2.4. Average Value of a Function (Mean Value Theorem)

2.4.1. Average Value of a Function. The average value of finitely many numbers y_1, y_2, \ldots, y_n is defined as

$$y_{\text{ave}} = \frac{y_1 + y_2 + \dots + y_n}{n} \,.$$

The average value has the property that if each of the numbers y_1, y_2, \ldots, y_n is replaced by y_{ave} , their sum remains the same:

$$y_1 + y_2 + \dots + y_n = \overbrace{y_{\text{ave}} + y_{\text{ave}} + \dots + y_{\text{ave}}}^{(n \text{ times})}$$

Analogously, the average value of a function y = f(x) in the interval [a, b] can be defined as the value of a constant f_{ave} whose integral over [a, b] equals the integral of f(x):

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f_{\text{ave}} dx = (b-a) f_{\text{ave}}.$$

Hence:

$$f_{\rm ave} = \frac{1}{b-a} \int_a^b f(x) \, dx \, \, .$$

2.4.2. The Mean Value Theorem for Integrals. If f is continuous on [a, b], then there exists a number c in [a, b] such that

$$f(c) = f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

i.e.,

$$\int_a^b f(x) \, dx = f(c)(b-a) \, .$$

Example: Assume that in a certain city the temperature (in $^{\circ}$ F) t hours after 9 A.M. is represented by the function

$$T(t) = 50 + 14\sin\frac{\pi t}{12}.$$

Find the average temperature in that city during the period from 9 A.M. to 9 P.M.

Answer:

$$T_{\text{ave}} = \frac{1}{12 - 0} \int_0^{12} \left(50 + 14 \sin \frac{\pi t}{12} \right) dt$$

= $\frac{1}{12} \left[50t - \frac{14 \cdot 12}{\pi} \cos \frac{\pi t}{12} \right]_0^{12}$
= $\frac{1}{12} \left\{ \left(50 \cdot 12 - \frac{168}{\pi} \cos \frac{12\pi}{12} \right) - \left(50 \cdot 0 - \frac{168}{\pi} \cos 0 \right) \right\}$
= $50 + \frac{28}{\pi} \approx 58.9$.