Math 291-1: Final Exam
 Northwestern University, Fall 2016

Name: \qquad

1. (15 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If A is a 2×2 matrix such that $A^{2}=0$, then $A=0$.
(b) If A is a 3×3 matrix whose image is a plane, then A is not invertible.
(c) Any 5 elements of $P_{3}(\mathbb{R})$ are linearly dependent.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Let A be an $m \times n$ matrix. Show that the columns of A are linearly independent if and only if $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$.
3. (10 points) Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{2}$ are nonzero linearly independent vectors with the same length and that A is a 2×2 matrix satisfying

$$
A \mathbf{v}=\mathbf{w} \text { and } A \mathbf{w}=\mathbf{v} .
$$

Show that A geometrically describes reflection across a line through the origin. Hint: First determine about which line this reflection would have to occur, and then show why A must have the effect of reflecting any vector across this line.
4. (10 points) Suppose A is an $n \times n$ matrix such that there exists a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \mathbb{R}^{n} satisfying

$$
A \mathbf{v}_{1}=\lambda_{1} \mathbf{v}_{1}, A \mathbf{v}_{2}=\lambda_{2} \mathbf{v}_{2}, \ldots, A \mathbf{v}_{n}=\lambda_{n} \mathbf{v}_{n}
$$

for some nonzero scalars $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$. Show that A is invertible.
5. (10 points) Let V be a vector space over \mathbb{K}. If $v_{1}, \ldots, v_{k} \in V$ and $w \in \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$, complete the following proof that

$$
\operatorname{span}\left(v_{1}, \ldots, v_{k}, w\right)=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)
$$

(Note: this requires showing that each side is a subset of the other, so if v is in the left side then it is also in the right side, and vice-versa.)

Proof. First let $b \in \operatorname{span}\left(v_{1}, \ldots, v_{k}, w\right)$. Then there exists $a_{1}, \ldots, a_{n}, a \in \mathbb{K}$ such that

$$
b=\ldots+a w .
$$

Since $w \in \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ we have

$$
w=\ldots \quad \text { for some } c_{1}, \ldots, c_{k} \in \mathbb{K}
$$

Thus

$$
\begin{aligned}
b & = \\
& =a w \\
& =a_{1} v_{1}+\cdots+a_{k} v_{k}+ \\
& =v_{1}+\cdots+\ldots
\end{aligned}
$$

so $b \in$ \qquad
Conversely suppose $b \in \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$. Then

But this can be written as
\qquad
so \qquad . We conclude that $\operatorname{span}\left(v_{1}, \ldots, v_{k}, w\right)=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ as claimed.
6. (10 points) Suppose V is a 2 -dimensional vector space over \mathbb{K} and that $T: V \rightarrow V$ is a linear transformation such that $T^{3}=0$. Show that $T^{2}=0$. Hint: if $v \in V$ is a vector such that $T^{2} v \neq 0$, show first that $v, T v, T^{2} v$ are linearly independent.
7. (10 points) On the next page is a proof that the dimension of the subspace of $P_{3}(\mathbb{R})$ consisting of polynomials satisfying $p^{\prime}(-1)=0$ is 3 using the rank-nullity theorem. Using this as a guide, do the following. Let $W=\left\{p(x) \in P_{4}(\mathbb{R}) \mid p(1)=0, p^{\prime \prime}(2)=p(1)\right.$, and $\left.p^{\prime}(3)=0\right\}$.
(a) Find a linear transformation $T: P_{4}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ such that $W=\operatorname{ker} T$.
(b) Find the dimension of W.

Proof for Problem 10. The dimension of the subspace of $P_{3}(\mathbb{R})$ consisting of polynomials satisfying $p^{\prime}(-1)=0$ is 3 .

Proof. Define $T: P_{3}(\mathbb{R}) \rightarrow \mathbb{R}$ by

$$
T(p(x))=p^{\prime}(-1) .
$$

To be clear, T sends a polynomial to the value of its derivative at -1 . This is a linear transformation since it is the composition of the transformation which takes the derivative of a polynomial with the transformation which evaluates a polynomial at -1 , both of which are linear. Note that the kernel of T is precisely the subspace in question.

Since $T(x)=1$, we have $1 \in \operatorname{im} T$ so $\operatorname{im} T$ is at least 1-dimensional. But since im T is contained in \mathbb{R}, we must thus have that $\operatorname{im} T=\mathbb{R}$. Hence $\operatorname{dim} \operatorname{im} T=1$, so by the rank-nullity theorem we get

$$
\operatorname{dim} \operatorname{ker} T=\operatorname{dim} P_{3}(\mathbb{R})-\operatorname{dimim} T=4-1=3
$$

as claimed.

