Math 291-2: Final Exam
 Northwestern University, Winter 2017

Name: \qquad

1. (15 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If a linear transformation preserves the angle between any two vectors, then it is orthogonal.
(b) If \mathbf{v} is an eigenvector of a square matrix A, then \mathbf{v} is also an eigenvector of A^{2}.
(c) The level curves of $f(x, y)=x^{2}-y^{2}$ are all hyperbolas.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Suppose A is an $n \times n$ matrix and that A^{T} is its transpose.
(a) Show that $A \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot A^{T} \mathbf{y}$. Hint: Work out what this becomes when $\mathbf{x}=\mathbf{e}_{i}$ and $\mathbf{y}=\mathbf{e}_{j}$. (b) Show that $(A B)^{T}=B^{T} A^{T}$ for any $n \times n$ matrix B.
3. (10 points) In this problem you can use whichever definition of the determinant you like, but make clear which definition you are using.
(a) Show that a matrix with two identical rows has determinant zero.
(b) Show that the row operation which replaces row \mathbf{r}_{j} of a matrix by $c \mathbf{r}_{i}+\mathbf{r}_{j}$ (where c is a scalar and \mathbf{r}_{i} is another row) does not change the value of the determinant of that matrix.
4. (10 points) Suppose A is a symmetric 3×3 matrix with eigenvalues $1,1,-3$ and associated eigenvectors

$$
\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right] \text {, and }\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right] \text { respectively. }
$$

(a) Verify that the orthonormal eigenvectors obtained by applying the Gram-Schmidt process to these vectors are:

$$
\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right],\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \text {, and }\left[\begin{array}{c}
1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right] .
$$

(b) Compute $A^{2}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
5. (10 points) Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable and has the property that $D f(\mathbf{x})$ is the same matrix A for every \mathbf{x}. Show that f is an affine transformation, i.e. has the form $f(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ for some \mathbf{b}. Hint: What is the Jacobian matrix of the function $g(\mathbf{x})=f(\mathbf{x})-A \mathbf{x}$ at any \mathbf{x} ?
6. (10 points) Suppose $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are each differentiable and let $f g$ be the function defined by $(f g)(\mathbf{x})=f(\mathbf{x}) g(\mathbf{x})$. Complete the following proof of the product rule:

$$
D(f g)(\mathbf{x})=g(\mathbf{x}) D f(\mathbf{x})+f(\mathbf{x}) D g(\mathbf{x}) .
$$

Proof. Let $h: \mathbb{R}^{n} \rightarrow$ \qquad be the function defined by

$$
h(\mathbf{x})=(f(\mathbf{x}), g(\mathbf{x}))
$$

and $m: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
m(x, y)=
$$

\qquad

Then $(f g)(\mathbf{x})$ is the composition \qquad . By the chain rule we have

$$
D(f g)(\mathbf{x})=
$$

\qquad .

We compute:

$$
\operatorname{Dm}(x, y)=\left[\begin{array}{ll}
y & x
\end{array}\right] \text { and } D h(\mathbf{x})=[\square],
$$

so

$$
D(f g)(\mathbf{x})=\left[\begin{array}{ll}
{[} & \square
\end{array}\right]=
$$

for any $\mathbf{x} \in \mathbb{R}^{n}$ as claimed.
7. (10 points) Let $f(x, y)=x e^{x-y}+2 x^{2} y$. Suppose that at the point $(1,1)$ the steepest part of the graph of f has slope M. Find the directions (in terms of explicit vectors) in which the directional derivative of f at $(1,1)$ is $\frac{M}{\sqrt{2}}$.

