Math 291-1: Final Exam Northwestern University, Fall 2016

Name: _

1. (15 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.

- (a) If A is a 2×2 matrix such that $A^2 = 0$, then A = 0.
- (b) If A is a 3×3 matrix whose image is a plane, then A is not invertible.
- (c) Any 5 elements of $P_3(\mathbb{R})$ are linearly dependent.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Let A be an $m \times n$ matrix. Show that the columns of A are linearly independent if and only if $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.

3. (10 points) Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ are nonzero linearly independent vectors with the same length and that A is a 2 × 2 matrix satisfying

$A\mathbf{v} = \mathbf{w}$ and $A\mathbf{w} = \mathbf{v}$.

Show that A geometrically describes reflection across a line through the origin. Hint: First determine about which line this reflection would have to occur, and then show why A must have the effect of reflecting *any* vector across this line.

4. (10 points) Suppose A is an $n \times n$ matrix such that there exists a basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \mathbb{R}^n satisfying

$$A\mathbf{v}_1 = \lambda_1 \mathbf{v}_1, \ A\mathbf{v}_2 = \lambda_2 \mathbf{v}_2, \ \dots, \ A\mathbf{v}_n = \lambda_n \mathbf{v}_n$$

for some *nonzero* scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Show that A is invertible.

5. (10 points) Let V be a vector space over K. If $v_1, \ldots, v_k \in V$ and $w \in \text{span}(v_1, \ldots, v_k)$, complete the following proof that

$$\operatorname{span}(v_1,\ldots,v_k,w) = \operatorname{span}(v_1,\ldots,v_k).$$

(Note: this requires showing that each side is a subset of the other, so if v is in the left side then it is also in the right side, and vice-versa.)

Proof. First let $b \in \text{span}(v_1, \ldots, v_k, w)$. Then there exists $a_1, \ldots, a_n, a \in \mathbb{K}$ such that

 $b = _ + aw.$

Since $w \in \operatorname{span}(v_1, \ldots, v_k)$ we have

$$w =$$
 for some $c_1, \ldots, c_k \in \mathbb{K}$

Thus

so $b \in$

 $b \in _$. Conversely suppose $b \in \operatorname{span}(v_1, \ldots, v_k)$. Then

But this can be written as

so _____. We conclude that $\operatorname{span}(v_1, \ldots, v_k, w) = \operatorname{span}(v_1, \ldots, v_k)$ as claimed. \Box

6. (10 points) Suppose V is a 2-dimensional vector space over K and that $T: V \to V$ is a linear transformation such that $T^3 = 0$. Show that $T^2 = 0$. Hint: if $v \in V$ is a vector such that $T^2v \neq 0$, show first that v, Tv, T^2v are linearly independent.

7. (10 points) On the next page is a proof that the dimension of the subspace of $P_3(\mathbb{R})$ consisting of polynomials satisfying p'(-1) = 0 is 3 using the rank-nullity theorem. Using this as a guide, do the following. Let $W = \{p(x) \in P_4(\mathbb{R}) \mid p(1) = 0, p''(2) = p(1), \text{ and } p'(3) = 0\}$. (a) Find a linear transformation $T : P_4(\mathbb{R}) \to \mathbb{R}^3$ such that $W = \ker T$.

(b) Find the dimension of W.

Proof for Problem 10. The dimension of the subspace of $P_3(\mathbb{R})$ consisting of polynomials satisfying p'(-1) = 0 is 3.

Proof. Define $T: P_3(\mathbb{R}) \to \mathbb{R}$ by

T(p(x)) = p'(-1).

To be clear, T sends a polynomial to the value of its derivative at -1. This is a linear transformation since it is the composition of the transformation which takes the derivative of a polynomial with the transformation which evaluates a polynomial at -1, both of which are linear. Note that the kernel of T is precisely the subspace in question.

Since T(x) = 1, we have $1 \in \text{im } T$ so im T is at least 1-dimensional. But since im T is contained in \mathbb{R} , we must thus have that $\text{im } T = \mathbb{R}$. Hence $\dim \text{im } T = 1$, so by the rank-nullity theorem we get

$$\dim \ker T = \dim P_3(\mathbb{R}) - \dim \operatorname{im} T = 4 - 1 = 3$$

as claimed.