- 1. Determine whether each of the following statements is **TRUE** or **FALSE**. Justify your answer.
 - (a) The distance (in the plane) between the point (4, 2) and the line y = 3x + 5 is the same as the distance (in \mathbb{R}^3) between the point (4, 2, 1) and the plane y = 3x + 5.

TRUE Let
$$\vec{n}_1 = (3,-1)$$
. Then \vec{n}_1 is orthogonal to the line $y = 3x + 5$.

MANNEY Since $(0,5)$ is at the line, we have

Distance from $(4,2)$ to the line $y = 3x + 5$

$$= \| \vec{n}_1 \cdot (4 - 6, 2 - 5) \vec{n}_1 \| = \underline{(3, -1) \cdot (4, -3)} \| \frac{15}{\sqrt{10}}$$

Let $N_2 = (3, -1, 0)$ in \mathbb{R}^2 . The \widetilde{N}_3 is orthogonal to the plane y = 3x + 5. Since (0, 5, 0) is on the plane, we have

Distance from (4, 7,1) to the plane
$$y = 3x+5$$

$$= \left\| \frac{n_2 \cdot (4-0, 2-5, 1-0)}{\vec{n_2} \cdot \vec{n_2}} \right\|_{1}^{2} = \frac{1(3,-1,0) \cdot (4,-3,1)}{\|(3,-1,0)\|} = \frac{15}{\sqrt{10}}$$

(b) There is a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that the section of the graph of f by the plane x = 0 is the set

$$\{(x, y, z) \in \mathbb{R}^3 : x = 0 \text{ and } y^2 + z^2 = 1\}.$$

FALSE. IF this were true, then the points (0,0,1) and (0,0,-1)

Would both be on the graph of f, but this is impossible since fis a function (i.e. it would tail the "vertical line test").

(c) There is a twice continuously differentiable function $f: \mathbb{R}^2 \to \mathbb{R}$ satisfying

$$\frac{\partial f}{\partial x} = e^{x^2} \text{ and } \frac{\partial f}{\partial y} = 2xy.$$

$$FALSE \quad \text{If } f \text{ is } C^2, \text{ then we know}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$$

$$But \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(e^{x^2} \right) = O$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(2xy \right) = 2y$$

(d) If length ℓ of a rectangle is increasing with respect to time at a rate of 1 in/sec and its width is increasing with respect to time at a rate of 2 in/sec, then its area is increasing with respect to time at a rate of 4 in²/sec at the instant its width is 2 inches and its height is 1 inch.

TRUE

A=lw, so by the Chain Rule

$$\frac{\partial A}{\partial t} = \left[\frac{\partial A}{\partial u} \frac{\partial A}{\partial v} \right] \frac{\partial l}{\partial v}$$

$$= \left[W l \right] \left[\frac{\partial l}{\partial v} \right] = W(1) + l(2) = W + 2l$$
When $W = 2$ and $l = 1$

$$\frac{\partial A}{\partial t} = 2 + 2(1) = 4$$

- 2. Determine whether each of the following statements is **ALWAYS** true, **SOMETIMES** true, or **NEVER** true. Justify your answer
 - (a) Say that two lines ℓ_1 and ℓ_2 in \mathbb{R}^3 are distance d apart. If PQ is a line segment connecting P on ℓ_1 to Q on ℓ_2 and length(PQ) = d, then PQ is perpendicular to both ℓ_1 and ℓ_2 .

ALWAYS. Let in be the vector normal to l. & lz.

If ||Projn(Pa)||= ||Pa||=d, then Pa points in the

Same direction of as in and is thus normal

to l. & lz.

(b) Let $\vec{a} \in \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}^m$. If $\lim_{\vec{x} \to \vec{a}} f(\vec{x})$ exists, then f is continuous at \vec{a} .

SOMETIMES: for y=f(x), f(x) is not continuous at a.

(c) Suppose $f, g : \mathbb{R}^2 \to \mathbb{R}^2$ are differentiable and $f(\vec{0}) = g(\vec{0}) = \vec{0}$. If $Df(\vec{0})$ is the zero matrix, then $D(f \circ g)(\vec{0})$ is also the zero matrix.

ALWAYS:

$$D(f \circ g)(\vec{o}) = Df(g(\vec{o})) Dg(\vec{o})$$

= $Df(\vec{o}) Dg(\vec{o}) = \vec{o} \cdot Dg(\vec{o}) = 0$

(d) The directional derivative of $f(x, y) = x^2 + y^2$ at a non-zero point (a, b) and in the direction determined by the vector (a, b) is 4.

direction determined by the vector
$$(a,b)$$
 is 4.

SOMETIMES:

Let $\vec{V} = \frac{(a_1b)}{\|(a_1b)\|}$; then $\vec{D}\vec{V} = \vec{V}(\vec{a}) = \vec{V}(\vec{a$

of
$$(a_1b)=(2,0)$$
 then $D_v f(\vec{a})=4$
of $(a_1b)=(1,0)$ then $D_v f(\vec{a})=2\pm 4$

3. Describe and sketch the intersection (in \mathbb{R}^3) of the surface given by the spherical equation $\rho = 3$, and the surface given by the spherical equation $\phi = (1/10)\theta$, where θ varies between 0 and 10π .

