
Math 291-1: Final Exam Solutions
Northwestern University, Fall 2017

1. Determine whether each of the following statements is true or false, and provide justification
for your answer.

(a) There is a 3× 4 matrix whose columns are linearly independent.
(b) The complex vector space M3(C) has a 6-dimensional real subspace.
(c) The function T : P3(R) → P3(R) defined by T (p(x)) = (p′(x))2 is a linear transformation.

Solution. (a) This is false. The four columns of a 3 × 4 matrix are vectors in R3, and any four
vectors in a 3-dimensional space must be linearly dependent.

(b) This is true. The set of matrices of the form

!

"
a b c
d f g
0 0 0

#

$ where a, b, c, d, f, g ∈ R

is a 6-dimensional real subspace of M3(C).
(c) This is false. Since T (2x) = (2)2 = 4 and 2T (x) = 2(1)2 = 2, we have T (2x) ∕= 2T (x) so T

does not preserve scalar multiplication.

2. Consider the linear system with augmented matrix

!

"
1 −1 1 −1 | 0
2 −2 3 −5 | −1
−3 3 −6 12 | 3

#

$ .

Find two vectors v1,v2 ∈ R4 with the property that any solution of the system above can be
written as !

%%"

−3
−2
2
1

#

&&$+ c1v1 + c2v2

for some c1, c2 ∈ R. Justify the reason why the vectors you find work.

Proof. Row-reducing the augmented matrix for the corresponding homogeneous system results in
the following:

!

"
1 −1 1 −1 | 0
2 −2 3 −5 | 0
−3 3 −6 12 | 0

#

$ →

!

"
1 −1 1 −1 | 0
0 0 1 −3 | 0
0 0 −3 9 | 0

#

$ →

!

"
1 −1 0 2 | 0
0 0 1 −3 | 0
0 0 0 0 | 0

#

$ .

Thus the homogeneous system has solutions given by

!

%%"

x1
x2
x3
x4

#

&&$ =

!

%%"

x2 − 2x4
x2
3x4
x4

#

&&$ = x2

!

%%"

1
1
0
0

#

&&$+ x4

!

%%"

−2
0
3
1

#

&&$ ,



so v1 =

'
1
1
0
0

(
and v2 =

'−2
0
3
1

(
span the space of solutions of the homogeneous system. Now, we

have:
!

"
1 −1 1 −1
2 −2 3 −5
−3 3 −6 12

#

$

!

%%"

−3
−2
2
1

#

&&$ =

!

"
−3 + 2 + 2− 1
−6 + 4 + 6− 5
9− 6− 12 + 12

#

$ =

!

"
0
−1
3

#

$ ,

so

'−3
−2
2
1

(
is a particular solution of the given system. Since any solution can be obtained from this

one by adding to it a solution of the homogeneous system, we conclude all solutions of the given
system are of the form

x =

!

%%"

−3
−2
2
1

#

&&$+ c1v1 + c2v2

for some c1, c2 ∈ R where v1,v2 are the vectors above.

3. Suppose v1,v2,v3,v4 ∈ R4 form a basis of R4 and that A is a 4 × 4 matrix with the property
that

Av1 = v1, Av2 = v1, Av3 = v2, Av4 = v3.

Show that the image of A4 is the entire span of v1.

Proof. Let x ∈ Rn, and write it as a linear combination of the given basis vectors:

x = c1v1 + c2v2 + c3v3 + c4v4

for some c1, c2, c3, c4 ∈ R. Then we compute:

Ax = c1Av1 + c2Av2 + c3Av3 + c4Av4 = c1v1 + c2v1 + c3v2 + c4v3

A2x = c1Av1 + c2Av1 + c3Av2 + c4Av3 = c1v1 + c2v1 + c3v1 + c4v2

A3x = c1Av1 + c2Av1 + c3Av1 + c4Av2 = c1v1 + c2v1 + c3v1 + c4v1

A4x = (c1 + c2 + c3 + c4)v1.

The vectors A4x as x ∈ R4 varies make up all of the image of A4, so this shows that the image of A4

is contained in the span of v1. But also for any c ∈ R, we have A(cv1) = cAv1 = cv1, so any vector
in the span of v1 is contained in the image of A4. Thus we conclude that imA = span(v1).

4. Suppose A,B ∈ Mn(R). If AB is invertible, show that A and B are each invertible.

Proof. Let x ∈ Rn satisfy Bx = 0. Then A(Bx) = A0 = 0, so (AB)x = 0. Since AB is invertible,
this implies x = 0 by the Amazingly Awesome Theorem, so the only solution of Bx = 0 is x = 0,
and hence B is invertible as well. Then we can write A as

A = (AB)B−1.

The right side is invertible since it is a product of invertible matrices, so A is invertible too.
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5. Suppose U and W are subspaces of a vector space V over K which have only the zero vector in
common. If u1, . . . , uk ∈ U are linearly independent and w1, . . . , wℓ ∈ W are linearly independent,
show that u1, . . . , uk, w1, . . . , wℓ are linearly independent. (This is not true if U and W have more
than the zero vector in common, so you will definitely have to make use of this fact.)

