f_v^\vee, \phi_v \otimes \phi_v^\vee),$$

where in the last product, almost all factors are 1.

In other words, Conjecture 3.3.6 holds when $n = 1$.

Proof. We prove for (2) first, and then for (1).

1. On the one hand, in (2.10), we define the functional

$$\alpha(f, f^\vee, \phi, \phi^\vee) = \prod_v Z^*(0, \chi_v, f_v, f_v^\vee, \phi_v \otimes \phi_v^\vee)$$

in $\bigotimes_{v \in \Sigma} \text{Hom}_{H^v \times H^v}(R(\mathbb{V}, \chi_v), \pi_v^\vee \otimes \chi_v \pi_v)$, which is nonzero since $\mathbb{V} \cong \mathbb{V}(\pi, \chi)$. By Proposition 2.4.10 and the assumption that π_∞ is a discrete series representation of weight $(1 - \frac{k}{2}, 1 + \frac{k}{2})$,
we can choose local components \(f_v, f'_v \) for all \(v \in \Sigma \) and \(\phi_v, \phi'_v \) for \(v \in \Sigma_{\text{fin}} \) such that \((\phi, \phi')\) satisfy the assumptions at the beginning of the previous subsection, and \(\alpha(f, f', \phi, \phi') \neq 0 \).

On the other hand, we define another functional

\[
\gamma(f, f', \phi, \phi') := (\Theta'_f, \Theta_{\phi'})_{NT} = \text{Vol}(K)(\Theta'_f, \Theta_{\phi'})_{NT},
\]

which is also in \(\bigotimes_{v \in \Sigma} \text{Hom}_{H'_v \times H'_v}(R(\mathbb{V}_v, \chi_v), \pi'_v \boxtimes \chi_v \pi_v) \). By Proposition A.2.1, the space \(\bigotimes_{v \in \Sigma} \text{Hom}_{H'_v \times H'_v}(R(\mathbb{V}_v, \chi_v), \pi'_v \boxtimes \chi_v \pi_v) \) has dimension 1. In other words, \(\gamma/\alpha \) is a constant.

Applying (7.16) to the data we choose previously, and by (2.13), we have

\[
\frac{\gamma}{\alpha} = \frac{L'(1/2, \pi, \chi)}{L_F(2)L(1, \epsilon_{E/F})}.
\]

Therefore, (2) of the theorem follows.

2. The functional \(\gamma \) defined above is zero since \(\mathbb{V} \) is not isometric to \(\mathbb{V}(\pi, \chi) \). If we take \(\phi' = \phi \) and \(f' = \mathcal{f} \), then \(\Theta'_{\phi} = 0 \) since the paring \(\langle -, - \rangle_{NT} \) is positive definite.
Appendix

There are three appendix. In A.1, we prove the theta dichotomy for unitary groups over non-archimedean fields. For symplectic-orthogonal pairs, this is proved by S. Kudla and S. Rallis. In A.2, we prove a multiplicity one result in the theory of local theta correspondence in a special case. In A.3, we study the theta correspondence of unramified representations for unitary groups, following the method of S. Rallis.
A.1 Theta dichotomy for unitary groups

In this section, we prove the theta dichotomy for unitary groups over non-archimedean fields. For symplectic-orthogonal pairs, this is proved by Kudla–Rallis in [KR2005]. We will follow the same line.

Let F be a non-archimedean local field whose characteristic is not 2, and a quadratic field extension E/F with $Gal(E/F) = \{1, \tau\}$. Let O_F (resp. O_E) be the ring of integers, ϖ (resp. ϖ_E) a uniformizer of F (resp. E), and $q = |O_F/\varpi O_F|$ (resp. $q_E = |O_E/\varpi E O_E|$).

Let $n \geq 1$ be an integer. We denote by V^\pm_n the (left) hermitian spaces over E of dimension n such that $\epsilon(V^\pm_n) = \pm 1$, and $H^\pm_n = U(V^\pm_n)$. Let $(W, \langle -, - \rangle)$ be a (right) skew-hermitian space over E of the same dimension n, and $H' = U(W)$.

As in 2.2.1, we have the doubling space $W \oplus (-W)$, and $H'' = U(W \oplus (-W))$, where $(-W) = (W, -(-, -))$. We fix a character $\chi : E^\times \to \mathbb{C}^\times$ such that $\chi|_{F^\times} = \epsilon_E^{n/2}$. Let $I_n(s, \chi)$ be the space of degenerate principal series, which is an admissible representation of H''. We have $I_n(0, \chi) = R(V^+_n, \chi) \oplus R(V^-_n, \chi)$. For any irreducible admissible representation π of H',

$$\text{Hom}_{H' \times H'} (I_n(0, \chi), \pi \boxtimes \chi \pi^\vee) \neq 0.$$

In fact, we have the following result of theta dichotomy:

Proposition A.1.1. There is exactly one between the following two spaces

$$\text{Hom}_{H' \times H'} (R(V^+_n, \chi), \pi \boxtimes \chi \pi^\vee); \quad \text{Hom}_{H' \times H'} (R(V^-_n, \chi), \pi \boxtimes \chi \pi^\vee),$$

which is nonzero.

Proof. From the discussion above, we know that there is at least one space that is nonzero. If they are both nonzero, then $\text{Hom}_{H'}(S((V^+_n)^n), \pi) \neq 0$ and $\text{Hom}_{H'}(S((V^-_n)^n), \pi) \neq 0$, where H' acts on both spaces of Schwartz functions through the Weil representation ω_{χ}.

Let $g_0 \in GL_F(W)$ be a τ-linear automorphism such that

$$\langle w_1 g_0, w_2 g_0 \rangle = \langle w_1, w_2 \rangle$$

During the preparation of this article, Gong and Grenié [GG2011] also prove the same results independently. Our methods are similar and we refer to their article for more details.
for all \(w_1, w_2 \in W \). By [MVW1987],

\[\pi \circ \text{Ad} g_0 \cong \pi^\vee, \]

and we have

\[(\omega_\chi \circ \text{Ad} g_0, S((V^n_n)^n)) \cong (\omega_{\chi^{-1}}, S((-V^n_n)^n)). \]

Therefore,

\[\text{Hom}_{H'}((\omega_\chi, S((V^n_n)^n)), \pi) \neq 0; \]

\[\text{Hom}_{H'}((\omega_{\chi^{-1}}, S((-V^n_n)^n)), \pi^\vee) \neq 0. \]

Taking product and the paring between \(\pi \) and \(\pi^\vee \), we have

\[\text{Hom}_{H'}((\omega_1, S((V^n_n^+ \oplus (-V^n_n)^n))), 1) \neq 0, \]

where \(1 \) is the trivial representation of \(H' \). It is easy to see that \(V^n_n^+ \oplus (-V^n_n)^n \cong V_{2n}^- \). We have \(\text{Hom}_{H'}(S((V^n_{2n}^-)^n), 1) \neq 0 \). By Lemma A.1.2 below, we have

\[\text{Hom}_{H' \times H'}(R_n(V_{2n}^-, 1), 1) \neq 0. \]

