2.3. Arc Length, Parametric Curves

2.3.1. Parametric Curves. A parametric curve can be thought of as the trajectory of a point that moves trough the plane with coordinates (x,y) = (f(t),g(t)), where f(t) and g(t) are functions of the parameter t. For each value of t we get a point of the curve. Example: A parametric equation for a circle of radius 1 and center (0,0) is:

$$x = \cos t, \qquad y = \sin t.$$

The equations x = f(t), y = g(t) are called parametric equations.

Given a parametric curve, sometimes we can eliminate t and obtain an equivalent non-parametric equation for the same curve. For instance t can be eliminated from $x = \cos t$, $y = \sin t$ by using the trigonometric relation $\cos^2 t + \sin^2 t = 1$, which yields the (non-parametric) equation for a circle of radius 1 and center (0,0):

$$x^2 + y^2 = 1$$
.

Example: Find a non-parametric equation for the following parametric curve:

$$x = t^2 - 2t, \qquad y = t + 1.$$

Answer: We eliminate t by isolating it from the second equation:

$$t=\left(y-1\right) ,$$

and plugging it in the first equation:

$$x = (y-1)^2 - 2(y-1)$$
.

i.e.:

$$x = y^2 - 4y + 3,$$

which is a parabola with horizontal axis.

2.3.2. Arc Length. Here we describe how to find the length of a *smooth arc*. A smooth arc is the graph of a continuous function whose derivative is also continuous (so it does not have corner points).

If the arc is just a straight line between two points of coordinates (x_1, y_1) , (x_2, y_2) , its length can be found by the Pythagorean theorem:

$$L = \sqrt{(\Delta x)^2 + (\Delta y)^2},$$

where $\Delta x = x_2 - x_1$ and $\Delta y = y_2 - y_1$.

More generally, we approximate the length of the arc by inscribing a polygonal arc (made up of straight line segments) and adding up the lengths of the segments. Assume that the arc is given by the parametric functions x = f(x), y = g(x), $a \le t \le b$.

We divide the interval into n subintervals of equal length. The corresponding points in the arc have coordinates $(f(t_i), g(t_i))$, so two consecutive points are separated by a distance equal to

$$L_i = \sqrt{[f(t_i) - f(t_{i-1})]^2 + [g(t_i) - g(t_{i-1})]^2}.$$

We have $\Delta t = t_i - t_{i-1} = (b-a)/n$. On the other hand, by the mean value theorem

$$f(t_i) - f(t_{i-1}) = f'(t_i^*) \Delta t$$

$$g(t_i) - f(t_{i-1}) = g'(t_i^*) \Delta t$$

for some t_i^* in $[t_{i-1}, t_i]$. Hence

$$L_i = \sqrt{[f'(x_i^*) \Delta t]^2 + [g'(t_i^*) \Delta t]^2} = \sqrt{[f'(t_i^*)]^2 + [g'(t_i^*)]^2} \Delta t.$$

The total length of the arc is

$$L \approx \sum_{i=1}^{n} s_i = \sum_{i=1}^{n} \sqrt{[f'(t_i^*)]^2 + [g'(t_i^*)]^2} \Delta t$$

which converges to the following integral as $n \to \infty$:

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt.$$

This formula can also be expressed in the following (easier to remember) way:

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

The last formula can be obtained by integrating the length of an "infinitesimal" piece of arc

$$ds = \sqrt{(dx)^2 + (dy)^2} = dt \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}.$$

Example: Find the arc length of the curve $x=t^2, y=t^3$ between (1,1) and (4,8).

Answer: The given points correspond to the values t=1 and t=2 of the parameter, so:

$$L = \int_{1}^{2} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

$$= \int_{1}^{2} \sqrt{(2t)^{2} + (3t^{2})^{2}} dt$$

$$= \int_{1}^{2} \sqrt{4t^{2} + 9t^{4}} dt$$

$$= \int_{1}^{2} t\sqrt{4 + 9t^{2}} dt$$

$$= \frac{1}{18} \int_{13}^{40} \sqrt{u} du \qquad (u = 4 + 9t^{2})$$

$$= \frac{1}{27} \left[40^{3/2} - 13^{3/2} \right]$$

$$= \left[\frac{1}{27} (80\sqrt{10} - 13\sqrt{13}) \right].$$

In cases when the arc is given by an equation of the form y = f(x) or x = f(x) the formula becomes:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

or

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dy}\right)^{2} + 1} \ dy$$

Example: Find the length of the arc defined by the curve $y = x^{3/2}$ between the points (0,0) and (1,1).

Answer:

$$L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^1 \sqrt{1 + \left[(x^{3/2})'\right]^2} \, dx$$
$$= \int_0^1 \sqrt{1 + \left(\frac{3x^{1/2}}{2}\right)^2} \, dx = \int_0^1 \sqrt{1 + \frac{9x}{4}} \, dx$$
$$= \left[\frac{1}{27}(4 + 9x)^{3/2}\right]_0^1 = \boxed{\frac{1}{27}(13^{3/2} - 8)}.$$