MATH 281-2

Test 2 Review

1. a.) A damped spring system is governed by

\[y'' + \gamma y' + 5y = 0. \]

Any solution \(y \) passes through zero infinitely many times. What can you say about \(\gamma \)?

b.) For a different system, there are solutions of

\[y'' + \gamma y' + 4y = \sin(2t). \]

which attain arbitrarily large values. What’s \(\gamma \)?

2. Find the solution of the initial value problem

\[y'' - 2y' + y = 2e^t, \quad y(0) = 0 = y'(0). \]

3. Consider Bessel’s equation

\[x^2y'' + xy' + (x^2 - 4)y = 0. \]

a.) Write down the indicial polynomial and find the largest root \(r_1 \).

b.) Write down the first three non-zero terms of the series solution (note \(a_0 = 1 \)).

\[y(x) = x^{r_1}(1 + a_1 x + a_2 x^2 + \cdots). \]

c.) Use your answer to estimate \(y(0.1) \) with an error less than .0001. Be sure and explain how you estimated the error.

4. A tank of 200 liters initially contains pure water, but a solution of salt flows in at a rate of 1 l/min and mixed solution flows out at the same rate. Suppose the incoming solution has concentration 2 g/l for the first 60 minutes, 4g/l for the second 60 minutes, and is pure water after that.

a.) Write down the IVP for the total amount of salt in the tank at time \(t \).

b.) Solve this initial value problem.
Answers

1a.) The characteristic polynomial must have complex roots, so γ < 2√5.

b.) γ = 0.

2. y(t) = t²eᵗ.

3. a.) The indicial polynomial is r² - 4 and r₁ = 2.

b.) y(t) = x²(1 - \frac{1}{12}x² + \frac{1}{384}x⁴ - \cdots).

c.) Since this is an alternating series and the term \frac{1}{384}(0.5)^6 < .0001, we have

 y(0.5) = (0.5)^2(1 - \frac{1}{12}(0.5)^2) \sim 0.2448.

4. a.) y′ + \frac{1}{200}y = 2 + 2u_{60}(t) - 4u_{120}(t)

b.) y(t) = 400f(t) + 400u_{60}f(t - 60) - 800u_{120}f(t - 120) where

 f(t) = 1 - e^{-(1/200)t}.

Note that y(t) → 0 as t → ∞, as expected.