Math 291-1: Final Exam Solutions
Northwestern University, Fall 2017

1. Determine whether each of the following statements is true or false, and provide justification
for your answer.

(a) There is a 3 x 4 matrix whose columns are linearly independent.

(b) The complex vector space M3(C) has a 6-dimensional real subspace.

(c) The function T : P3(R) — P3(R) defined by T'(p(x)) = (p'(x))? is a linear transformation.

Solution. (a) This is false. The four columns of a 3 x 4 matrix are vectors in R?, and any four

vectors in a 3-dimensional space must be linearly dependent.
(b) This is true. The set of matrices of the form

where a,b,c,d, f,g € R
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is a 6-dimensional real subspace of M3(C).
(c) This is false. Since T(2z) = (2)? = 4 and 2T(x) = 2(1)? = 2, we have T'(2x) # 2T (z) so T
does not preserve scalar multiplication. O

2. Consider the linear system with augmented matrix

1 -1 1 =11 0
2 -2 3 -5 | -1
-3 3 —6 12 | 3

Find two vectors vi,ve € R* with the property that any solution of the system above can be

written as
-3

2
1

+c1vy + cave

for some c1,co € R. Justify the reason why the vectors you find work.

Proof. Row-reducing the augmented matrix for the corresponding homogeneous system results in
the following:

1 -1 1 =110 1 0 1 0
2 -2 3 -5 ] 0/ =00 1 3]0 —=1]0 0 1 -31]0
-3 3 —6 12 | 0 0 0 0 0

Thus the homogeneous system has solutions given by

T X9 — 214 1 —2
Ta| _ ) _ 1 0
es| | 3z | T |o| T3 |
T4 T4 0 1



1 -2
SO Vi = [5] and vy = [ 9 ] span the space of solutions of the homogeneous system. Now, we
0 1
have:
1 -1 1 -1 :;’ —3+2+2-1 0
2 -2 3 =5 5 | = —-6+44+6—-5(=|[-1],
-3 3 -6 12 1 9-6-12412 3

-3
SO [22 is a particular solution of the given system. Since any solution can be obtained from this
1

one by adding to it a solution of the homogeneous system, we conclude all solutions of the given
system are of the form

-3
X = _2 + c1v1 + cavy
1
for some c1,cs € R where vy, vy are the vectors above. O

3. Suppose vi,Va, Vs, v4 € R* form a basis of R* and that A is a 4 x 4 matrix with the property
that
AV1 = Vi, AV2 = Vi, AV3 = Vg, AV4 = V3.

Show that the image of A* is the entire span of v;.

Proof. Let x € R", and write it as a linear combination of the given basis vectors:
X =C1V]1 + C2Vva + Cc3V3 + Cc4Vy

for some cq, o, c3,c4 € R. Then we compute:

Ax = c1 Avy + e Avy + c3AV3 + ¢4 Avy = ¢1V] + oV + ¢3Va + ¢4 V3
A?Xx = 1 AV + AV + c3AVy + 4 AV = 1V + cavy + 3V + cavo
A3x = 1 Avy 4 AV + c3AV] + 4 Avy = 1V + cavy + 3V + eavy
Alx = (Cl +co +c3 + C4)V1.
The vectors A*x as x € R* varies make up all of the image of A%, so this shows that the image of A%

is contained in the span of vi. But also for any ¢ € R, we have A(cvy) = cAv; = c¢vy, so any vector
in the span of v; is contained in the image of A*. Thus we conclude that im A = span(vy). O

4. Suppose A, B € M,(R). If AB is invertible, show that A and B are each invertible.

Proof. Let x € R™ satisfy Bx = 0. Then A(Bx) = A0 =0, so (AB)x = 0. Since AB is invertible,
this implies x = 0 by the Amazingly Awesome Theorem, so the only solution of Bx = 0 is x = 0,
and hence B is invertible as well. Then we can write A as

A= (AB)B %

The right side is invertible since it is a product of invertible matrices, so A is invertible too. O



5. Suppose U and W are subspaces of a vector space V over K which have only the zero vector in
common. If uy,...,u; € U are linearly independent and wi,...,w, € W are linearly independent,
show that wuj,...,ug,wy, ..., we are linearly independent. (This is not true if U and W have more
than the zero vector in common, so you will definitely have to make use of this fact.)

