
Math 291-1: Final Exam Solutions
Northwestern University, Fall 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) If A is a 2× 2 matrix such that A2 = 0, then A = 0.
(b) If A is a 3× 3 matrix whose image is a plane, then A is not invertible.
(c) Any 5 elements of P3(R) are linearly dependent.

Solution. (a) This is false. For example, take A = [ 0 1
0 0 ].

(b) This is true. If the image of A is a plane, then rankA = dim(imA) = 2, but an invertible
3× 3 matrix must have rank 3.

(c) This is true. P3(R) is a 4-dimensional vector space, so any number of elements greater than
4 must be linearly dependent.

2. Let A be an m× n matrix. Show that the columns of A are linearly independent if and only if
Ax = 0 has only the trivial solution x = 0.

Proof. Let v1, . . . ,vn ∈ Rm denote the columns of A. Note that

Ax =
[
v1 · · · vn

] x1...
xn

 = x1v1 + · · ·+ xnvn.

Thus Ax = 0 has only the trivial solution x = 0 if and only if the equation

x1v1 + · · ·+ xnvn = 0

has only the solution x1 = · · · = xn = 0, which is true if and only if v1, . . . ,vn are linearly
independent.

3. Suppose v,w ∈ R2 are nonzero linearly independent vectors with the same length and that A
is a 2× 2 matrix satisfying

Av = w and Aw = v.

Show that A geometrically describes reflection across a line through the origin. Hint: First deter-
mine about which line this reflection would have to occur, and then show why A must have the
effect of reflecting any vector across this line.

Proof. Let L be the line through the origin which bisects the angle between v and w and let
R : R2 → R2 denote the linear transformation which reflects a vector x ∈ R2 across L. Since L
bisects the angle between v and w, the angle between v and L is the same as that between L and
w, which implies that reflecting v gives a vector in the same direction as w and reflecting w gives
something in the same direction as v. Since v and w have the same length, we then have that
reflecting v gives w and reflecting w gives v, so Rv = w and Rw = v.

Since v,w ∈ R2 are linearly independent, they must span R2. So, for a given x ∈ R2, we have

x = c1v + c2w

for some c1, c2 ∈ R, and then

Ax = c1Av + c2Aw = c1w + c2v



and
Rx = c1Rv + c2Rw = c1w + c2v.

Thus Ax = Rx for any x ∈ R2, so A = R as claimed.

4. Suppose A is an n× n matrix such that there exists a basis v1, . . . ,vn of Rn satisfying

Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn

for some nonzero scalars λ1, . . . , λn ∈ R. Show that A is invertible.

Proof 1. The given equations can be summarized as

A
[
v1 · · · vn

]
=
[
λ1v1 · · · λnvn

]
.

Since v1, . . . ,vn form a basis for Rn, the matrix
[
v1 · · · vn

]
is invertible, which gives

A =
[
λ1v1 · · · λnvn

] [
v1 · · · vn

]−1
.

We claim that λ1v1, . . . , λnvn are also linearly independent. Indeed, if c1, . . . , cn ∈ Rn satisfy

c1(λ1v1) + · · ·+ cn(λnvn) = 0

, then
(c1λ1)v1 + · · ·+ (cnλn)vn = 0

and independence of v1, . . . ,vn gives that ciλi = 0 for each i; since each λi is nonzero, each ci = 0,
so λ1v1, . . . , λnvn are linearly independent as claimed. Thus the matrix

[
λ1v1 · · · λnvn

]
is also

invertible, so

A =
[
λ1v1 · · · λnvn

] [
v1 · · · vn

]−1
expresses A as the product of invertible matrices, so it is invertible itself.

Proof 2. Suppose x ∈ Rn satisfies Ax = 0. Since v1, . . . ,vn form a basis of Rn, there exist
c1, . . . , cn ∈ R such that

x = c1v1 + · · ·+ cnvn.

Then
Ax = c1Av1 + · · ·+ cnAvn = c1λ1v1 + · · ·+ cnλnvn = 0.

Since v1, . . . ,vn are linearly independent, we must have each ciλi = 0, but this implies that each
ci = 0 since each λi is nonzero. Thus

x = c1v1 + · · ·+ cnvn = 0v1 + · · ·+ 0vn = 0.

Since the only solution to Ax = 0 is x = 0, A is invertible by the Amazingly Awesome Theorem.

Proof 3. I’m throwing this in just for fun, but since it uses material on coordinates it was not
expected to be the type of solution you should be able to come up with. The idea expressed here,
however, is precisely what we’ll come back to when discussing eigenvalues, eigenvectors, and the
notion of diagonalization next quarter.

The matrix of A relative to the basis B = {v1, . . . ,vn} looks like

[A]B =
[
[Av1]B · · · [Avn]B

]
,



where each column is the coordinate vector relative to B of the result of applying A to a basis
vectors in B. Since Avi = λivi for each i, the coordinate vector of Avi has a λi in the i-th location
and zeroes elsewhere, so

[A]B =

λ1 . . .

λn


is a diagonal matrix with the λ’s down the diagonal and zeroes elsewhere. Since each diagonal entry
is nonzero, this matrix is invertible (with inverse given by the diagonal matrix with the reciprocals
of the λ’s down the diagonal), so A is invertible as well.

