

Name: Student ID:

Math 290-1 Midterm Exam 1

Fall Quarter 2013 Monday, October 21, 2013

Put a check mark next to your section:

Allen	Cañez	
Broderick 10:00	Davis	
Broderick 12:00		

Question Possible Score points 1 18 2 24 3 18 4 10 5 15 6 15 TOTAL 100

Instructions:

- Read each problem carefully.
- Write legibly.
- Show all your work on these sheets.
- This exam has 9 pages, and 6 questions. Please make sure that all pages are included.
- You may not use books, notes or calculators.
- You have one hour to complete this exam.

Good luck!

Solutions

- Determine whether each of the following statements is TRUE or FALSE. Justify your answer.
 - (a) Every diagonal matrix is invertible. (Recall that a diagonal matrix is one of the

form
$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & a_{nn} \end{bmatrix}$$
, where a_{ii} are real numbers.)

False

rank (00) \$2,50 it's not invertible.

(b) Any 2×2 matrix that commutes with $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$, also commutes with $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 11 \\ 11 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11 \\ 11 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 11 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}^{30} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

rountercluck mile

To A describes a notation by the radius.

So A is a controlockwise retaring by TT,

i.e.
$$A^6 = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$$

and A 12 is a countreloctivice station by 2TT, ie Ala=[0]

A30 = A1 A1 A6 = Iz Iz A6 = (0-1) + [

- 2. Determine whether each of the following statements is **ALWAYS** true, **SOMETIMES** true, or **NEVER** true. Justify your answer
 - (a) For a number k, the transformation T from \mathbb{R}^4 to \mathbb{R}^4 defined by

(b) For a linear transformation T from \mathbb{R}^3 to \mathbb{R}^4 , there is a nonzero vector \vec{x} in \mathbb{R}^3 such that $T(\vec{x}) = \vec{0}$.

SOMETIMES

If
$$T(x) = (000)(x)$$
, then the only x in R^3 such that $T(x) = 0$

is $x = 0$ since $(000)(x)$ has reak 3 .

If $T(x) = (000)(x)$ then all x in R^3 sofisfy $T(x) = 0$.

(c) For 2×2 matrices A and B with rank 1, the product AB also has rank 1.

SOMETIMES

If
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = B$$
, $AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ So true in this case

If $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ So false here

(d) For a reflection T of \mathbb{R}^2 across a line through the origin, the only vector \vec{x} satisfying $T(\vec{x}) = \vec{x}$ is $\vec{x} = \vec{0}$.

NEVER | Any vector on the line we're

reflecting across will satisfy this equation, since any such vector is left unchanged after reflecting.

3. Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
.

(a) Find A^{-1} , if it exists; otherwise, show that it doesn't.

No became A's invertible

4. Let T_1, T_2, T_3 be the linear transformations from \mathbb{R}^3 to \mathbb{R}^3 given by

$$T_{\mathbf{I}}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \\ x_3 \end{bmatrix}, \quad T_{\mathbf{2}}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ x_3 \end{bmatrix}, \quad T_{\mathbf{3}}\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

For each i = 1, 2, 3, let A_i denote the matrix for T_i . Find the product

 $A_1A_2A_3$.

A₁ A₂ A₃ represents the knear transformation
$$T_{1} \circ T_{2} \circ T_{3}$$
Now $T_{1} \circ T_{2} \circ T_{3} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = T_{1} \begin{pmatrix} T_{2} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \end{pmatrix} = T_{1} \begin{pmatrix} T_{2} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \end{pmatrix} = T_{1} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = T_{1}$

5

5. Consider the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 which first rotates the xy-plane counterclockwise by $\pi/4$, then applies the shear determined by the matrix $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, and finally reflects the xy-plane across the line y = x. Find the matrix of T.

matrix of T

= reflection · Shear = rotation

=
$$\binom{01}{0}\binom{12}{0}\binom{132}{152}\binom{152}{152}\binom{152}{152}$$

= $\binom{01}{12}\binom{152}{152}\binom{152}{152}\binom{152}{152}\binom{152}{152}$

6. Alex, Hillary and Jan each have some money. All together they have \$69. Alex's money, minus \$3, is half of Hillary's money. Alex and Hillary's money together is \$9 more than Jan's money. How much does each have?