Then by [KS1997, Theorem 1.2 (4)], \(R_n(V_{2n}^-, 1) \) is the unique irreducible submodule of \(I_n(\frac{n}{2}, 1) \), which is also the image of the intertwining map

\[M^*(-\frac{n}{2}, 1) : I_n(-\frac{n}{2}, 1) \rightarrow R_n(V_{2n}^-, 1). \]

By [KS1997, Proposition 4.3 (2)], \(\ker(M^*(-\frac{n}{2}, 1)) = C \cdot \varphi^0 \), where \(\varphi^0 \in I_n(-\frac{n}{2}, 1) \) is the constant function with value 1. Therefore, there is a nonzero functional

\[\zeta \in \text{Hom}_{H' \times H'}(I_n(-\frac{n}{2}, 1), 1) \]

such that \(\zeta(\varphi^0) = 0 \). By Lemma A.1.3 below,

\[\text{Hom}_{H' \times H'}(I_n(-\frac{n}{2}, 1), 1) = C \cdot Z(-\frac{n}{2}, 1, 1, -) \]

and \(Z(-\frac{n}{2}, 1, 1, \varphi^0) \neq 0 \), which is a contradiction. The proposition is proved. \(\square \)
Lemma A.1.2. For any hermitian space V over E of dimension m and χ such that $\chi|_{F^\times} = e_{EF}^m$, the following are equivalent:

- $\text{Hom}_{H'}((\omega_\chi, S(V^n)), \pi) \neq 0$;
- $\text{Hom}_{H' \times H'}(R_n(V, \chi), \pi \boxtimes \chi^{\pi'}) \neq 0$.

Proof. Since $\text{Hom}_{H'}((\omega_\chi, S(V^n)), \pi) \neq 0$ is equivalent to $\Theta_\chi(\pi, V) \neq 0$, and $\Theta_\chi(\pi, V)$ admits an irreducible quotient by [MVW1987, Chapitre 3, IV, Théorème 4 (2-a)], the lemma follows by [HK-S1996, Proposition 3.1].

Before we proceed, let us recall some notations from [HKS1996, Section 4]. Let $Y \subset W \oplus (-W)$ be the graph of the identity map and $P_Y \subset H''$ the parabolic subgroup that stabilizes Y. Let r_0 be the Witt index of W. Then $P_Y \backslash H''$ can be canonically identified with the set of isotropic n-dimensional subspaces of $W \oplus (-W)$. The $H' \times H'$-orbit of Z in $P_Y \backslash H''$ is uniquely determined by

$$d = \dim(Z \cap W) = \dim(Z \cap (-W)).$$

Therefore,

$$H'' = \prod_{0 \leq d \leq r_0} \Omega_d := \prod_{0 \leq d \leq r_0} P_Y \delta_d(H' \times H')$$

for some representative $\delta_d \in H''$. The (topological) closure

$$\overline{\Omega_r} = \prod_{r' \geq r} \Omega_{r'}.$$

Let

$$I_n(s, \chi) = I_n^{(r_0)}(s, \chi) \supset I_n^{(r_0-1)}(s, \chi) \supset \cdots \supset I_n^{(0)}(s, \chi)$$

be the filtration given by support, and

$$Q_n^{(r)} = I_n^{(r)}(s, \chi) \supset I_n^{(r-1)}(s, \chi) \cong \text{Ind}_{P_r \times P_r}^{H' \times H'} \left(\chi \bullet |_E^{s+\frac{r}{2}} \boxtimes \chi \bullet |_E^{s+\frac{r}{2}} \otimes S(H'_{n-2r}) \right),$$

where the induction is normalized. Here P_r is the parabolic subgroup of H' with the Levi quotient M_r isomorphic to $\text{GL}_r(E) \times H'_{n-2r}$, and the maximal unipotent subgroup N_r, where H'_{n-2r} is the unitary group of some skew-hermitian space of dimension $n - 2r$.
For every section \(\varphi_s \in I_n(s, \chi) \) and matrix coefficient \(\phi \) of \(\pi^\vee \), we define the zeta integral

\[
Z(s, \chi, \phi, \varphi) = \int_{H'} \phi(g) \varphi_s((g, 1)) dg.
\]

If the section is standard, it has a meromorphic continuation to the entire complex. If for some \(s_0 \in \mathbb{C} \) at which every such continuation is holomorphic, then the zeta integral defines a nonzero element

\[
Z(s_0, \chi, -, -) \in \text{Hom}_{H' \times H'}(I_n(s_0, \chi), \pi \boxtimes \chi \pi^\vee).
\]

Moreover, if \(\text{Hom}_{H' \times H'}(Q_r(s_0, \chi), \pi \boxtimes \chi \pi^\vee) = 0 \) for every \(r \geq 1 \), then all zeta integrals are holomorphic at \(s_0 \), and

\[
\text{Hom}_{H' \times H'}(I_n(s_0, \chi), \pi \boxtimes \chi \pi^\vee) = \mathbb{C} \cdot Z(s_0, \chi, -, -).
\]

For the trivial representation, we have the following lemma.

Lemma A.1.3. For \(\chi = 1 \) and \(s_0 = -\frac{n}{2} \), \(\text{Hom}_{H' \times H'}(Q_r(s_0, 1), 1) = 0 \) for every \(r \geq 1 \). In particular, \(Z(s_0, 1, 1, \varphi^0) \neq 0 \).

Proof. For \(r \geq 1 \) and every irreducible admissible representation \(\pi \) of \(H' \),

\[
\text{Hom}_{H' \times H'}(Q_r(s, 1), \pi \boxtimes \pi^\vee)
\]

\[
= \text{Hom}_{H' \times H'} \left(\pi^\vee \boxtimes \pi, \text{Ind}_{P_r \times P_r}^{H' \times H'} \left(\begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \boxtimes \begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \otimes \mathcal{C} \infty (H'_{n-2r}) \right) \right)
\]

\[
= \text{Hom}_{M_r \times M_r} \left((\pi^\vee)_N \boxtimes \pi_N, | \begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \boxtimes \begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \otimes \mathcal{C} \infty (H'_{n-2r}) \right) .
\]

In particular, when \(\pi = 1 \), we have

\[
\text{Hom}_{H' \times H'}(Q_r(s, 1), 1)
\]

\[
= \text{Hom}_{M_r \times M_r} \left(1, | \begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \boxtimes \begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \otimes \mathcal{C} \infty (H'_{n-2r}) \right)
\]

\[
= \text{Hom}_{GL_r(E) \times GL_r(E)} \left(1, | \begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \boxtimes \begin{bmatrix} 1 & | & -s + \frac{n}{2}, -r \end{bmatrix} \right) .
\]

Therefore, if \(s_0 = -\frac{n}{2} \), then \(\text{Hom}_{H' \times H'}(Q_r(s_0, 1), 1) = 0 \) for every \(r \geq 1 \). The fact \(Z(s_0, 1, 1, \varphi^0) \neq 0 \) is due to the following lemma.

