Due Wednesday, October 22

(1) [Ha] Ch.I: 2.9, 2.12, 2.14, 2.17 (part (c) challenge, and for part (d) you get
an automatic Ph.D.), 3.14

(2) A conic in \mathbb{P}^2 is a projective variety that can be written as the zero locus of
a single irreducible homogeneous polynomial of degree 2. Let V be the
vector space over k of homogeneous degree 2 polynomials in three variables,
and let $\mathbb{P}(V) \cong \mathbb{P}^5$ be its projectivization.

(a) Show that the space of conics in \mathbb{P}^2 can be identified with an open
subset $U \subset \mathbb{P}^5$. (We say that U is a moduli space for conics in \mathbb{P}^2
and that \mathbb{P}^5 is its compactification.) What geometric objects can be
associated with the points in $\mathbb{P}^5 - U$?

(b) Show that the condition for a conic to pass through a given point is
a linear one; namely, if $P \in \mathbb{P}^2$, show that there is a linear subspace
$L \subset \mathbb{P}^5$ such that the conics passing through P are exactly those in
$U \cap L$. What do the points in $(\mathbb{P}^5 - U) \cap L$ correspond to?

(c) Show that there is a unique conic passing through any five points in
\mathbb{P}^2, as long as no three of them lie on a line. What happens if three of
them do lie on a line?

(3) Show that a morphism of affine varieties $f : X \to Y$ is dominant if and
only if $f^* : A(Y) \to A(X)$ is injective.

(4) [Ha] Ch.I: 4.5, 4.6, 4.10