2.3. Arc Length, Parametric Curves

2.3.1. Parametric Curves. A parametric curve can be thought of as the trajectory of a point that moves trough the plane with coordinates $(x, y)=(f(t), g(t))$, where $f(t)$ and $g(t)$ are functions of the parameter t. For each value of t we get a point of the curve. Example: A parametric equation for a circle of radius 1 and center $(0,0)$ is:

$$
x=\cos t, \quad y=\sin t
$$

The equations $x=f(t), y=g(t)$ are called parametric equations.
Given a parametric curve, sometimes we can eliminate t and obtain an equivalent non-parametric equation for the same curve. For instance t can be eliminated from $x=\cos t, y=\sin t$ by using the trigonometric relation $\cos ^{2} t+\sin ^{2} t=1$, which yields the (non-parametric) equation for a circle of radius 1 and center $(0,0)$:

$$
x^{2}+y^{2}=1
$$

Example: Find a non-parametric equation for the following parametric curve:

$$
x=t^{2}-2 t, \quad y=t+1
$$

Answer: We eliminate t by isolating it from the second equation:

$$
t=(y-1),
$$

and plugging it in the first equation:

$$
x=(y-1)^{2}-2(y-1) .
$$

i.e.:

$$
x=y^{2}-4 y+3,
$$

which is a parabola with horizontal axis.
2.3.2. Arc Length. Here we describe how to find the length of a smooth arc. A smooth arc is the graph of a continuous function whose derivative is also continuous (so it does not have corner points).

If the arc is just a straight line between two points of coordinates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, its length can be found by the Pythagorean theorem:

$$
L=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
$$

where $\Delta x=x_{2}-x_{1}$ and $\Delta y=y_{2}-y_{1}$.

More generally, we approximate the length of the arc by inscribing a polygonal arc (made up of straight line segments) and adding up the lengths of the segments. Assume that the arc is given by the parametric functions $x=f(x), y=g(x), a \leq t \leq b$.

We divide the interval into n subintervals of equal length. The corresponding points in the arc have coordinates $\left(f\left(t_{i}\right), g\left(t_{i}\right)\right)$, so two consecutive points are separated by a distance equal to

$$
L_{i}=\sqrt{\left[f\left(t_{i}\right)-f\left(t_{i-1}\right)\right]^{2}+\left[g\left(t_{i}\right)-g\left(t_{i-1}\right)\right]^{2}} .
$$

We have $\Delta t=t_{i}-t_{i-1}=(b-a) / n$. On the other hand, by the mean value theorem

$$
\begin{aligned}
f\left(t_{i}\right)-f\left(t_{i-1}\right) & =f^{\prime}\left(t_{i}^{*}\right) \Delta t \\
g\left(t_{i}\right)-f\left(t_{i-1}\right) & =g^{\prime}\left(t_{i}^{*}\right) \Delta t
\end{aligned}
$$

for some t_{i}^{*} in $\left[t_{i-1}, t_{i}\right]$. Hence

$$
L_{i}=\sqrt{\left[f^{\prime}\left(x_{i}^{*}\right) \Delta t\right]^{2}+\left[g^{\prime}\left(t_{i}^{*}\right) \Delta t\right]^{2}}=\sqrt{\left[f^{\prime}\left(t_{i}^{*}\right)\right]^{2}+\left[g^{\prime}\left(t_{i}^{*}\right)\right]^{2}} \Delta t .
$$

The total length of the arc is

$$
L \approx \sum_{i=1}^{n} s_{i}=\sum_{i=1}^{n} \sqrt{\left[f^{\prime}\left(t_{i}^{*}\right)\right]^{2}+\left[g^{\prime}\left(t_{i}^{*}\right)\right]^{2}} \Delta t
$$

which converges to the following integral as $n \rightarrow \infty$:

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

This formula can also be expressed in the following (easier to remember) way:

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

The last formula can be obtained by integrating the length of an "infinitesimal" piece of arc

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}=d t \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} .
$$

Example: Find the arc length of the curve $x=t^{2}, y=t^{3}$ between $(1,1)$ and $(4,8)$.

Answer: The given points correspond to the values $t=1$ and $t=2$ of the parameter, so:

$$
\begin{aligned}
L & =\int_{1}^{2} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{1}^{2} \sqrt{(2 t)^{2}+\left(3 t^{2}\right)^{2}} d t \\
& =\int_{1}^{2} \sqrt{4 t^{2}+9 t^{4}} d t \\
& =\int_{1}^{2} t \sqrt{4+9 t^{2}} d t \\
& =\frac{1}{18} \int_{13}^{40} \sqrt{u} d u \\
& =\frac{1}{27}\left[40^{3 / 2}-13^{3 / 2}\right] \\
& =\frac{1}{27}(80 \sqrt{10}-13 \sqrt{13}) .
\end{aligned}
$$

In cases when the arc is given by an equation of the form $y=f(x)$ or $x=f(x)$ the formula becomes:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

or

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y
$$

Example: Find the length of the arc defined by the curve $y=x^{3 / 2}$ between the points $(0,0)$ and $(1,1)$.

Answer:

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+\left[\left(x^{3 / 2}\right)^{\prime}\right]^{2}} d x \\
& =\int_{0}^{1} \sqrt{1+\left(\frac{3 x^{1 / 2}}{2}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+\frac{9 x}{4}} d x \\
& =\left[\frac{1}{27}(4+9 x)^{3 / 2}\right]_{0}^{1}=\frac{1}{27}\left(13^{3 / 2}-8\right) .
\end{aligned}
$$

