Math 291-2: Final Exam Solutions Northwestern University, Winter 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If a linear transformation preserves the angle between any two vectors, then it is orthogonal.
(b) If \mathbf{v} is an eigenvector of a square matrix A, then \mathbf{v} is also an eigenvector of A^{2}.
(c) The level curves of $f(x, y)=x^{2}-y^{2}$ are all hyperbolas.

Solution. (a) This is false. For instance, $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ simply scales the length of any vector by a factor of 2 , which doesn't alter angles, but is not orthogonal.
(b) This is true. Say that λ is the corresponding eigenvalue. Then $A \mathbf{x}=\lambda \mathbf{x}$, so $A^{2} \mathbf{x}=A(A \mathbf{x})=$ $A(\lambda \mathbf{x})=\lambda A \mathbf{x}=\lambda^{2} \mathbf{x}$, so \mathbf{x} is eigenvector of A^{2} with eigenvalue λ^{2}.
(c) This is false. The level curve at $z=0$ is $0=x^{2}-y^{2}$, which describes the pair of lines $y= \pm x$.
2. Suppose A is an $n \times n$ matrix and that A^{T} is its transpose.
(a) Show that $A \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot A^{T} \mathbf{y}$. Hint: Work out what this becomes when $\mathbf{x}=\mathbf{e}_{i}$ and $\mathbf{y}=\mathbf{e}_{j}$.
(b) Show that $(A B)^{T}=B^{T} A^{T}$ for any $n \times n$ matrix B.

Proof. (a) First we have:

$$
A \mathbf{e}_{i} \cdot \mathbf{e}_{j}=(i \text {-th column of } A) \cdot \mathbf{e}_{j}=j \text {-th entry in } i \text {-th column of } A
$$

and

$$
\mathbf{e}_{i} \cdot A^{T} \mathbf{e}_{j}=\mathbf{e}_{i} \cdot\left(j \text {-th column of } A^{T}\right)=i \text {-th entry in } j \text {-th column of } A^{T} .
$$

Since the j-th entry in the i-th column of A is the same as the i-th entry in the j-th column of A^{T}, we get that $A \mathbf{e}_{i} \cdot \mathbf{e}_{j}=\mathbf{e}_{i} \cdot A^{T} \mathbf{e}_{j}$ for any i, j.

Now, take any $\mathbf{x}=x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}$ and $\mathbf{y}=y_{1} \mathbf{e}_{1}+\cdots+y_{n} \mathbf{e}_{n}$. Then

$$
\begin{aligned}
A \mathbf{x} \cdot \mathbf{y} & =\left(x_{1} A \mathbf{e}_{1}+\cdots+x_{n} A \mathbf{e}_{n}\right) \cdot\left(y_{1} \mathbf{e}_{1}+\cdots+y_{n} \mathbf{e}_{n}\right) \\
& =\sum_{i, j} x_{i} y_{j} A \mathbf{e}_{i} \cdot \mathbf{e}_{j} \\
& =\sum_{i, j} x_{i} y_{i} \mathbf{e}_{i} \cdot A^{T} \mathbf{e}_{j} \\
& =\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right) \cdot\left(y_{1} A^{T} \mathbf{e}_{1}+\cdots+y_{n} A^{T} \mathbf{e}_{n}\right) \\
& =\mathbf{x} \cdot A^{T} \mathbf{y}
\end{aligned}
$$

as claimed
(b) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
(A B) \mathbf{x} \cdot \mathbf{y}=A(B \mathbf{x}) \cdot \mathbf{y}=B \mathbf{x} \cdot A^{T} \mathbf{y}=\mathbf{x} \cdot B^{T}\left(A^{T} \mathbf{y}\right)=\mathbf{x} \cdot\left(B^{T} A^{T}\right) \mathbf{y}
$$

Thus $B^{T} A^{T}$ is the matrix satisfying the property

$$
(A B) \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot(A B)^{T} \mathbf{y}
$$

required of $(A B)^{T}$, so $(A B)^{T}=B^{T} A^{T}$ as desired.
3. In this problem you can use whichever definition of the determinant you like, but make clear which definition you are using.
(a) Show that a matrix with two identical rows has determinant zero.
(b) Show that the row operation which replaces row \mathbf{r}_{j} of a matrix by $c \mathbf{r}_{i}+\mathbf{r}_{j}$ (where c is a scalar and \mathbf{r}_{i} is another row) does not change the value of the determinant of that matrix.

