
4.7. TAYLOR AND MACLAURIN SERIES 102

4.7. Taylor and MacLaurin Series

4.7.1. Polynomial Approximations. Assume that we have a
function f for which we can easily compute its value f(a) at some
point a, but we do not know how to find f(x) at other points x close
to a. For instance, we know that sin 0 = 0, but what is sin 0.1? One
way to deal with the problem is to find an approximate value of f(x).
If we look at the graph of f(x) and its tangent line at (a, f(a)), we
see that the points of the tangent line are close to the graph, so the
y-coordinates of those points are possible approximations for f(x).

y=f(a)+f’(x)(x-a)

y=f(x)

y

xa

Figure 4.7.1. Linear approximation of f(x).

The equation of the tangent line to y = f(x) at x = a is

y = f(a) + f ′(a)(x− a) ,

hence
f(x) ≈ f(a) + f ′(a)(x− a) ,

for x close to a. For instance:

sin(x) ≈ sin a + cos a (x− a) .

For a = 0 we get:

sin(x) ≈ sin 0 + cos 0 · (x− 0) = x ,

so sin(0.1) ≈ 0.1. In fact sin(0.1) = 0.099833416 . . . , which is close to
0.1.

The tangent line is the graph of the first degree polynomial

T1(x) = f(a) + f ′(a)(x− a) .

This polynomial agrees with the value and the first derivative of f(x)
at x = a:

T1(a) = f(a)

T ′1(a) = f ′(a)
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We can extend the idea to higher degree polynomials in the hope of
obtaining closer approximations to the function. For instance, we may
try a second degree polynomial of the from:

T2(x) = c0 + c1(x− a) + c2(x− a)2 ,

with the following conditions:

T2(a) = f(a)

T ′2(a) = f ′(a)

T ′′2 (a) = f ′′(a)

i.e.: 
c0 = f(a)

c1 = f ′(a)

2c2 = f ′′(a)

After solving the system of equations obtained we get:

c0 = f(a)

c1 = f ′(a)

c2 =
f ′′(a)

2

hence:

T2(x) = f(a) + f ′(a)x +
f ′′(a)

2
x2 .

In general the nth polynomial approximation of f(x) at x = a is an
nth degree polynomial

Tn(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n

verifying

Tn(a) = f(a)

T ′n(a) = f ′(a)

T ′′n (a) = f ′′(a)

. . .

T (n)
n (a) = f (n)(a)
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From here we get a system of n+1 equations with the following solution:

c0 = f(a)

c1 = f ′(a)

c2 =
f ′′(a)

2!
. . .

cn =
f (n)(a)

n!

hence:

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

=
n∑

k=0

f (k)(a)

k!
(x− a)k .

That polynomial is the so called nth-degree Taylor polynomial of
f(x) at x = a.

Example: The third-degree Taylor polynomial of f(x) = sin x at
x = a is

T3(x) = sin a + cos a · (x− a)2 − sin a

2
(x− a)2 − cos a

3!
(x− a)3 .

For a = 0 we have sin 0 = 0 and cos 0 = 1, hence:

T3(x) = x− x3

6
.

So in particular

sin 0.1 ≈ 0.1− 0.13

6
= 0.09983333 . . . .

The actual value of sin 0.1 is

sin 0.1 = 0.099833416 ,

which agrees with the value obtained from the Taylor polynomial up
to the sixth decimal place.

4.7.2. Taylor’s Inequality. The difference between the value of
a function and its Taylor approximation is called remainder :

Rn(x) = f(x)− Tn(x) .
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The Taylor’s inequality states the following: If |f (n+1)(x)| ≤ M for
|x− a| ≤ d then the reminder satisfies the inequality:

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1 for |x− a| ≤ d .

Example: Find the third degree Taylor approximation for sin x at
x = 0, use it to find an approximate value for sin 0.1 and estimate its
difference from the actual value of the function.

Answer : We already found

T3(x) = x− x3

6
,

and

T3(0.1) = 0.099833333 . . .

Now we have f (4)(x) = sin x and | sin x| ≤ 1, hence

|R3(0.1)| =≤ 1

4!
0.14 = 0.0000041666 · · · < 0.0000042 = 4.2 · 10−6 .

In fact the estimation is correct, the approximate value differs from the
actual value in

|T3(0.1)− sin 0.1| = 0.000000083313 · · · < 8.34 · 10−8 .

