
Math 291-2: Final Exam Solutions
Northwestern University, Winter 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) If a linear transformation preserves the angle between any two vectors, then it is orthogonal.
(b) If v is an eigenvector of a square matrix A, then v is also an eigenvector of A2.
(c) The level curves of f(x, y) = x2 − y2 are all hyperbolas.

Solution. (a) This is false. For instance, A = [ 2 0
0 2 ] simply scales the length of any vector by a factor

of 2, which doesn’t alter angles, but is not orthogonal.
(b) This is true. Say that λ is the corresponding eigenvalue. Then Ax = λx, so A2x = A(Ax) =

A(λx) = λAx = λ2x, so x is eigenvector of A2 with eigenvalue λ2.
(c) This is false. The level curve at z = 0 is 0 = x2 − y2, which describes the pair of lines

y = ±x.

2. Suppose A is an n× n matrix and that AT is its transpose.
(a) Show that Ax · y = x ·ATy. Hint: Work out what this becomes when x = ei and y = ej .
(b) Show that (AB)T = BTAT for any n× n matrix B.

Proof. (a) First we have:

Aei · ej = (i-th column of A) · ej = j-th entry in i-th column of A

and
ei ·ATej = ei · (j-th column of AT ) = i-th entry in j-th column of AT .

Since the j-th entry in the i-th column of A is the same as the i-th entry in the j-th column of AT ,
we get that Aei · ej = ei ·ATej for any i, j.

Now, take any x = x1e1 + · · ·+ xnen and y = y1e1 + · · ·+ ynen. Then

Ax · y = (x1Ae1 + · · ·+ xnAen) · (y1e1 + · · ·+ ynen)

=
∑
i,j

xiyjAei · ej

=
∑
i,j

xiyiei ·ATej

= (x1e1 + · · ·+ xnen) · (y1ATe1 + · · ·+ ynA
Ten)

= x ·ATy

as claimed
(b) For any x,y ∈ Rn we have

(AB)x · y = A(Bx) · y = Bx ·ATy = x ·BT (ATy) = x · (BTAT )y.

Thus BTAT is the matrix satisfying the property

(AB)x · y = x · (AB)Ty

required of (AB)T , so (AB)T = BTAT as desired.



3. In this problem you can use whichever definition of the determinant you like, but make clear
which definition you are using.

(a) Show that a matrix with two identical rows has determinant zero.
(b) Show that the row operation which replaces row rj of a matrix by cri + rj (where c is a

scalar and ri is another row) does not change the value of the determinant of that matrix.

Proof. (a) Using the characterization of the determinant as the unique multilinear, alternating map
det : Mn(R)→ R which sends I to 1, we have that

detA = −det(A with the two identical rows swapped) = −detA

by the alternating property. Thus 2 detA = 0, so detA = 0.
(b) Consider AT . By multilinearity we have:

det
[
· · · crTi + rTj · · ·

]
= cdet

[
· · · rTi · · ·

]
+ det

[
· · · rTj · · ·

]
.

But the first matrix on the right has repeated columns (the i- and j-th columns are both rTi ), so
applying part (a) to the transpose says that this determinant is zero. Thus

det
[
· · · crTi + rTj · · ·

]
= det

[
· · · rTj · · ·

]
,

and taking transposes (which does not affect the value of the determinant) gives the required
claim.

4. Suppose A is a symmetric 3× 3 matrix with eigenvalues 1, 1,−3 and associated eigenvectors2
1
2

 ,
0

3
3

 , and

 1
2
−2

 respectively.

(a) Verify that the orthonormal eigenvectors obtained by applying the Gram-Schmidt process
to these vectors are: 2/3

1/3
2/3

 ,
−2/3

2/3
1/3

 , and

 1/3
2/3
−2/3

 .
(b) Compute A2

[
1
1
1

]
.

Solution. (a) Call these vectors v1,v2,v3. Then Gram-Schmidt gives

b1 = v1 =

2
1
2


b2 = v2 − projb1

v2

=

0
3
3

− 9

9

2
1
2

 =

−2
2
1


b3 = v3 − projb1

v3 − projb2
v3

=

 1
2
−2

− 0

9

2
1
2

− 0

9

−2
2
1

 =

 1
2
−2

 .



Dividing each of these by their lengths then gives the claimed vectors. Note that the third step
was unnecessary since we know v3 is already orthogonal to both v1 and v2 since it corresponds to
a different eigenvalue.