Proof. (a) Using the characterization of the determinant as the unique multilinear, alternating map det : $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ which sends I to 1 , we have that

$$
\operatorname{det} A=-\operatorname{det}(A \text { with the two identical rows swapped })=-\operatorname{det} A
$$

by the alternating property. Thus $2 \operatorname{det} A=0$, so $\operatorname{det} A=0$.
(b) Consider A^{T}. By multilinearity we have:

$$
\operatorname{det}\left[\begin{array}{lll}
\cdots & c \mathbf{r}_{i}^{T}+\mathbf{r}_{j}^{T} & \cdots
\end{array}\right]=c \operatorname{det}\left[\begin{array}{lll}
\cdots & \mathbf{r}_{i}^{T} & \cdots
\end{array}\right]+\operatorname{det}\left[\begin{array}{lll}
\cdots & \mathbf{r}_{j}^{T} & \cdots
\end{array}\right] .
$$

But the first matrix on the right has repeated columns (the i - and j-th columns are both \mathbf{r}_{i}^{T}), so applying part (a) to the transpose says that this determinant is zero. Thus

$$
\operatorname{det}\left[\begin{array}{lll}
\cdots & c \mathbf{r}_{i}^{T}+\mathbf{r}_{j}^{T} & \cdots
\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}
\cdots & \mathbf{r}_{j}^{T} & \cdots
\end{array}\right],
$$

and taking transposes (which does not affect the value of the determinant) gives the required claim.
4. Suppose A is a symmetric 3×3 matrix with eigenvalues $1,1,-3$ and associated eigenvectors

$$
\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right] \text {, and }\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right] \text { respectively. }
$$

(a) Verify that the orthonormal eigenvectors obtained by applying the Gram-Schmidt process to these vectors are:

$$
\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right],\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \text {, and }\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right] .
$$

(b) Compute $A^{2}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Solution. (a) Call these vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Then Gram-Schmidt gives

$$
\begin{aligned}
\mathbf{b}_{1} & =\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] \\
\mathbf{b}_{2} & =\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{b}_{1}} \mathbf{v}_{2} \\
& =\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right]-\frac{9}{9}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right] \\
\mathbf{b}_{3} & =\mathbf{v}_{3}-\operatorname{proj}_{\mathbf{b}_{1}} \mathbf{v}_{3}-\operatorname{proj}_{\mathbf{b}_{2}} \mathbf{v}_{3} \\
& =\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]-\frac{0}{9}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]-\frac{0}{9}\left[\begin{array}{c}
-2 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right] .
\end{aligned}
$$

Dividing each of these by their lengths then gives the claimed vectors. Note that the third step was unnecessary since we know \mathbf{v}_{3} is already orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2} since it corresponds to a different eigenvalue.
(b) We first express $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a linear combination of the resulting orthonormal eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2} \mathbf{u}_{3}$ from (a):

$$
\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{x} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\left(\mathbf{x} \cdot \mathbf{u}_{3}\right) \mathbf{u}_{3}=\frac{5}{3}\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right] .
$$

Using the fact that $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are eigenvectors of A with eigenvalues $1,1,-3$ respectively, they are also eigenvalues of A^{2} with eigenvalues $1,1,9$ respectively, so:

$$
\begin{aligned}
A^{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] & =\frac{5}{3} A^{2}\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]+\frac{1}{3} A^{2}\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right]+\frac{1}{3} A^{2}\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right] \\
& =\frac{5}{3}\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right]+\frac{9}{3}\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right] \\
& =\left[\begin{array}{c}
17 / 9 \\
25 / 9 \\
-7 / 9
\end{array}\right]
\end{aligned}
$$

5. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable and has the property that $\operatorname{Df}(\mathbf{x})$ is the same matrix A for every \mathbf{x}. Show that f is an affine transformation, i.e. has the form $f(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ for some \mathbf{b}. Hint: What is the Jacobian matrix of the function $g(\mathbf{x})=f(\mathbf{x})-A \mathbf{x}$ at any \mathbf{x} ?