5. Let V be a vector space over K. If v1, . . . , vk ∈ V and w ∈ span(v1, . . . , vk), complete the
following proof that

span(v1, . . . , vk, w) = span(v1, . . . , vk).

(Note: this requires showing that each side is a subset of the other, so if v is in the left side then
it is also in the right side, and vice-versa.)

Proof. First let b ∈ span(v1, . . . , vk, w). Then there exists a1, . . . , an, a ∈ K such that

b = a1v1 + · · ·+ akvk + aw.

Since w ∈ span(v1, . . . , vk) we have

w = c1v1 + · · ·+ ckvk for some c1, . . . , ck ∈ K.

Thus

b = a1v1 + · · ·+ akvk + aw

= a1v1 + · · ·+ akvk + a(c1v1 + · · ·+ ckvk)

= (a1 + ac1)v1 + · · ·+ (ak + ack)vk,

so b ∈ span(v1, . . . , vk).
Conversely suppose b ∈ span(v1, . . . , vk). Then

b = d1v1 + · · ·+ dkvk for some d1, . . . , dk ∈ K.

But this can be written as
b = d1v1 + · · ·+ dkvk + 0w,

so b ∈ span(v1, . . . , vk, w). We conclude that span(v1, . . . , vk, w) = span(v1, . . . , vk) as claimed.

6. Suppose V is a 2-dimensional vector space over K and that T : V → V is a linear transformation
such that T 3 = 0. Show that T 2 = 0. Hint: if v ∈ V is a vector such that T 2v 6= 0, show first that
v, Tv, T 2v are linearly independent.

Proof. Suppose that T 2 is not the zero transformation. Then there exists v ∈ V such that T 2v 6= 0.
Suppose

av + bTv + cT 2v = 0

for some a, b, c ∈ K. Then applying T to both sides gives

aTv + bT 2v = 0



where we use the fact that T 3v = 0 since T 3 = 0 and T (0) = 0 since T is linear. Applying T again
gives

aT 2v = 0

for similar reasons. Since T 2v 6= 0, this implies that a must be zero. But then the previous equation
becomes

bT 2v = 0,

so b = 0 since T 2v 6= 0. Finally the original equation becomes cT 2v = 0, so c = 0 since T 2v 6= 0.
Thus v, Tv, T 2v are linearly independent, which is not possible in a 2-dimensional space such

as V . Thus T 2 must have been the zero transformation after all.

7. On the next page is a proof that the dimension of the subspace of P3(R) consisting of polynomials
satisfying p′(−1) = 0 is 3 using the rank-nullity theorem. Using this as a guide, do the following.
Let W = {p(x) ∈ P4(R) | p(1) = 0, p′′(2) = p(1), and p′(3) = 0}.

(a) Find a linear transformation T : P4(R)→ R3 such that W = kerT .
(b) Find the dimension of W .

Proof for Problem 10. The dimension of the subspace of P3(R) consisting of polynomials
satisfying p′(−1) = 0 is 3.

Proof. Define T : P3(R)→ R by
T (p(x)) = p′(−1).

To be clear, T sends a polynomial to the value of its derivative at −1. This is a linear transformation
since it is the composition of the transformation which takes the derivative of a polynomial with
the transformation which evaluates a polynomial at −1, both of which are linear. Note that the
kernel of T is precisely the subspace in question.

Since T (x) = 1, we have 1 ∈ imT so imT is at least 1-dimensional. But since imT is contained
in R, we must thus have that imT = R. Hence dim imT = 1, so by the rank-nullity theorem we
get

dim kerT = dimP3(R)− dim imT = 4− 1 = 3

as claimed.

Solution to Problem 7. Define T : P4(R)→ R3 by

T (p(x)) =

 p(1)
p′′(2)− p(1)

p′(3)

 .
Then T is a linear transformation since:

T (p(x)+q(x)) =

 p(1) + q(1)
(p+ q)′′(2)− (p+ q)′(1)

(p+ q)′(3)

 =

 p(1)
p′′(2)− p(1)

p′(3)

+

 q(1)
q′′(2)− q(1)

q′(3)

 = T (p(x))+T (q(x))

and

T (cp(x)) =

 cp(1)
(cp)′′(2)− (cp)′(1)

(cp)′(3)

 = c

 p(1)
p′′(2)− p(1)

p′(3)

 = cT (p(x)).



An element p(x) in the kernel of T satisfies

T (p(x)) =

 p(1)
p′′(2)− p(1)

p′(3)

 =

0
0
0

 ,
meaning that p(1) = 0, p′′(2)−p(1) = 0, and p′(3) = 0, which are precisely the requirements needed
to belong to W . Thus kerT = W .

(b) By the Rank-Nullity Theorem,

dim(kerT ) = dimP4(R)− dim(imT ).

We know dimP4(R) = 5. Since

T (1) =

1
−
0

 , T (x) =

 1
−1
1

 , T (x2) =

1
1
6


are three linearly independent vectors in the image of T , this image is at least three dimensional,
but then we must have imT = R3 since R3 is 3-dimensional. Thus dim(imT ) = 3, so

dim(kerT ) = 5− 3 = 2,

so dimW = 2.