Lemma A.1.4. Let \(\varphi^0_s \) be the standard section such that \(\varphi^0_s|_K = 1 \), where \(K \) is the maximal compact subgroup of \(H'' \). Let \(b_n(s) = \prod_{i=0}^{n-1} L(2s + n - i, \epsilon_{E/F}) \). Then we have three cases:
1. If \(n = 2m \) (\(m \geq 1 \)) and \(r_0 = m \),

\[
Z(s, 1, 1, \varphi^0) = \frac{1}{b_n(s)} \prod_{i=-m}^{m-1} \left(1 - q_E^{-i-s} \right)^{-1}.
\]

2. If \(n = 2m \) (\(m \geq 1 \)) and \(r_0 = m - 1 \),

\[
Z(s, 1, 1, \varphi^0) = \frac{1}{b_n(s)} \left(1 - q_E^{-s} \right) \prod_{i=-m}^{m-1} \left(1 - q_E^{-i-s} \right)^{-1}.
\]

3. If \(n = 2m + 1 \) (\(m \geq 0 \)) and \(r_0 = m \),

\[
Z(s, 1, 1, \varphi^0) = \frac{1}{b_n(s)} \prod_{i=-m}^{m} \left(1 - q_E^{-i-s-\frac{1}{2}} \right)^{-1}.
\]

Proof. For (1) and (3), if \(E/F \) is unramified, they are [GPSR1987, Part A, Proposition 6.2] (for \(n \) even) and [Li1992, Theorem 3.1] (for \(n \) odd). The calculation for the integral

\[
\int_{H'} \varphi_0^0((g, 1)) dg
\]

in these papers works also for \(E/F \) ramified, since the only thing we need to check is the ratio \(c_w(\chi) \) of the intertwining operator (cf. [Li1992, Page 189]). The formula for such ratio holds more generally, in particular, when \(E/F \) is ramified, by [Cas1980, Theorem 3.1].

For (2), one can prove similarly as in [Li1992, Section 3]. In fact, (1) is enough for our use. \qed

A.2 Uniqueness of local invariant functionals

In this section, we fix a place \(v \in \Sigma \) and suppress it from notations. We prove that the space \(\text{Hom}_{H' \times H'}(I_2(0, \chi), \pi^\vee \boxtimes \chi \pi) \) is of dimension 1, following [HKS1996]. Here, \(\chi \) is a character of \(E^\times \). If \(\chi \) is trivial on \(F^\times \), i.e., \(\chi^{-1} = \chi^\ast \), then we define a character \(\pi_\chi \) of \(H' \) as follows. For every element \(g \in H' \), \(\det g \) is in \(E^\times \). In particular, \(\det g = e_g/e_g^\tau \) for some \(e_g \in E^\times \) by Hilbert’s Theorem 90. Set \(\pi_\chi(g) = \chi(e_g) \) that is independent of \(e_g \) we choose.

Proposition A.2.1. Let \(\chi \) be a character of \(E^\times \), and \(\pi \) an irreducible admissible representation of \(H' \) that is not \(\pi_\chi^{-1} \) if \(\chi^{-1} = \chi^\ast \). Then we have

\[
\dim_{\mathbb{C}} \text{Hom}_{H' \times H'}(I_2(0, \chi), \pi^\vee \boxtimes \chi \pi) = 1,
\]
and $L(s, \pi, \chi)$ is holomorphic at $s = \frac{1}{2}$.

In fact, the proposition holds for arbitrary representation π. Since we do not need such generality in this article, we put this condition for simplicity. In what follows, we also assume that v is finite for simplicity. The case for archimedean places is similar, and actually will not be used in the article.

Recall from 2.2.1, we have, as a special case, the following decomposition of double cosets $H'' = \Omega_0 \coprod \Omega_1$, where $\Omega_0 = P\gamma_0(\mathbf{H}' \times \mathbf{H}')$ is open and $\Omega = P\delta(\mathbf{H}' \times \mathbf{H}')$ is closed. Therefore, we have a subspace $I_2^{(0)}(0, \chi) \subset I_2(0, \chi)$, where

$$I_2^{(0)}(0, \chi) = \{ \varphi \in I_2(0, \chi) \mid \text{Supp } \varphi \subset \Omega_0 \}$$

that is invariant under the action of $\mathbf{H}' \times \mathbf{H}'$ by right translation via ι. As $\mathbf{H}' \times \mathbf{H}'$-representations, we denote

$$Q_2^{(0)}(0, \chi) = I_2^{(0)}(0, \chi); \quad Q_2^{(1)}(0, \chi) = I_2(0, \chi)/I_2^{(0)}(0, \chi).$$

We have a linear isomorphism

$$Q_2^{(0)}(0, \chi) \to \mathcal{S}(\mathbf{H}')(1 \otimes \chi) \quad \varphi \mapsto \Psi(g) = \varphi(\gamma_0 \iota(g, 1_2)), $$

where $\mathcal{S}(\mathbf{H})$ denotes the space the Schwartz functions on \mathbf{H}' that is viewed as a representation of $\mathbf{H}' \times \mathbf{H}'$. Since

$$\varphi(\gamma_0 \iota(g_1, 1_2) \iota(g_2, g_2)) = \varphi(\gamma_0 \iota(g_2, g_2) \iota(g_2^{-1} g_1, 1_2)) = \chi(\det g_2) \varphi(\gamma_0 \iota(g_2^{-1} g_1, 1_2)),$$

the above isomorphism is $\mathbf{H}' \times \mathbf{H}'$-equivariant. There is a unique, up to constant, $\mathbf{H}' \times \mathbf{H}'$-invariant functional on $\mathcal{S}(\mathbf{H}') \otimes (\pi \boxtimes \pi^\vee)$ given by

$$\Psi \otimes (f \otimes f^\vee) \mapsto \int_{\mathbf{H}'} \langle \pi(g)f, f^\vee \rangle \Psi(g) dg.$$

Since

$$\text{Hom}_{H' \times H'}(\mathcal{S}(\mathbf{H}')) \otimes (\pi \boxtimes \pi^\vee), \mathbb{C}) = \text{Hom}_{H' \times H'}(\mathcal{S}(\mathbf{H}'), \pi^\vee \boxtimes \pi)$$

$$= \text{Hom}_{H' \times H'}(\mathcal{S}(\mathbf{H}') \otimes (1 \boxtimes \chi), \pi^\vee \boxtimes \chi \pi) = \text{Hom}_{H' \times H'}\left(Q_2^{(0)}(0, \chi), \pi^\vee \boxtimes \chi \pi \right),$$
we have

$$\dim_{\mathbb{C}} \operatorname{Hom}_{H' \times H'} \left(Q_2^{(0)}(0, \chi), \pi^\lor \otimes \chi \pi \right) = 0.$$

For $Q_2^{(1)}(0, \chi)$, we have the following lemma.

