2.4. Average Value of a Function (Mean Value Theorem)

2.4.1. Average Value of a Function. The average value of finitely many numbers $y_{1}, y_{2}, \ldots, y_{n}$ is defined as

$$
y_{\mathrm{ave}}=\frac{y_{1}+y_{2}+\cdots+y_{n}}{n} .
$$

The average value has the property that if each of the numbers $y_{1}, y_{2}, \ldots, y_{n}$ is replaced by $y_{\text {ave }}$, their sum remains the same:

$$
y_{1}+y_{2}+\cdots+y_{n}=\overbrace{y_{\text {ave }}+y_{\text {ave }}+\cdots+y_{\text {ave }}}^{(n \text { times })}
$$

Analogously, the average value of a function $y=f(x)$ in the interval $[a, b]$ can be defined as the value of a constant $f_{\text {ave }}$ whose integral over $[a, b]$ equals the integral of $f(x)$:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f_{\text {ave }} d x=(b-a) f_{\text {ave }}
$$

Hence:

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

2.4.2. The Mean Value Theorem for Integrals. If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that

$$
f(c)=f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

i.e.,

$$
\int_{a}^{b} f(x) d x=f(c)(b-a) .
$$

Example: Assume that in a certain city the temperature (in $\left.{ }^{\circ} \mathrm{F}\right) t$ hours after 9 A.M. is represented by the function

$$
T(t)=50+14 \sin \frac{\pi t}{12}
$$

Find the average temperature in that city during the period from 9 A.M. to 9 P.M.

Answer:

$$
\begin{aligned}
T_{\mathrm{ave}} & =\frac{1}{12-0} \int_{0}^{12}\left(50+14 \sin \frac{\pi t}{12}\right) d t \\
& =\frac{1}{12}\left[50 t-\frac{14 \cdot 12}{\pi} \cos \frac{\pi t}{12}\right]_{0}^{12} \\
& =\frac{1}{12}\left\{\left(50 \cdot 12-\frac{168}{\pi} \cos \frac{12 \pi}{12}\right)-\left(50 \cdot 0-\frac{168}{\pi} \cos 0\right)\right\} \\
& =50+\frac{28}{\pi} \approx 58.9
\end{aligned}
$$

