(1) [Ha] Ch.II: 7.2, 7.3, 7.5 (a)-(d), 7.6
(2) Let X be a projective variety and L an invertible sheaf on X.
(a) Prove that L is very ample if and only if $L \otimes m_x$ is globally generated for every $x \in X$.
(b) Assume now that X is smooth and L satisfies

$$H^1(X, L) = 0.$$

Then L is globally generated if and only if

$$H^1(X, L \otimes m_x) = 0, \ \forall \ x \in X.$$

Prove an analogous statement for the very ampleness of L, by replacing m_x with $m_{x,y}$ and m_x^2, where x, y are distinct points on X. [This applies for instance over the complex numbers for adjoint line bundles of the form $L = \omega_X \otimes A$, with A an ample line bundle, by the Kodaira Vanishing theorem.]