Math 291-3: Final Exam
 Northwestern University, Spring 2018

Name: \qquad

1. (15 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If $f:[-4,5] \times[1,3] \rightarrow \mathbb{R}$ is continuous, then f is integrable over $[-4,5] \times[1,3]$.
(b) The sum

$$
\int_{-1}^{0} \int_{-x}^{\sqrt{2-x^{2}}} x^{2} y d y d x+\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} x^{2} y d y d x
$$

can be written as a single iterated integral in polar coordinates.
(c) The value of the line integral $\oint_{\partial D}-y d x+\left(x^{2}+x\right) d y$ depends only the area of D.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) For a continuous function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, consider the following iterated integral.

$$
\int_{0}^{\pi / 2} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

(a) Rewrite this as a sum of iterated integrals in rectangular coordinates with respect to the order $d y d z d x$.
(b) Rewrite this as a single iterated integral in spherical coordinates.
3. (10 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying

$$
\int_{0}^{1}(1-u) f(u) d u=10
$$

Find the value of the following double integral.

$$
\int_{0}^{1} \int_{0}^{x} f(x-y) d y d x
$$

Hint: Make a change of variables with $u=x-y$ and v being something I'll leave for you to determine.
4. (10 points) Let \mathbf{F} be a C^{1} vector field on \mathbb{R}^{n} and suppose $\mathbf{x}(t), a \leq t \leq b$ is a parametrization of a flow line C of \mathbf{F}. Show that $\int_{C} \mathbf{F} \cdot d \mathbf{s}>0$.
5. (10 points) Determine the value of the following line integral, where C is the left half of the circle $(x-1)^{2}+y^{2}=1$ oriented clockwise from $(1,-1)$ to $(1,1)$.

$$
\int_{C}\left(e^{y}+y^{2}+1\right) d x+\left(x e^{y}+2 x y+\cos y+x\right) d y
$$

Hint: Find a way to use the Fundamental Theorem of Line Integrals.
6. (10 points) Suppose S is a smooth C^{1} surface in \mathbb{R}^{3} without boundary and that \mathbf{F} is a C^{2} vector field on S. Show that $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=0$. Careful: curl \mathbf{F} is not necessarily C^{1} over the entire solid enclosed by S, so Gauss's Theorem may not apply.
7. (10 points) Let S be the portion of the cone $y=\sqrt{x^{2}+z^{2}}$ between $y=0$ and $y=1$, oriented with normal vectors pointing away from the y-axis. Determine the value of the following surface integral.

$$
\iint_{S}\left\langle x-y^{\sin z+5}, y^{2}-y,-y z-e^{\cos x+100}\right\rangle \cdot d \mathbf{S}
$$

Hint: At some point, using "cylindrical coordinates" adapted to the $x z$-plane might be helpful.