Lemma A.2.2. If $\chi^{-1} \neq \chi^\tau$, or $\chi^{-1} = \chi^\tau$ but $\pi \neq \pi^{-1}$, then

$$\operatorname{Hom}_{H' \times H'} \left(Q_2^{(1)}(0, \chi), \pi^\lor \otimes \chi \pi \right) = 0.$$

Proof. It is easy to see that the following map

$$Q_2^{(1)}(0, \chi) \rightarrow I_1(\frac{1}{2}, \chi) \otimes I_1(\frac{1}{2}, \chi)$$

$$\tilde{\varphi} \mapsto ((g_1, g_2) \mapsto \tilde{\varphi}(\psi(g_1, g_2)))$$

is $H' \times H'$-equivariant isomorphism. Therefore,

$$\operatorname{Hom}_{H' \times H'} \left(Q_2^{(1)}(0, \chi), \pi^\lor \otimes \chi \pi \right)$$

$$= \operatorname{Hom}_{H' \times H'} \left(I_1(\frac{1}{2}, \chi) \otimes I_1(\frac{1}{2}, \chi), \pi^\lor \otimes \chi \pi \right)$$

$$= \operatorname{Hom}_{H' \times H'} \left(\pi \otimes \chi^{-1} \pi^\lor, I_1(-\frac{1}{2}, \chi^{-1}) \otimes I_1(-\frac{1}{2}, \chi^{-1}) \right).$$

By [KS1997, Theorem 1.2] for v finite and nonsplit, [KS1997, Theorem 1.3] for v finite and split (and [Lee1994, Theorem 6.10 (1-b)] for v infinite), the only (possible) irreducible H'-submodule properly contained in $I_1(-\frac{1}{2}, \chi^{-1})$ is isomorphic to π^{-1}. Therefore, the lemma follows by our assumption.

Proof of Proposition A.2.1. The normalized zeta integral (2.7) has already defined a nonzero element in $\operatorname{Hom}_{H' \times H'} (I_2(0, \chi), \pi^\lor \otimes \chi \pi)$. Therefore, the dimension is at least 1. If it is greater than one, we can find a nonzero element in $\operatorname{Hom}_{H' \times H'} (I_2(0, \chi), \pi^\lor \otimes \chi \pi)$ whose restriction to $I_2^{(0)}(0, \chi)$ is zero since $\dim_{\mathbb{C}} \operatorname{Hom}_{H' \times H'} \left(Q_2^{(0)}(0, \chi), \pi^\lor \otimes \chi \pi \right) = 1$. Then it defines a nonzero element in

$$\operatorname{Hom}_{H' \times H'} \left(Q_2^{(1)}(0, \chi), \pi^\lor \otimes \chi \pi \right)$$

that is 0 by the above lemma. Therefore,

$$\dim_{\mathbb{C}} \operatorname{Hom}_{H' \times H'} (I_2(0, \chi), \pi^\lor \otimes \chi \pi) = 1.$$

For the L-factor, the restriction of the normalized zeta integral to $I_2^{(0)}(0, \chi)$ is nonzero. Since the original zeta integral is absolutely convergent at $s = 0$ if $\varphi \in I_2^{(0)}(0, \chi)$, $L(s, \pi, \chi)$ can not have a pole at $s = \frac{1}{2}$, by realizing that $b_2(s)$ is holomorphic and nonzero at $s = 0$.

A.3 Theta correspondence of unramified representations

In this section, we study the theta correspondence of unramified representations for unitary groups.

Let F be a p-adic local field with $p \neq 2$, E/F an unramified quadratic field extension with $\text{Gal}(E/F) = \{1, \tau\}$. Let \mathcal{O}_F (resp. \mathcal{O}_E) be the ring of integers of F (resp. E), ϖ a uniformizer of \mathcal{O}_F, and q the cardinality of $\mathcal{O}_F/\varpi \mathcal{O}_F$. Let ψ be an unramified additive character of F, which determines an unramified additive character of E by composing with $\frac{1}{2} \text{Tr}_{E/F}$. Let d_x be the selfdual Haar measure of E with respect to $\psi \circ \left(\frac{1}{2} \text{Tr}_{E/F}\right)$, and $d_x = \frac{d}{|x|_E}$ the Haar measure of E^\times, normalized such that $|\varpi|_E = q^{-2}$. We will use slightly different notations from 2.1.1.

Let $n, m \geq 1$ be two integers, and $r = \min\{m, n\}$. Let $(W_n, (-,-))$ be a skew-hermitian space over E whose skew hermitian form is given by

$$\begin{pmatrix}
1_n \\
-1_n
\end{pmatrix}$$

under a basis $\{e_1, \ldots, e_n; e_1^*, \ldots, e_n^*\}$. Let $(V_m, (-,-))$ be a hermitian space over E whose hermitian form is given by

$$\begin{pmatrix}
1_m \\
1_m
\end{pmatrix}$$

under a basis $\{f_1, \ldots, f_m; f_1^*, \ldots, f_m^*\}$. Let $H'_n = U(W_n)$ (resp. $H_m = U(V_n)$) be the corresponding group of isometries, and

$$K'_n = H'_n \cap \text{GL}(\mathcal{O}_E(e_1, \ldots, e_n; e_1^*, \ldots, e_n^*))$$

be a hyperspecial maximal subgroup. We have a Weil representation $\omega = \omega_{x=1, \psi}$ on the space $S(V_m^n)$ of Schwartz functions, whose formulae are given in 2.1.1.

Let $W_{n,i}^* = \text{span}_E\{e_{i+1}, \ldots, e_n^*\}$ for $0 \leq i \leq n$, and $V_{m,j}^* = \text{span}_E\{f_{j+1}, \ldots, f_m^*\}$ for $0 \leq j \leq m$. Then we have filtration of the maximal isotropic subspaces $W_{n,0}^*$ and $V_{m,0}^*$, respectively as

$$W_{n,0}^* \supset W_{n,1}^* \supset \cdots \supset W_{n,n}^* = \{0\}; \quad V_{m,0}^* \supset V_{m,1}^* \supset \cdots \supset V_{m,m}^* = \{0\}.$$

Up to conjugacy, the maximal parabolic subgroups of $H'_n \times H_m$ are precisely those subgroups $P_{n,i}^r \times P_{m,j}^r$ that consists of elements (h', h) stabilizing the subspace $W_{n,i}^* \otimes V_{m,j}^* \subset W_n \otimes V_m$, for $i = 0, 1, \ldots, n$ and $j = 0, 1, \ldots, m$. Let $N_{n,i}^r \times N_{m,j}^r$ be its unipotent radical. Then the Levi quotient $P_{n,i}^r \times P_{m,j}^r/N_{n,i}^r \times N_{m,j}^r$.
$N_{m,j}$ is isomorphic to $(\text{GL}_{n-i}(E) \times H'_i) \times (\text{GL}_{m-j}(E) \times H_j)$. For $0 \leq t \leq n$, we define an algebraic closed subsets Σ_t to be

$$\Sigma_t = \{ x = (x_1, \ldots, x_n) \in V_m^n \mid (x_i, x_j) = 0 \text{ for } t + 1 \leq j \leq n \}.$$

We say that a function $\phi \in \mathcal{S}(V_m^n)$ is spherical if it is invariant under the action of $K'_n \times K_m$. The same proof of [Ral1984, Proposition 2.2] implies the following lemma.