(b) We first express x =
[
1
1
1

]
as a linear combination of the resulting orthonormal eigenvectors

u1,u2u3 from (a):

x = (x · u1)u1 + (x · u2)u2 + (x · u3)u3 =
5

3

2/3
1/3
2/3

+
1

3

−2/3
2/3
1/3

+
1

3

 1/3
2/3
−2/3

 .
Using the fact that u1,u2,u3 are eigenvectors of A with eigenvalues 1, 1,−3 respectively, they are
also eigenvalues of A2 with eigenvalues 1, 1, 9 respectively, so:

A2

1
1
1

 =
5

3
A2

2/3
1/3
2/3

+
1

3
A2

−2/3
2/3
1/3

+
1

3
A2

 1/3
2/3
−2/3


=

5

3

2/3
1/3
2/3

+
1

3

−2/3
2/3
1/3

+
9

3

 1/3
2/3
−2/3


=

17/9
25/9
−7/9

 .

5. Suppose f : Rm → Rn is differentiable and has the property that Df(x) is the same matrix A
for every x. Show that f is an affine transformation, i.e. has the form f(x) = Ax + b for some b.
Hint: What is the Jacobian matrix of the function g(x) = f(x)−Ax at any x?

Proof. Since the linear transformation T (x) = Ax has Jacobian matrix A at any point, we get that
the Jacobian matrix of g(x) = f(x)−Ax at any x is

Dg(x) = Df(x)−A = A−A = 0.

Thus g has Jacobian matrix 0 everywhere, which implies that g is constant: there exists b ∈ Rn
such that g(x) = b for all x ∈ Rm. Hence f(x) − Ax = b for all x, so f(x) = Ax + b is affine as
required.

6. Suppose f, g : Rn → R are each differentiable and let fg be the function defined by (fg)(x) =
f(x)g(x). Complete the following proof of the product rule:

D(fg)(x) = g(x)Df(x) + f(x)Dg(x).

Proof. Let h : Rn → be the function defined by

h(x) = (f(x), g(x))

and m : R2 → R be the function defined by

m(x, y) = .



Then (fg)(x) is the composition . By the chain rule we have

D(fg)(x) = .

We compute:

Dm(x, y) =
[
y x

]
and Dh(x) =

[ ]
,

so

D(fg)(x) =
[ ] [ ]

=

for any x ∈ Rn as claimed.

Proof. Let h : Rn → R2 be the function defined by

h(x) = (f(x), g(x))

and m : R2 → R be the function defined by

m(x, y) = xy.

Then (fg)(x) is the composition m(h(x)). By the chain rule we have

D(fg)(x) = Dm(h(x))Dh(x).

We compute:

Dm(x, y) =
[
y x

]
and Dh(x) =

[
Df(x)
Dg(x)

]
,

so

D(fg)(x) =
[
g(x) f(x)

] [Df(x)
Dg(x)

]
= g(x)Df(x) + f(x)Dg(x)

for any x ∈ Rn as claimed.

7. Let f(x, y) = xex−y + 2x2y. Suppose that at the point (1, 1) the steepest part of the graph of f
has slope M . Find the directions (in terms of explicit vectors) in which the directional derivative
of f at (1, 1) is M√

2
.

Solution. Since f is differentiable at (1, 1), we have

Duf(1, 1) = ∇f(1, 1) · u

for any direction vector u. Since M = ‖∇f(1, 1)‖, we want the direction for which

∇f(1, 1) · u = ‖∇f(1, 1)‖ cos θ = ‖∇f(1, 1)‖ 1√
2
.

This occurs when cos θ = 1√
2
, so when θ = ±π

4 . Thus u should be a vector making an angle of ±π
4

with ∇f(1, 1). We have

∇f(x, y) =
〈
ex−y + xex−y + 4xy,−xex−y + 2x2

〉
, so ∇f(1, 1) = 〈6, 1〉 .



Hence the required directions are[
cos π4 − sin π

4
sin π

4 cos π4

] [
6
1

]
=

[
5/
√

2

7/
√

2

]
and [

cos(−π
4 ) − sin(−π

4 )
sin(−π

4 ) cos(−π
4 )

] [
6
1

]
=

[
7/
√

2

−5/
√

2

]
,

or the result of dividing these by their lengths if we want unit vectors as direction vectors.