Proof. Suppose a1, . . . , ak, b1, . . . , bℓ ∈ K satisfy

a1u1 + · · ·+ akuk + b1w1 + · · ·+ bℓwℓ = 0.

Then
a1u1 + · · ·+ akuk = −b1w1 − · · ·− bℓwℓ.

The left side is in U since it is a linear combination of elements of U and U is a subspace of V ,
while the right side is in W for a similar reason. Thus this is an element which U and W have in
common, so it must be the zero vector by our assumptions. Thus

a1u1 + · · ·+ akuk = 0 and− b1w1 − · · ·− bℓwℓ = 0.

Since u1, . . . , uk are linearly independent, we must then have a1 = · · · = ak = 0, and since w1, . . . , wℓ

are linearly independent, we have b1 = · · · = bℓ = 0. We conclude that u1, . . . , uk, w1, . . . , wℓ are
indeed linearly independent.

6. The trace trA of a square matrix A is the sum of its diagonal entries:

tr

!

%"
a11 · · · a1n
...

. . .
...

an1 · · · ann

#

&$ := a11 + a22 + · · ·+ ann.

Find a basis for the subspace W of M4(R) consisting of symmetric matrices of trace zero:

W := {A ∈ M4(R) | AT = A and trA = 0}.

Don’t forget to justify the fact that your claimed basis is actually a basis.

Proof. In order forA ∈ M4(R) to satisfy AT = A it must have the form

A =

!

%%"

a b c d
b e f g
c f h i
d g i j

#

&&$

for some a, b, c, d, e, f, g, h, i, j ∈ R. To satisfy trA = 0 we also require that

a+ e+ h+ j = 0.

Thus an element of W concretely looks like:

A =

!

%%"

−e− h− j b c d
b e f g
c f h i
d g i j

#

&&$

= b(E12 + E21) + c(E13 + E31) + d(E14 + E41)
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+ f(E23 + E32) + g(E24 + E42) + i(E34 + E43)

+ e(−E11 + E22) + h(−E11 + E33) + j(−E11 + E44)

where Eij is the matrix with 1 in row i, column j and zeroes elsewhere. Thus the 9 matrices

E12+E21, E13+E31, E14+E41, E23+E32, E24+E42, E34+E43,−E11+E22,−E11+E33,−E11+E44

span W . These matrices are linearly independent since if a linear combination of them (with
coefficients b, c, d, f, g, i, e, h, j as above) results in the zero matrix, we have

!

%%"

−e− h− j b c d
b e f g
c f h i
d g i j

#

&&$ =

!

%%"

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

#

&&$ ,

which forces b, c, d, f, g, i, e, h, j to all be zero. Hence these 9 matrices form a basis of W .

7. Let U be the subspace of P4(R) consisting of all polynomials p(x) ∈ P4(R) satisfying both of
the conditions

p′′(2) = p(1)− p(2) and p(5) = 0.

Determine, with justification, the dimension of U .

Proof. Note first that p′′(2) = p(1) − p(2) is equivalent to p′′(2) − p(1) + p(2) = 0. Define the
function T : P4(R) → R2 by

T (p(x)) =

'
p′′(2)− p(1) + p(2)

p(5)

(
.

Then T is linear, as we can verify directly:

T (p(x) + q(x)) =

'
(p+ q)′′(2)− (p+ q)(1) + (p+ q)(2)

(p+ q)(5)

(

=

'
p′′(2) + q′′(2)− p(1)− q(1) + p(2) + q(2)

p(5) + q(5)

(

=

'
p′′(2)− p(1) + p(2)

p(5)

(
+

'
q′′(2)− q(1) + q(2)

q(5)

(

= T (p(x)) + T (q(x))

and

T (cp(x)) =

'
(cp)′′(2)− (cp)(1) + (cp)(2)

(cp)(5)

(

=

'
cp′′(2)− cp(1) + cp(2)

cp(5)

(

= c

'
p′′(2)− p(1) + p(2)

p(5)

(

= cT (p(x)).

The Rank-Nullity Theorem then gives:

dimP4(R) = dim imT + dimkerT.
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Now, p(x) ∈ kerT if and only if

'
0
0

(
= T (p(x)) =

'
p′′(2)− p(1) + p(2)

p(5)

(
,

which is true if and only if p′′(2)− p(1) + p(2) = 0 and p(5) = 0. Thus p(x) ∈ kerT if and only if
p(x) ∈ U , so U = kerT . Since

T (1) =

'
0− 1 + 1

1

(
=

'
0
1

(
and T (x) =

'
1− 1 + 2

5

(
=

'
2
5

(

are both in imT and are linearly independent, imT must be at least 2-dimensional. But imT is a
subspace of R2, so in fact it must equal R2. Thus:

dimP4(R) = dim imT + dimkerT

becomes 5 = 2 + dimkerT , so dimkerT = 3, and hence dimU = 2.
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