Lemma A.3.1. Let ϕ be a spherical function in $\mathcal{S}(V_m^n)$ such that for every $h' \in H'_n$, $\omega(h')\phi$ vanishes on the subset Σ_0. Then $\omega(h')\phi$ vanishes identically.

We identify V_m^n with $\text{Mat}_{2m,n}(E)$ via the basis $\{f_1, \ldots, f_m; f_1^*, \ldots, f_m^*\}$. Then the action of $\text{GL}_n(E) \times H_m$ is given by $(A, h).X = hXA^{-1}$. We have the following version of [Ral1984, Lemma 3.1],

Lemma A.3.2. Let $\Sigma_0^{(i)} = \{ X \in \Sigma_0 \mid \text{rank } X = i \}$. Then $\Sigma_0^{(i)}$, if nonempty, is an orbit under $\text{GL}_n(E) \times H_m$; and Σ_0 is a disjoint union of orbits of the form $\Sigma_0^{(i)}$ for $i = 0, 1, \ldots, r$, in which $\Sigma_0^{(r)}$ is the unique open one.

Let

$$B'_n = \left\{ \begin{pmatrix} A & 1_n \\ tA^{-1} \end{pmatrix} \begin{pmatrix} 1_n & B \\ 1_n \end{pmatrix} \mid A \text{ is lower triangular and } B \in \text{Her}_n(E) \right\},$$

whose Levi decomposition is $B'_n = T'_n U'_n$ with

$$T'_n = \{ \text{diag}[t_1, \ldots, t_n; t_1^{r-1}, \ldots, t_n^{r-1}] \mid t_i \in E^\times \},$$

and U'_n begin the unipotent radical. Let

$$B_{m,r} = \left\{ \begin{pmatrix} A & 1_m \\ tA^{-1} \end{pmatrix} \begin{pmatrix} 1_m & B \\ 1_m \end{pmatrix} \mid A = \begin{pmatrix} A_1 & A_2 \\ A_3 \end{pmatrix} \right\},$$

where $A_1 \in \text{Mat}_{r,r}(E)$ is lower triangular, $A_3 \in \text{Mat}_{m-r,m-r}(E)$ is upper triangular, $A_2 \in \text{Mat}_{r,m-r}(E)$, and B is skew-hermitian. We have the Levi decomposition $B_{m,r} = T_m U_{m,r}$ with $T_m = T'_m$ and $U_{m,r}$ begin the unipotent radical. Then $B'_n \times B_{m,r}$ is a minimal parabolic subgroup of $H'_n \times H_m$.

Review some facts about spherical representations of $H'_n \times H_m$. For $\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{C}^n$, define
the space \(I'(\nu) \) consisting of all locally constant functions \(\varphi : H'_n \to \mathbb{C} \) satisfying

\[
\varphi(h't'u') = \delta_n^{-\frac{1}{2}}(t') \prod_{i=1}^{n} |t'_i|_{E}^{\nu_i} \varphi(h')
\]

for all \(h' \in H'_n, t \in T'_n, \) and \(u' \in U'_n \). Here,

\[
\delta_n' = \prod_{i=1}^{n} |t'_i|^{2i-1}_{E}
\]

is the modulus function of \(B'_n \). These \(I'(\nu) \) provide all spherical principal series of \(H'_n \). Let \(S(H'_n//K'_n) \) be the spherical Hecke algebra of \(H'_n \). Then we have the Fourier–Satake isomorphism

\[
FS : S(H'_n//K'_n) \to \mathbb{C}[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]^{W(H'_n)},
\]

such that for every \(f' \in S(H'_n//K'_n) \),

\[
FS(f')(q^{2\nu_1}, q^{-2\nu_1}, \ldots, q^{2\nu_n}, q^{-2\nu_n}) = \text{trace}_{I'(\nu)}(f').
\]

For \(\mu = (\mu_1, \ldots, \mu_m) \in \mathbb{C}^m \), define the space \(I(\mu) \) consisting of all locally constant functions \(\varphi : H_m \to \mathbb{C} \) satisfying

\[
\varphi(htu) = \delta_{m,r}(t) \prod_{j=1}^{m} |t'_j|_{E}^{\mu_j} \varphi(h)
\]

for all \(h \in H_m, t \in T_m, \) and \(u \in U_{m,r} \). Here,

\[
\delta_{m,r}(t) = \prod_{j=1}^{r} |t'_j|_{E}^{2m-2r+2j-1} \prod_{j=r+1}^{m} |t'_j|_{E}^{2m-2j+1}
\]

is the modulus function of \(B_{m,r} \). These \(I(\mu) \) provide all spherical principal series of \(H_m \). Let \(S(H_m//K_m) \) be the spherical Hecke algebra of \(H_m \). Then we have the Fourier–Satake isomorphism

\[
FS : S(H_m//K_m) \to \mathbb{C}[X_1, X_1^{-1}, \ldots, X_m, X_m^{-1}]^{W(H_m)},
\]

such that for every \(f \in S(H_m//K_m) \),

\[
FS(f)(q^{2\mu_1}, q^{-2\mu_1}, \ldots, q^{2\mu_m}, q^{-2\mu_m}) = \text{trace}_{I(\mu)}(f).
\]

Let \(Y_r \subset \text{GL}_r(E) \) be the group of lower-triangular matrices, which has the Levi decomposition
\[Y_r = A_r L_r. \] Here, \(A_r = \{ \text{diag}(a_1, \ldots, a_r) | a_i \in E^\times \} \) and \(L_r \) is the unipotent radical. We write elements in \(L_r \) in the form \((l_{jk})_{j>k}\). The group \(Y_r \) has the following right invariant measure

\[
dy_r = \prod_{i=1}^{r} |a_i|^{2(r+1)} \prod_{1 \leq k < j \leq r} \tilde{d}l_{jk},
\]

where \(\tilde{d}l_{jk} \) is certain measure on \(L_r \) normalized as in [Ral1982, Page 490]. Let \(\sigma = (\sigma_1, \ldots, \sigma_r) \in \mathbb{C}^r \) such that \(\text{Re} \, \sigma_i \gg 0 \). For every function \(\phi \in S(V_m^n) \), the following integral

\[
Z_{\sigma}(\phi) = \int_{Y_r} \phi \begin{pmatrix} y_r & 0 \\ 0 & 0 \end{pmatrix} \prod_{i=1}^{r} |a_i|^{\sigma_i} \, dy_r
\]

is absolutely convergent. Define a map \(Z_{\sigma} \) sending \(\phi \in S(V_m^n) \) to the function

\[
(h', h) \mapsto Z_{\sigma} (\omega(h'^{-1}, h^{-1})\phi)
\]

on \(H'_n \times H_m \). It is a nonzero \(H'_n \times H'_m \)-equivariant map from \(S(V_m^n) \) to \(S(H'_n \times H_m) \).