Proof. Suppose aq,...,a,b1,...,bs € K satisfy
ajuy + -+ apug + bywy + - -+ + bpwy = 0.

Then
ajul + - - + apugp = —bjwy — - — bpwy.

The left side is in U since it is a linear combination of elements of U and U is a subspace of V,
while the right side is in W for a similar reason. Thus this is an element which U and W have in
common, so it must be the zero vector by our assumptions. Thus

ajul + - +agury =0 and —bjw; — - — bpw, = 0.
Since uy, .. ., uy are linearly independent, we must then have a; = - -+ = a = 0, and since wy, . .., wy
are linearly independent, we have by = --- = by = 0. We conclude that uy,...,ug, w1,...,w, are
indeed linearly independent. O

6. The trace tr A of a square matrix A is the sum of its diagonal entries:

a1 - ai
trf .. | i=antant -+ apn.

apl -+ Gpp

Find a basis for the subspace W of M4(R) consisting of symmetric matrices of trace zero:
W:={Ac MyR) | AT =Aand trA=0}.
Don’t forget to justify the fact that your claimed basis is actually a basis.

Proof. In order forA € My(R) to satisfy AT = A it must have the form

a b ¢ d
_|be f g
A_cfhz
d g i j

for some a,b,c,d, e, f,g,h,i,j € R. To satisfy tr A = 0 we also require that
at+e+h+j5=0.

Thus an element of W concretely looks like:

—e—h—35 b ¢ d

_ b e [ g
A= c f h i
d g i Jj

= b(E12 + E21) + ¢(E13 + E31) + d(Eva + Eqr)



+ f(Eas + E32) + g(E24 + Ea2) + i(E34 + Eu3)
+e(—E11 + E2) + h(—E1n + Es3) + j(—E11 + Eua)

where E;; is the matrix with 1 in row ¢, column j and zeroes elsewhere. Thus the 9 matrices
Ero+ Eo1, E13+ E31, By + Eg1, Eos+ E39, Eog+ Ey2, E3q+ Ey3, —FE11+ Eoa, —FE11 + E33, —E11+ Eyy

span W. These matrices are linearly independent since if a linear combination of them (with
coefficients b, ¢, d, f,g,1,e, h,j as above) results in the zero matrix, we have

—e—h—3 b ¢ d 00 0O
b e f gl |00 0O
c f h il |0 0 0 0|’
d g i J 0000
which forces b, ¢, d, f,g,1i,e, h,j to all be zero. Hence these 9 matrices form a basis of W. O

7. Let U be the subspace of P;(R) consisting of all polynomials p(x) € P;(R) satisfying both of
the conditions

p"(2) = p(1) = p(2) and p(5) = 0.

Determine, with justification, the dimension of U.

Proof. Note first that p”(2) = p(1) — p(2) is equivalent to p”(2) — p(1) + p(2) = 0. Define the
function T : P;(R) — R? by
p"(2) — p(1) + p(2
e = [P0 2D+ 72)

p(5)
Then T is linear, as we can verify directly:
_[e+9)"@2) - @+a1)+(+a9)(2)
T(p(x) +q(z)) = (»+q)(5) ]

_ [P"(2) +4"(2) = p(1) —a(1) +p(2) + q(Q)]
p() +4(5)

and

cp(5)

. {p”@) - ;9((51)) + p@)}

[@”(2) —cp(1) + cp@)]

= cT'(p(x)).
The Rank-Nullity Theorem then gives:

dim P;(R) = dimim 7" + dim ker 7.



Now, p(z) € ker T if and only if

o] = Tty =[O TP

which is true if and only if p”(2) — p(1) + p(2) = 0 and p(5) = 0. Thus p(x) € ker T' if and only if
p(x) € U, so U =kerT. Since

o= [1)- [] w1

are both in im 7T and are linearly independent, im 7" must be at least 2-dimensional. But im T is a
subspace of R?, so in fact it must equal R?. Thus:

dim P4(R) = dimim 7" + dimker T’

becomes 5 = 2 4+ dimker 7', so dimkerT' = 3, and hence dimtL==2.
din L =3