4.7.3. Taylor Series. If the given function has derivatives of all
orders and Rn(x) → 0 as n →∞, then we can write

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2+

· · ·+ f (n)(a)

n!
(x− a)n + · · ·

The infinite series to the right is called Taylor series of f(x) at x = a.
If a = 0 then the Taylor series is called Maclaurin series.

Example: The Taylor series of f(x) = ex at x = 0 is:

1 + x +
x2

2
+ · · ·+ xn

n!
+ · · · =

∞∑
n=0

xn

n!
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For |x| < d the remainder can be estimated taking into account that
f (n)(x) = ex and |ex| < ed, hence

|Rn(x)| < ed

(n + 1)!
|x|n+1 .

We know that limn→∞ xn/n! = 0, so

lim
n→∞

ed

(n + 1)!
|x|n+1 = 0

hence Rn(x) → 0 as n →∞. Consequently we can write:

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

For x = 1 this formula provides a way of computing number e:

e =
∞∑

n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · · = 2.718281828459 . . .

The following are Maclaurin series of some common functions:

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

cos x =
∞∑

n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

ln (1 + x) = −
∞∑

n=1

(−1)n xn

n
= x− x2

2
+

x3

3
− x4

4
+ · · ·

(1 + x)α =
∑
n=0

(
α

n

)
xn = 1 + αx +

(
α

2

)
x2 +

(
α

3

)
x3 + · · ·

where

(
α

n

)
=

α(α− 1)(α− 2) . . . (α− n + 1)

n!
.

1

1 + x
= (1 + x)−1 =

∑
n=0

(−1)nxn = 1− x + x2 − x3 + · · ·



4.7. TAYLOR AND MACLAURIN SERIES 107

tan−1 x =
∑
n=0

(−1)n x2n+1

(2n + 1)!
= x− x3

3
+

x5

5
− x7

7
+ · · ·

Remark : By letting x = 1 in the Taylor series for tan−1 x we get
the beautiful expression:

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=0

(−1)n 1

2n + 1
.

Unfortunately that series converges too slowly for being of practical use
in computing π. Since the series for tan−1 x converges more quickly for
small values of x, it is more convenient to express π as a combination
of inverse tangents with small argument like the following one:

π

4
= 4 tan−1 1

5
− tan−1 1

239
.

That identity can be checked with plain trigonometry. Then the inverse
tangents can be computed using the Maclaurin series for tan−1 x, and
from them an approximate value for π can be found.

4.7.4. Finding Limits with Taylor Series. The following ex-
ample shows an application of Taylor series to the computation of lim-
its:

Example: Find lim
x→0

ex − 1− x

x2
.

Answer : Replacing ex with its Taylor series:

lim
x→0

ex − 1− x

x2
= lim

x→0

(1 + x + x2

2
+ x3

6
+ x4

24
+ . . . )− 1− x

x2

= lim
x→0

x2

2
+ x3

6
+ x4

24
+ . . .

x2

= lim
x→0

{
1

2
+

x

6
+

x2

24
+ . . .

}
=

1

2
.
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4.8. Applications of Taylor Polynomials

4.8.1. Applications to Physics. Here we illustrate an applica-
tion of Taylor polynomials to physics.

Consider the following formula from the Theory of Relativity for
the total energy of an object moving at speed v:

E =
m0c

2√
1− v2

c2

,

where c is the speed of light and m0 is the mass of the object at rest.
Let’s rewrite the formula in the following way:

E = m0c
2

(
1− v2

c2

)−1/2

.

Now we expand the expression using the power series of the binomial
function:

(1 + x)α =
∑
n=0

(
α

n

)
xn = 1 + αx +

(
α

2

)
x2 +

(
α

3

)
x3 + · · · ,

which for α = −1/2 becomes:

(1 + x)−1/2 = 1− 1

2
x +

(−1
2

2

)
x2 +

(−1
2

3

)
x3 + · · ·

= 1− 1

2
x +

3

8
x2 − 5

16
x3 + · · · ,

hence replacing x = −v2/c2 we get the desired power series:

E = m0c
2

(
1 +

1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

)
.

If we subtract the energy at rest m0c
2 we get the kinetic energy:

K = E −m0c
2 = m0c

2

(
1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

)
.

For low speed all the terms except the first one are very small and can
be ignored:

K ≈ m0c
2

(
1

2

v2

c2

)
=

1

2
m0v

2 .

That is the expression for the usual (non relativistic or Newtonian)
kinetic energy, so this tells us at low speed the relativistic kinetic energy
is approximately equal to the non relativistic one.