Lemma A.3.3. For \(\sigma = (\sigma_1, \ldots, \sigma_r) \in \mathbb{C}^r \) such that \(\text{Re} \, \sigma_i \gg 0 \), the image of the above intertwining map \(Z_{\sigma} \) lies in \(I'(\nu) \otimes I(\mu) \), where

\[
\nu = (2 + \sigma_1 - m - \frac{3}{2}, \ldots, 2r + \sigma_r - m - \frac{3}{2}, (r+1) - m - \frac{1}{2}, \ldots, n - m - \frac{1}{2});
\]

\[
\mu = (-2 - \sigma_1 + m + \frac{3}{2}, \ldots, -2r + \sigma_r + m + \frac{3}{2}, -(r+1) + m + \frac{1}{2}, \ldots, \frac{1}{2}).
\]

Proof. We have

\[
Z_{\sigma}(\phi)(h' t' u', h t u) = \int_{Y_r} (\omega(u'^{-1}t'^{-1}h'^{-1}, u^{-1}t^{-1}h^{-1}) \phi) \begin{pmatrix} y_r & 0 \\ 0 & 0 \end{pmatrix} \prod_{i=1}^{r} |a_i|^{\sigma_i} \, dy_r
\]

\[
= \int_{Y_r} (\omega(t'^{-1}h'^{-1}, t^{-1}h^{-1}) \phi) \begin{pmatrix} y_r & 0 \\ 0 & 0 \end{pmatrix} \prod_{i=1}^{r} |a_i|^{\sigma_i} \, dy_r
\]

\[
= \int_{Y_r} |\det t'|^{-m} (\omega(h'^{-1}, h^{-1}) \phi) \begin{pmatrix} y_r & 0 \\ 0 & 0 \end{pmatrix} t'^{-1} \prod_{i=1}^{r} |a_i|^{\sigma_i} \, dy_r. \quad (A.1)
\]
Changing variable $y_r \mapsto y''_r = \text{diag}[t_1, \ldots, t_r] y_r$, we have

$$
\prod_{i=1}^r |a_i|_E^\sigma d y_r = \prod_{i=1}^r |t_i|_E^{r-3i-\sigma_i+2} \prod_{i=1}^r |t_i a_i|_E^\sigma d y''.
$$

Changing variable $y_r \mapsto y'_r = \text{diag}[t_1^{-1}, \ldots, t_r^{-1}]$, we have

$$
\prod_{i=1}^r |a_i|_E^\sigma d y_r = \prod_{i=1}^r |t_i|_E^{r+\sigma_i-1} \prod_{i=1}^r |t_i^{-1} a_i|_E^\sigma d y'_r.
$$

Therefore,

$$(A.1) = \prod_{i=1}^r |t'_i|_E^{r+\sigma_i-1-m} \prod_{i=r+1}^n |t'_i|_E^{r-m} \prod_{j=1}^r |t_j|_E^{r-3j-\sigma_j+2} \int_{Y_r} (\omega (h'^{-1}, h^{-1}) \phi) \left(\begin{array}{cc} y_r & 0 \\
0 & 0 \end{array} \right) \prod_{i=1}^r |a_i|_E^\sigma d y_r

= \prod_{i=1}^r |t'_i|_E^{r+\sigma_i-1-m} \prod_{i=r+1}^n |t'_i|_E^{r-m} \prod_{j=1}^r |t_j|_E^{r-3j-\sigma_j+2} (\mathcal{Z}_\sigma(\phi))(h', h).
$$

The lemma follows immediately. \[\square\]

The above lemma implies the following facts. If $m \geq n = r$, then there is a surjective homomorphism

$$
\Phi_{m,n} : S(H_m//K_m) \to S(H'_n//K'_n)
$$

satisfying that

$$
\mathcal{Z}_\sigma \circ (\Phi_{m,n}(f) - f) = 0
$$

for all $f \in S(H_m//K_m)$ and $\text{Re} \sigma_i \gg 0$. Using the Fourier–Satake isomorphism, the map $\Phi_{m,n}$ is given by

$$
\mathbb{C}[X_1, X_1^{-1}, \ldots, X_m, X_m^{-1}]^{W(H_m)} \to \mathbb{C}[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]^{W(H'_n)},
$$

where

$$
\log_q X_j \mapsto \log_q X_j, \quad j = 1, \ldots, n;
$$

$$
\log_q X_j \mapsto 2m - 2j + 1, \quad j = n + 1, \ldots, m.
$$

In particular, when $m = n$, $\Phi_{m,n}$ is the identity map.

If $n > m = r$, similarly there is a surjective homomorphism

$$
\Phi'_{n,m} : S(H'_n//K'_n) \to S(H_m//K_m)
$$
satisfying that

\[Z_{\sigma} \circ (f' - \Phi'_{n,m}(f')) = 0 \]

for all \(f' \in \mathcal{S}(H'_n//K'_n) \) and \(\text{Re} \sigma_i \gg 0 \). Using the Fourier–Satake isomorphism, the map \(\Phi'_{n,m} \) is given by

\[\mathbb{C}[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]^{W(H'_n)} \to \mathbb{C}[X_1, X_1^{-1}, \ldots, X_m, X_m^{-1}]^{W(H_m)}, \]

where

\[\log_q X_i \mapsto \log_q X_i, \quad i = 1, \ldots, m; \]
\[\log_q X_i \mapsto 2m - 2i + 1, \quad i = m+1, \ldots, n. \]

Lemma A.3.4. Suppose that \(\phi \in \mathcal{S}(V^n) \) is spherical, and \(Z_{\sigma}(\phi) = 0 \) for all \(\sigma \in \mathbb{C}^r \) such that \(\text{Re} \sigma_i \gg 0 \). Then \(\omega(h')\phi \) vanishes on \(\Sigma_0 \) for all \(h' \in H'_n \).

Proof. It suffices to show that \(\omega(h')\phi \) vanishes on \(\Sigma_0^{(r)} \) since it is dense open in \(\Sigma_0 \). Since \(\Sigma_0^{(r)} \) is transitive under the action of \(\text{GL}_n(E) \times H_m \), we need only to show that

\[(\omega(h',h)\phi) \left(\begin{pmatrix} 1_r & 0 \\ 0 & 0 \end{pmatrix} \right) = 0 \]

for all \((h',h) \in \text{GL}_n(E) \times H_m \). We can write \(h' = b'k' \) with \(b' \in B'_n, k' \in K'_n \), and \(h = bk \) with \(b \in B'_{m,r}, k \in K_m \). Since \(\phi \) is spherical by assumption, we have

\[(\omega(h',h)\phi) \left(\begin{pmatrix} 1_r & 0 \\ 0 & 0 \end{pmatrix} \right) = (\omega(b',b)\phi) \left(\begin{pmatrix} 1_r & 0 \\ 0 & 0 \end{pmatrix} \right) = \phi \left(\begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \right) \]

with \(X \in \text{Mat}_{r,r}(E) \). Therefore, the lemma follows from [Ral1982, Lemma 5.2] for \(k = E \). \(\square \)

Combining Lemmas A.3.1, A.3.3 and A.3.4, we have the following proposition.

