Math 291-1: Final Exam Northwestern University, Fall 2017

Name: \qquad

1. (15 points) Determine whether each of the following statements is true or false, and provide justification for your answer.
(a) There is a 3×4 matrix whose columns are linearly independent.
(b) The complex vector space $M_{3}(\mathbb{C})$ has a 6 -dimensional real subspace.
(c) The function $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T(p(x))=\left(p^{\prime}(x)\right)^{2}$ is a linear transformation.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Consider the linear system with augmented matrix

$$
\left[\begin{array}{cccc:c}
1 & -1 & 1 & -1 & 0 \\
2 & -2 & 3 & -5 & -1 \\
-3 & 3 & -6 & 12 & 3
\end{array}\right] .
$$

Find two vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{4}$ with the property that any solution of the system above can be written as

$$
\left[\begin{array}{c}
-3 \\
-2 \\
2 \\
1
\end{array}\right]+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}
$$

for some $c_{1}, c_{2} \in \mathbb{R}$. Justify the reason why you're claimed vectors work.
3. (10 points) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4} \in \mathbb{R}^{4}$ form a basis of \mathbb{R}^{4} and that A is a 4×4 matrix with the property that

$$
A \mathbf{v}_{1}=\mathbf{v}_{1}, A \mathbf{v}_{2}=\mathbf{v}_{1}, A \mathbf{v}_{3}=\mathbf{v}_{2}, A \mathbf{v}_{4}=\mathbf{v}_{3} .
$$

Show that the image of A^{4} is the entire span of \mathbf{v}_{1}.
4. (10 points) Suppose $A, B \in M_{n}(\mathbb{R})$. If $A B$ is invertible, show that A and B are each invertible.
5. (10 points) Suppose U and W are subspaces of a vector space V over \mathbb{K} which have only the zero vector in common. If $u_{1}, \ldots, u_{k} \in U$ are linearly independent and $w_{1}, \ldots, w_{\ell} \in W$ are linearly independent, show that $u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{\ell}$ are linearly independent. (This is not true if U and W have more than the zero vector in common, so you will definitely have to make use of this fact.)
6. (10 points) The trace $\operatorname{tr} A$ of a square matrix A is the sum of its diagonal entries:

$$
\operatorname{tr}\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right]:=a_{11}+a_{22}+\cdots+a_{n n}
$$

Find a basis for the subspace W of $M_{4}(\mathbb{R})$ consisting of symmetric matrices of trace zero:

$$
W:=\left\{A \in M_{4}(\mathbb{R}) \mid A^{T}=A \text { and } \operatorname{tr} A=0\right\} .
$$

Don't forget to justify the fact that your claimed basis is actually a basis.
7. (10 points) Let U be the subspace of $P_{4}(\mathbb{R})$ consisting of all polynomials $p(x) \in P_{4}(\mathbb{R})$ satisfying both of the conditions

$$
p^{\prime \prime}(2)=p(1)-p(2) \text { and } p(5)=0 .
$$

Determine, with justification, the dimension of U.

