1. Let \mathbb{F} be a field of characteristic p and let $\mathbb{F} \subseteq \mathbb{E}$ be a normal extension. Define $\mathbb{F}_\infty \subseteq \mathbb{E}$ to be the subset

$$
\mathbb{F}_\infty = \{ a \in \mathbb{E} \mid a^{p^n} \in \mathbb{F} \text{ for some } n \}.
$$

Prove that \mathbb{F}_∞ is a field, then $\mathbb{F} \subseteq \mathbb{F}_\infty$ is purely inseparable and the $\mathbb{F}_\infty \subseteq \mathbb{E}$ is separable.

Hint: recall that we have shown that if a is algebraic over \mathbb{F}, then the minimal polynomial can be written (over the algebraic closure of \mathbb{F}) as $h(x)^{p^n}$ for some separable polynomial $h(x)$. Show that $h(x) \in \mathbb{F}_\infty[x]$.

2. Continuing problem one, show that $\text{Gal}(\mathbb{E}, \mathbb{F}) = \text{Gal}(\mathbb{E}, \mathbb{F}_\infty)$. Conclude that the main theorem of Galois theory yields, for finite normal extensions, an anti-equivalence of between the lattice of subgroups of $\text{Gal}(\mathbb{E}, \mathbb{F})$ and the subfields $\mathbb{F}_\infty \subseteq \mathbb{E}_0 \subseteq \mathbb{E}$.

3. Let \mathbb{F} be a field of characteristic p and let $\mathbb{F} \subseteq \mathbb{E}$ be an algebraic extension. Let \mathbb{F}_s be the set of elements in \mathbb{E} which are the roots of separable polynomial.

i.) Prove that \mathbb{F}_s is a field. As a hint, suppose $a, b \in \mathbb{F}_s$. What is the separable degree of $\mathbb{F}(a, b)$ over \mathbb{F}? What can you conclude about the separable degree of $\mathbb{F}(a + b)$?

ii.) Show that $\mathbb{F}_s \subseteq \mathbb{E}$ is purely inseparable. Hint: recall that we have shown that if a is algebraic over \mathbb{F}, then the minimal polynomial can be written (over the algebraic closure of \mathbb{F}) as $g(x^{p^n})$ for some separable polynomial. Show that $g(x)$ is a separable polynomial.

4. Display the Galois correspondence between subfields and subgroups for the splitting fields of the following polynomials over the rationals.

i.) $x^3 - 2$;

ii.) $(x^2 - 2)(x^2 - 3)$;

iii.) $x^6 - 1$;

iv.) $x^8 - 1$.

5. Let \(\mathbb{F} \) be a field and \(G \) a finite group. If \(V \) is an \(\mathbb{F} \)-vector space, let \(\text{map}(G, V) \) be the set of set functions from \(G \) to \(V \). (This is the product \(V^G \).) The set \(\text{map}(G, V) \) is a vector space using addition and scalar multiplication in the target.

i.) If \(g \in G \) and \(\phi \in \text{map}(G, V) \), define a new function \(g\phi \in \text{map}(G, V) \) by \(g\phi(x) = \phi(xg) \). Prove that this is a left action and \(\text{map}(G, V) \) is a representation.

ii.) Define \(\epsilon : \text{map}(G, V) \to V \) by \(\epsilon(\phi) = \phi(e) \). Show this map has the following universal property. Suppose \(W \) is any representation and \(f : W \to V \) is \(\mathbb{F} \)-linear, then there is a morphism \(g : W \to \text{map}(G, V) \) of representations so that \(\epsilon g = f \).

iii.) Show that there is an isomorphism of \(\mathbb{F}[G] \to \text{map}(G, \mathbb{F}) \) but this map depends on choices.

6. (The Normal Basis Theorem. See Lang, p. 312.) Let \(\mathbb{F} \subseteq \mathbb{E} \) be a finite Galois extension with Galois group \(G \). Since \(G \) acts on \(\mathbb{E} \) through \(\mathbb{F} \)-linear transformations \(\mathbb{E} \) is representation of \(G \) over \(\mathbb{F} \). The normal basis theorem, as usually phrased as \(\mathbb{E} \cong \mathbb{F}[G] \), but there is no choice-free isomorphism. To get a canonical answer, it turns out to be easier to identity \(\mathbb{E} \otimes_{\mathbb{F}} \mathbb{E} \).

i.) Regard \(\mathbb{E} \) as an \(\mathbb{F} \) vector space and consider the representation \(\text{map}(G, \mathbb{E}) \) defined in the previous problem. Prove this an \(\mathbb{E} \)-algebra using multiplication in the target.

ii.) Define a \(G \) action on \(\mathbb{E} \otimes_{\mathbb{F}} \mathbb{E} \) by \(g(x \otimes y) = x \otimes gy \). Let \(g : \mathbb{E} \otimes_{\mathbb{F}} \mathbb{E} \to \text{map}(G, \mathbb{E}) \) be the morphism of representations (5ii) so that \(\epsilon g : \mathbb{E} \otimes_{\mathbb{F}} \mathbb{E} \to \mathbb{E} \) is multiplication. Show that this is an \(\mathbb{E} \)-algebra homomorphism that commutes with the \(G \) actions.

iii.) Show that is isomorphism. Conclude that \(\mathbb{E} \otimes_{\mathbb{F}} \mathbb{E} \cong \mathbb{E}[G] \) as a representation.