Proposition A.3.5. The ideal

\[J_{n,m} = \{ f \in \mathcal{S}(H'_n//K'_n) \otimes \mathcal{S}(H_m//K_m) \mid \omega(f) = 0 \} \]

is generated by

\[\{ \Phi_{m,n}(f) - f \mid f \in \mathcal{S}(H_m//K_m) \} \text{ (resp. } \{ f' - \Phi'_{n,m}(f') \mid f' \in \mathcal{S}(H'_n//K'_n) \}) \]
if $m \geq n$ (resp. $m < n$).

When $E = F \oplus F$, the corresponding unitary group H'_n (resp. H_m) can be identified with $\text{GL}_n(F)$ (resp. $\text{GL}_m(F)$). The Weil representation ω, which realizes on the space $S(\text{Mat}_{m,n}(F))$, is simply given by the formula $(\omega(g',g)\phi)(x) = \phi(g^{-1}xg')$ for $g' \in \text{GL}_n(F)$, $g \in \text{GL}_m(F)$ and $\phi \in S(\text{Mat}_{m,n}(F))$ (cf. [Ral1982, Section 6]). Without lost of generality, we assume that $n \geq m$. Then the ideal

$$J_{n,m} = \{ f \in S(\text{GL}_n(F)//\text{GL}_n(O_F)) \otimes S(\text{GL}_m(F)//\text{GL}_m(O_F)) \mid \omega(f) = 0 \}$$

is generated by

$$\{ f - \Psi_{n,m}(f) \mid f \in S(\text{GL}_n(F)//\text{GL}_n(O_F)) \}.$$

In terms of the Fourier–Satake isomorphism, the surjective homomorphism $\Psi_{n,m}$ is given by

$$\mathbb{C}[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]^{W(\text{GL}_n(F))} \to \mathbb{C}[X_1, X_1^{-1}, \ldots, X_m, X_m^{-1}]^{W(\text{GL}_m(F))},$$

where

$$\log_q X_i \mapsto -\log_q X_i + \frac{n - m}{2}, \quad i = 1, \ldots, m;$$
$$\log_q X_i \mapsto -i + \frac{n + 1}{2}, \quad i = m + 1, \ldots, n.$$
Bibliography

Index

\(\mathcal{Z} \)-admissible Green function, 61
0-dimensional Shimura variety, 106
admissible (\(E\)-subspace), 43
analytic kernel function, 31
archimedean local arithmetic Siegel–Weil formula, 95
arithmetic Chow group, 60
arithmetic divisor, 60
flat, 60
principal, 60
arithmetic theta lifting, 56, 67
arithmetic theta series, 63
basic unitary datum, 115
Beilinson–Bloch height paring, 59
coherent hermitian space, 16
cohomologically trivial cycle, 60
compactified generating series, 54
positive partial, 54
compactified special cycle, 53
degenerate principal series, 14
flat arithmetic divisor, 60
generating series, 45
compactified, 54
positive partial compactified, 54
germetric kernel function, 67
good section, 23
Green function, 60
\(\mathcal{Z} \)-admissible, 61
height function on \(D\), 86
height paring
Beilinson–Bloch, 59
Néron–Tate, 61
modified, 61
hermitian space, 9
hermitian line bundle, 61
hermitian space
nearby, 42
nondegenerate (skew-), 10
skew-, 9
hermitian space (over adèles)
coherent, 16
incoherent, 16
nondegenerate, 16
holomorphic projection, 155
quasi-, 157
incoherent hermitian space, 16
kernel function
analytic, 31
gometric, 67
local zeta integral, 23
modified height pairing, 61
moment matrix, 17
Néron–Tate height paring, 61
nearby hermitian space, 42
nearby quadratic space, 45
nondegenerate (skew-)hermitian space, 10
nondegenerate hermitian space (over adèles), 16
normalized zeta integral, 24
of weight \((a, b)\), 16
ordinary (point), 112
positive partial compactified generating series, 54
principal arithmetic divisor, 60
quadratic space
 nearby, 45
quasi-holomorphic projection, 157
regular test function, 32
section
 good, 23
 standard, 14
 unramified, 14
Shimura variety
 0-dimensional, 106
 of orthogonal group, 45
 of unitary group, 42
Siegel–Weil formula, 19
 archimedean local arithmetic, 95
skew-hermitian space, 9
special cycle, 44
 compactified, 53
standard section, 14
supersingular (point), 112
test function, 31
 of discriminant \(d\), 36
 regular, 32
theta dichotomy, 25
theta function, 18
theta lifting, 21
unramified section, 14
Weil representation, 17
Whittaker integral, 28
zeta integral
 local, 23
 normalized, 24
Index of Notations

\((-\flat,-\sharp),\ 111\)

\(A_0(H'),\ 155\)

\(A_0^1(H' \times H'),\ 155\)

\(A_{\text{fin}}, A,\ 9\)

\(A_{K, A_{K, \text{fin}, K}},\ 9\)

\(A(g, \phi),\ 68\)

\(A(H),\ 29\)

\(A(H', \zeta^i),\ 155\)

\(A_0^1(H'),\ 155\)

\(\alpha(f, f', \phi, \phi'),\ 27\)

\(b_m(s),\ 34\)

\(A_{(\rho^*)(\phi_1; g_1; \phi_2; g_2)},\ 138\)

\((A, \theta, i),\ 111\)

\(\beta(f, f', \phi, \phi'),\ 27\)

\(b_m(s),\ 24\)

\(\text{CH}^1_{\text{fin}}(M)_c,\ 60\)

\(\text{CH}^1(M)_c^0,\ 60\)

\(\text{CH}^1(M)_c,\ 63\)

\(\text{CH}^1_c(M),\ 60\)

\(\text{CH}^1_c(M)_c^0,\ 60\)

\(\text{CH}^r(\text{Sh}(\mathbb{H})),\ 45\)

\(\text{CH}^r(\text{Sh}^\sim)_c,\ 54\)

\(\text{CH}^r(X),\ 10\)

\(\text{const}_{s=a},\ 157\)

\(d^c,\ 60\)

\(D(g, \phi),\ 63\)

\(\text{diag}[a_1, \ldots, a_r],\ 10\)

\(\text{Diff}(T, V),\ 32\)

\(\mathcal{D}^{(\sigma)},\ 42\)

\((E, \varphi_E, j_E),\ 115\)

\(\mathbb{E}(g_1, g_2; \Phi),\ 67\)

\(E(g, \phi),\ 66\)

\(E(g, \varphi_s),\ 14\)

\(E_{(\rho^*)}(\phi_1, g_1; \phi_2, g_2),\ 138\)

\(\epsilon(\pi, \chi),\ 26\)

\(\epsilon(V),\ 16\)

\(\epsilon(V),\ 16\)

\(E(s, g, \phi),\ 18\)

\(E_T(s, g, \Phi),\ 30\)

\((\mathcal{E}, \vartheta, j; x),\ 115\)

\(f_{\psi^*, s},\ 156\)

\(\gamma_V,\ 17\)

\(\dot{H},\ 116\)

