Math 291-2: Final Exam
 Northwestern University, Winter 2018

Name: \qquad

1. (15 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If A is a 4×4 matrix whose only eigenvalues are 1 and -3 , then A is not diagoanlizable.
(b) There does not exist a C^{2} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $D^{2} f(x, y)=\left[\begin{array}{cc}x y & 2 x+y \\ x+2 y & y\end{array}\right]$.
(c) If $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$, there is no value $f(0,0)$ can have which will make f continuous at $(0,0)$.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
Total	

2. (10 points) Suppose Q is an $n \times n$ matrix which satisfies

$$
Q \mathbf{x} \cdot Q \mathbf{y}=\mathbf{x} \cdot \mathbf{y} \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Show that Q is orthogonal. You cannot take any property of orthogonal matrices for granted here. For instance, if you want to claim that $Q^{T} Q=I$ implies that Q is orthogonal, you must actually prove this. Here, by "orthogonal matrix" we mean one which has orthonormal columns.
3. (10 points) Let A_{n} be the $n \times n$ matrix whose entries are all 1 's, except for 0 's directly below the main diagonal. For instance, A_{4} looks like:

$$
A_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

Show that the determinant of A_{n} is 1 for all n.
4. (10 points) Suppose A is a symmetric $n \times n$ matrix with positive eigenvalues. Show that

$$
\mathbf{x} \cdot A \mathbf{x} \geq \lambda_{\min }\|\mathrm{x}\|^{2}
$$

for all $\mathbf{x} \in \mathbb{R}^{n}$, where $\lambda_{\text {min }}$ denotes the smallest eigenvalue of A. Hint: First show this is true for vectors of norm 1 by diagonalizing the quadratic form $\mathbf{x} \cdot A \mathbf{x}$. If you get stuck doing so, take this for granted and use it to do the case of general $\mathbf{x} \in \mathbb{R}^{n}$.
5. (10 points) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a function with the property that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \mathbf{h}}{\|\mathbf{h}\|}=\mathbf{0} \text { for all } \mathbf{x} \in \mathbb{R}^{2} .
$$

Show that f is affine, meaning of the form $f(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ for some 2×2 matrix A and $\mathbf{b} \in \mathbb{R}^{2}$.
6. (10 points) Suppose $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable and $g(\mathbf{x}) \neq \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^{2}$. Show that the following "quotient rule" holds:

$$
D\left(\frac{f}{g}\right)(\mathbf{x})=\frac{g(\mathbf{x}) D f(\mathbf{x})-f(\mathbf{x}) D g(\mathbf{x})}{g(\mathbf{x})^{2}} \text { for all } \mathbf{x} \in \mathbb{R}^{2}
$$

where $\frac{f}{g}$ denotes the function defined by $\mathbf{x} \mapsto \frac{f(\mathbf{x})}{g(\mathbf{x})}$. You cannot take the product rule for functions from \mathbb{R}^{n} to \mathbb{R} for granted, but you can of course prove this first if you need it. Hint: Interpret $\mathbf{x} \rightarrow \frac{f(\mathbf{x})}{g(\mathbf{x})}$ as a composition of differentiable functions.
7. (10 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by $f(x, y)=x^{2} y^{3}-y \cos (x y)$. If the maximal directional derivative of f in any direction at the point $(\pi, 1)$ is M, determine the explicit directions in which the directional derivative of f at $(\pi, 1)$ is $\frac{-M \sqrt{3}}{2}$.