The θ coordinate makes 5 complete revolutions

The ϕ coordinate moves from the north pole to the south pole ρ is always 3 (so the corre of intersection is on the

sphere of radius 3 contered at the

origin)

4. For each of the following limits, explain why it does or does not exist, and evaluate it if it does exist.

$$49 (a) \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4 + x^2y^2 + y^4}$$
Along X=0: $\lim_{y\to 0} \frac{0}{y^4} = 0$
Along X=y $\lim_{x\to 0} \frac{x^4y^2}{3x^4} = 1$
So $\lim_{x\to 0} \frac{x^2y^2}{y^2 + y^4}$

the (b)
$$\lim_{(x,y,z)\to(0,1,0)} \frac{xyz}{x^2 + y^2 + z^2}$$

Kyt and $\chi^2 ty^2 + z^2$ are confinence

at (o_1l_1o) and $\chi^2 ty^2 + z^2$ is non-zero three

So $\frac{\chi yz}{\chi^2 + y^2 + z^2}$ confinence at (o_1l_1o) .

Thus $l_1\dot{m}$ if l_2 $\frac{0\cdot l\cdot o}{\sigma^2 + l^2 + o^2} = 0$

- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the differentiable function $f(x, y) = \sin(x + y) + \cos(x y)$.
 - (a) Find an equation for the tangent plane to the graph z = f(x, y) at the point $(\pi, \pi, 1)$.

Note that
$$l=f(\pi,\pi)$$
.
 $f_{x} = cos(x+y) - sin(x-y)$, $f_{y} = cos(x+y) + sin(x-y)$
 $f_{x}(\pi,\pi) = cos(2\pi) - sin(0) = l$, $f_{y}(\pi,\pi) = cos(2\pi) + sin(0) = l$
The tangent plane is given by
 $P(x,y) = f(\pi,\pi) + f_{x}(\pi,\pi)(x-\pi) + f_{y}(\pi,\pi)(y-\pi)$
 $= l + l(x-\pi) + l(y-\pi)$.

(b) Use linear approximation at the point $(a, b) = (\pi, \pi)$ to estimate the value of $f(\pi + 0.1, \pi - 0.2)$.

Just plug into the equation for the tangent plane:
$$f(\pi+0.1, \pi-0.2) \approx P(\pi+0.1, \pi-0.2)$$

$$= (+(\pi+0.1) - \pi + (\pi-0.2) - \pi = 0.9$$

6. Find an equation of the tangent plane to the surface $z^2 + x^3y - zxy = 1$ at (1, 1, 1).

The plane is described by

$$\nabla f(x,y) \cdot (x-1,y-1,z+1)=0$$
.

 $\nabla f = (3x^2y-z^2, x^3-z^2, 2z-xy)$

So $\nabla f(x,y) = (2x,0,1)$

And the plane is

 $2(x-1) + (z-1)=0$ or

 $2x+z=3$

7. You're out for a jog when a tiny volcano near you erupts. Suppose the volcano is at the origin, and if x and y are measured in meters, then the temperature (in hundreds of degrees celsius) at the point (x, y) near the volcano is given by

$$T(x,y) = 10 - \ln(x^4 + y^4 + 1)$$

Suppose you are at the point (2, 3) when the volcano erupts.

+ 6 (a) Suppose we run away in a straight line at a speed of 6 meters/second, in the direction of the vector (1, 1), so that $\frac{dx}{dt} = 3\sqrt{2}$ and $\frac{dy}{dt} = 3\sqrt{2}$. When we set off, what will the rate of change of T with respect to time be?

$$\frac{\partial T}{\partial x} = -\frac{4x^{3}}{x^{4} + y^{4} + 1}$$

$$\frac{\partial T}{\partial y} = -\frac{4y^{3}}{x^{4} + y^{4} + 1}$$

$$T_{x}(2,3) = -\frac{32}{98}$$

$$T_{y}(2,3) = -\frac{108}{98}$$

$$= -\frac{16}{49}$$

$$= -\frac{54}{49}$$

$$\frac{\partial T}{\partial t}(2,3) = \frac{\partial T}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial T}{\partial y} \frac{\partial y}{\partial t} = -\frac{16}{49}(3\sqrt{2}) - \frac{54}{49}(3\sqrt{2})$$

$$= -\frac{70}{49}(3\sqrt{2}) = -\frac{10}{7}(3\sqrt{2})$$

+ (b) Find any vector \vec{u} that will make T decrease most rapidly if we run away in the direction of \vec{u} .

$$-\nabla T(2,3) = \left(\frac{16}{49}, \frac{54}{49}\right)$$
or a positive multiple of this