\(H^1,\ 107\)

\(h^1,\ 107\)

\(\text{Her},\ 13\)

\(H^r_{\text{fin}},\ 106\)

\(h^{(r)},\ 42\)

\(H_{p}(T),\ 124\)

\(H_{r},\ 13\)

\(H(x)_{\infty}, H(T)_{\infty},\ 86\)

\(\iota,\ 20\)

\(\iota_0,\ 20\)

\(\iota,\ 17\)

\(\iota_{(p)},\ 104\)

\(I_r(s, \chi),\ 14\)

\(\iota_{\chi, 1},\ 17\)

\(I_V(g, \phi),\ 18\)
K_0^\perp, 104
κ, 15
$K_{p,n}$, 106
\mathcal{K}_r, 13
Λ^\pm, 104
$\lambda_{p, r}$, 18
$L_{0, K_p^{\perp}, K^{\perp}, p}^\dagger$, 108
$L_{K^{\perp}, p}^\dagger$, 108
L_K, 106
L_K, \mathcal{L}, 43
$L_{K^{\perp}, p}^\dagger$, 108
$L_{K^{\perp}, \mathcal{L}}$, 53
$L_{n, K^{\perp}}$, 106
L^\ast, 105
$L_{n, K^{\perp}}$, 24
$M_{0, K^{\perp}}$, 111
$[M_{0, K^{\perp}}]_{ss}$, 112
$[M_{0, K^{\perp}}]^\wedge_{ss}$, 120
M_K, 67
M_{K^{\perp}, p^0}, 68
$M_{n, K^{\perp}}$, 136, 139, 148
$M_{n, K^{\perp}}$, 136, 139
$M_{0, K_p^{\perp}, K^{\perp}, p}^\dagger$, 111
$M_{0, K_p^{\perp}, K^{\perp}, p}^\dagger$, 108
$[M_{0, K_p^{\perp}, K^{\perp}, p}]_{ss}$, 112
$M_{K^{\perp}}^\dagger$, 107
$M_{K^{\perp}, p}^\dagger$, 108
M_K, 62
M_{K^{\perp}, p^0}, 108
$M_{n, K^{\perp}}$, 106
$\text{Mor} ((\mathbf{Y}, j_\mathbf{Y}), (\mathbf{X}, i_\mathbf{X}))_{\text{reg}}$, 120
M_r, 13
N, 21
N_r, 13
$\mathcal{N}, \mathcal{N}'$, 120
O_T, 28
Ω, Ω', 147
ω_χ, 17
ω''_χ, 21
$\hat{\omega}_K$, 67
$\hat{\phi}$, 17
ϕ^0_{∞}, 44
$\varphi_{\phi, s}$, 18
$\hat{\text{Pic}}(M)$, 61
$\text{Pic}(M)_Q$, 62
$\text{Pic}(\text{Sh}(\mathcal{H}))$, 43
$\text{Pic}(\text{Sh}^\sim)$, 53
$\text{Pic}(X)$, 11
$\pi_{K^{\perp}}^K$, 43
ϖ, 104
$p_{\mathcal{M}}$, 61
P_{r}, 13
$\mathcal{P}r$, 155
$\mathcal{P}r_{\mathcal{R}}$, 157
ψ_T, 28
$R_{F_{\mathcal{R}, 2}}$, 120
$R(V, \chi)$, 25
$\text{Sh}(\mathcal{H})$, 43
$\text{Sh}_K(\mathcal{H})$, 42
$\text{Sh}_{\mathcal{K}^\sim}$, 53
\[\Sigma, 13 \]
\[\Sigma_{\text{fin}}, 13 \]
\[\Sigma_{\infty}, 13 \]
\[\Sigma^0, 13 \]
\[\Sigma_{\text{fin}}^0, 13 \]
\[\Sigma_{\infty}^0, 13 \]
\[\Sigma(\nabla), 16 \]
\[S, 42 \]
\[\text{St}_d, 22 \]
\[\mathcal{S}(V^{2n})_d, 37 \]
\[\mathcal{S}(V^{2n})_{\text{reg},d}, 37 \]
\[\mathcal{S}(V^r), 17, 18 \]
\[\mathcal{S}(V^r)_{\text{reg}}, 32 \]
\[\mathcal{S}(V^r)^{\infty}, 44 \]
\[\mathcal{S}(V^r)^{\infty,K}, 44 \]
\[T_{F_1}, 104 \]
\[T_F, 104 \]
\[\Theta^f, 56 \]
\[\phi^f, 21 \]
\[\theta(g, h; \phi), 18 \]
\[\tilde{\Theta}_\phi(g), 67 \]
\[\hat{\theta}_{\text{hor}}(\bullet; \phi_1, \phi_2), 144, 151 \]
\[\Theta(g), 63 \]
\[\hat{\theta}_{\text{ver}}(\bullet; \phi_1, \phi_2, g_2), 145, 153 \]
\[T_pA, 110 \]
\[T(x), 17 \]
\[U^*_L, 105 \]
\[\tilde{V}, 116 \]
\[V^{(s)}, 42 \]
\[\text{Vol}(K), 101 \]
\[V^\pm, 16 \]
\[V_s, 16 \]
\[\Psi(\pi, \chi), 26 \]
\[(-W), 20 \]
\[W''', 20 \]
\[W', W'^*, 20 \]
\[W_r, 13 \]
\[W_T(g, f), 29 \]
\[W_T(g, \varphi_s), 28 \]
\[W'_t, 155 \]
\[W_T(s, g, \Phi), 29 \]
\[w_r, 10 \]
\[w_{r,d}, 10 \]
\[(X, jX), 120 \]
\[X, 111 \]
\[X^\dagger, 107 \]
\[X^t, 111 \]
\[\Xi_\phi(g), 102 \]
\[\Xi_x, 86 \]
\[(Y, jY^r), 115 \]
\[(Y^r, jY^r), 122 \]
\[\Psi, 115 \]
\[Z^t(x^t, h^t),_{0,K^t_p,K^t_p}, 117 \]
\[Z_0(g),_{0,K^t}, 121 \]
\[[Z_0(g),_{0,K^t}]_0^t, 121 \]
\[Z_0(x),_{0,K^t}, 117 \]
\[Z(x, f, f'^r, \varphi_s), 23 \]
\[\zeta^t, 155 \]
\[Z^s(x, f, f'^r, \varphi_s), 24 \]
\[Z^s(s, \chi, f, f'^r, \Phi), 40 \]
\[Z^s(s, \chi, f, f'^r, \phi \otimes \phi'^r), 26 \]
(Z, g\textsubscript{\epsilon}), 60
\check{Z}1\textsubscript{C} (\mathcal{M}), 60
\check{Z}\phi (g), 67
Z\phi (g), 45
Z\phi\sim (g), 54
Z\phi\sim, + (g), 54
\mathcal{Z} (\check{x}), 121
Z(V\textsubscript{1})_K, 44
Z(x)\textsubscript{0.K*}, 116
Z(x)_K, 44
Z(x)\textsubscript{\check{\mathcal{K}}}, 53