Proof. Since the linear transformation $T(\mathbf{x})=A \mathbf{x}$ has Jacobian matrix A at any point, we get that the Jacobian matrix of $g(\mathbf{x})=f(\mathbf{x})-A \mathbf{x}$ at any \mathbf{x} is

$$
D g(\mathbf{x})=D f(\mathbf{x})-A=A-A=0 .
$$

Thus g has Jacobian matrix 0 everywhere, which implies that g is constant: there exists $\mathbf{b} \in \mathbb{R}^{n}$ such that $g(\mathbf{x})=\mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^{m}$. Hence $f(\mathbf{x})-A \mathbf{x}=\mathbf{b}$ for all \mathbf{x}, so $f(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ is affine as required.
6. Suppose $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are each differentiable and let $f g$ be the function defined by $(f g)(\mathbf{x})=$ $f(\mathbf{x}) g(\mathbf{x})$. Complete the following proof of the product rule:

$$
D(f g)(\mathbf{x})=g(\mathbf{x}) D f(\mathbf{x})+f(\mathbf{x}) D g(\mathbf{x}) .
$$

Proof. Let $h: \mathbb{R}^{n} \rightarrow \ldots$ be the function defined by

$$
h(\mathbf{x})=(f(\mathbf{x}), g(\mathbf{x}))
$$

and $m: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
m(x, y)=\ldots
$$

Then $(f g)(\mathbf{x})$ is the composition \qquad . By the chain rule we have

$$
D(f g)(\mathbf{x})=
$$

\qquad .

We compute:

$$
\operatorname{Dm}(x, y)=\left[\begin{array}{ll}
y & x
\end{array}\right] \text { and } \operatorname{Dh}(\mathbf{x})=[\square],
$$

so

$$
D(f g)(\mathbf{x})=[\square][\square]=
$$

\qquad
for any $\mathbf{x} \in \mathbb{R}^{n}$ as claimed.
Proof. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
h(\mathbf{x})=(f(\mathbf{x}), g(\mathbf{x}))
$$

and $m: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
m(x, y)=x y .
$$

Then $(f g)(\mathbf{x})$ is the composition $m(h(\mathbf{x}))$. By the chain rule we have

$$
D(f g)(\mathbf{x})=\operatorname{Dm}(h(\mathbf{x})) D h(\mathbf{x}) .
$$

We compute:

$$
\operatorname{Dm}(x, y)=\left[\begin{array}{ll}
y & x
\end{array}\right] \text { and } \operatorname{Dh}(\mathbf{x})=\left[\begin{array}{l}
D f(\mathbf{x}) \\
D g(\mathbf{x})
\end{array}\right],
$$

so

$$
D(f g)(\mathbf{x})=\left[\begin{array}{ll}
g(\mathbf{x}) & f(\mathbf{x})
\end{array}\right]\left[\begin{array}{l}
D f(\mathbf{x}) \\
D g(\mathbf{x})
\end{array}\right]=g(\mathbf{x}) D f(\mathbf{x})+f(\mathbf{x}) D g(\mathbf{x})
$$

for any $\mathbf{x} \in \mathbb{R}^{n}$ as claimed.
7. Let $f(x, y)=x e^{x-y}+2 x^{2} y$. Suppose that at the point $(1,1)$ the steepest part of the graph of f has slope M. Find the directions (in terms of explicit vectors) in which the directional derivative of f at $(1,1)$ is $\frac{M}{\sqrt{2}}$.

Solution. Since f is differentiable at $(1,1)$, we have

$$
D_{\mathbf{u}} f(1,1)=\nabla f(1,1) \cdot \mathbf{u}
$$

for any direction vector \mathbf{u}. Since $M=\|\nabla f(1,1)\|$, we want the direction for which

$$
\nabla f(1,1) \cdot \mathbf{u}=\|\nabla f(1,1)\| \cos \theta=\|\nabla f(1,1)\| \frac{1}{\sqrt{2}}
$$

This occurs when $\cos \theta=\frac{1}{\sqrt{2}}$, so when $\theta= \pm \frac{\pi}{4}$. Thus \mathbf{u} should be a vector making an angle of $\pm \frac{\pi}{4}$ with $\nabla f(1,1)$. We have

$$
\nabla f(x, y)=\left\langle e^{x-y}+x e^{x-y}+4 x y,-x e^{x-y}+2 x^{2}\right\rangle, \text { so } \nabla f(1,1)=\langle 6,1\rangle .
$$

Hence the required directions are

$$
\left[\begin{array}{cc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right]\left[\begin{array}{l}
6 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 / \sqrt{2} \\
7 / \sqrt{2}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
\cos \left(-\frac{\pi}{4}\right) & -\sin \left(-\frac{\pi}{4}\right) \\
\sin \left(-\frac{\pi}{4}\right) & \cos \left(-\frac{\pi}{4}\right)
\end{array}\right]\left[\begin{array}{l}
6 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 / \sqrt{2} \\
-5 / \sqrt{2}
\end{array}\right],
$$

or the result of dividing these by their lengths if we want unit vectors as direction vectors.

