Each question is worth 20 points.

1. A population of fish grows at a rate of 2 percent a year. Let \(y = y(t) \) be the population of fish at year \(t \) measured in millions. At year \(t = 0 \) there are 200 million fish, but at year \(t = 20 \) constant rate harvesting begins at a rate of 10 million fish per year.
 a.) Explain why the IVP
 \[
 y' - 0.02y = -10 \text{ step}(t - 20), \quad y(0) = 200
 \]
 models this scenario.
 b.) Solve for \(y(t) \).

2. Consider the undamped spring system subjected to two shocks, as indicated in the following ODE:
 \[
 y'' + 4y = A\delta(t - \pi) - \delta(t - 2\pi).
 \]
 The constant \(A \) is to be determined. Suppose \(y(0) = 0 \) and \(y'(0) = 0 \).
 a.) Find the solution \(y(t) \), \(t > 0 \).
 b.) Is there a value of \(A \) that guarantees \(y(t) = 0 \) for \(t \geq 2\pi \)? Explain.

3. Solve the partial differential equation
 \[
 x \frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = x^2
 \]
 subject to the initial condition \(u(x, 0) = 0 \) and the boundary condition \(u(0, t) = 0 \). You might want to use the Laplace transform.

4. A hollow cylinder of stainless steel has internal radius 1cm and outer radius of 10 cm. The temperature of the inside is 100 degrees C and the outside is 20 degree C. The top and bottom are insulated, so heat passes radially from the inside to the outside. Let \(T = T(x) \) be the temperature at distance \(x \) from the center. The surface area of a cylinder is \(2\pi rh \).
 a.) Give an argument to show \(\frac{d}{dx} (x \frac{dT}{dx}) = 0 \).
 b.) Solve for \(T(x) \).
Answers

1.b.) $y(t) = 200e^{0.02t} + 500 \text{step}(t - 20)(1 - e^{0.02(t-20)})$.

2. $y = \frac{A}{2} \text{step}(t - \pi) \sin(t - \pi) - \frac{1}{2} \text{step}(t - 2\pi) \sin(t - 2\pi)$, so $A = 1$ will make $y(t) = 0$ for $A \geq 2\pi$.

3. $u(x, t) = \frac{x^2}{2} (1 - e^{-2t})$. After doing the Laplace transform, get an equation

$$v_x + (s/x)v = x$$

which has integrating factor x^s. Then

$$v = \frac{x^2}{s(s + 2)} = \frac{x^2}{2} \left(\frac{1}{s} - \frac{1}{s + 2} \right).$$

4.b.) $T(x) = -\frac{80}{\ln(10)} \ln(x) + 100$.