Math 291-2: Final Exam Northwestern University, Winter 2017

Name:

1. (15 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.

- (a) If a linear transformation preserves the angle between any two vectors, then it is orthogonal.
- (b) If **v** is an eigenvector of a square matrix A, then **v** is also an eigenvector of A^2 . (c) The level curves of $f(x, y) = x^2 y^2$ are all hyperbolas.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

- 2. (10 points) Suppose A is an n×n matrix and that A^T is its transpose.
 (a) Show that Ax · y = x · A^Ty. Hint: Work out what this becomes when x = e_i and y = e_j.
 (b) Show that (AB)^T = B^TA^T for any n×n matrix B.

3. (10 points) In this problem you can use whichever definition of the determinant you like, but make clear which definition you are using.

(a) Show that a matrix with two identical rows has determinant zero.

(b) Show that the row operation which replaces row \mathbf{r}_j of a matrix by $c\mathbf{r}_i + \mathbf{r}_j$ (where c is a scalar and \mathbf{r}_i is another row) does not change the value of the determinant of that matrix.

4. (10 points) Suppose A is a symmetric 3×3 matrix with eigenvalues 1,1,-3 and associated eigenvectors

$$\begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\3\\3 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\2\\-2 \end{bmatrix} \text{ respectively.}$$

(a) Verify that the orthonormal eigenvectors obtained by applying the Gram-Schmidt process to these vectors are:

$$\begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix}, \begin{bmatrix} -2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \text{ and } \begin{bmatrix} 1/3 \\ 2/3 \\ -2/3 \end{bmatrix}.$$

(b) Compute $A^2 \begin{bmatrix} 1\\1\\1 \end{bmatrix}$.

5. (10 points) Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$ is differentiable and has the property that $Df(\mathbf{x})$ is the same matrix A for every \mathbf{x} . Show that f is an affine transformation, i.e. has the form $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for some \mathbf{b} . Hint: What is the Jacobian matrix of the function $g(\mathbf{x}) = f(\mathbf{x}) - A\mathbf{x}$ at any \mathbf{x} ?

6. (10 points) Suppose $f, g : \mathbb{R}^n \to \mathbb{R}$ are each differentiable and let fg be the function defined by $(fg)(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$. Complete the following proof of the product rule:

$$D(fg)(\mathbf{x}) = g(\mathbf{x})Df(\mathbf{x}) + f(\mathbf{x})Dg(\mathbf{x}).$$

Proof. Let $h : \mathbb{R}^n \to _$ be the function defined by

$$h(\mathbf{x}) = (f(\mathbf{x}), g(\mathbf{x}))$$

and $m:\mathbb{R}^2\to\mathbb{R}$ be the function defined by

$$m(x,y) = _$$

Then $(fg)(\mathbf{x})$ is the composition _____. By the chain rule we have

$$D(fg)(\mathbf{x}) = \underline{\qquad}.$$

We compute:

$$Dm(x,y) = \begin{bmatrix} y & x \end{bmatrix}$$
 and $Dh(\mathbf{x}) = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$,

 \mathbf{SO}

for any $\mathbf{x} \in \mathbb{R}^n$ as claimed.

7. (10 points) Let $f(x, y) = xe^{x-y} + 2x^2y$. Suppose that at the point (1, 1) the steepest part of the graph of f has slope M. Find the directions (in terms of explicit vectors) in which the directional derivative of f at (1, 1) is $\frac{M}{\sqrt{2}}$.