Math 291-1: Midterm 1 Northwestern University, Fall 2017

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample. (A counterexample is a specific example in which the given claim is indeed false.)
(a) If A and B are 2×2 matrices such that $\operatorname{rref}(A)=\operatorname{rref}(B)$ and $A\left[\begin{array}{l}\pi \\ e\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, then $B\left[\begin{array}{c}2 \pi \\ 2 e\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
(b) If $\mathbf{w}, \mathbf{z}_{1}, \mathbf{z}_{2} \in \mathbb{C}^{2}$ and \mathbf{w} is a complex linear combination of $\mathbf{z}_{1}, \mathbf{z}_{2}$, then \mathbf{w} is also a real linear combination of $\mathbf{z}_{1}, \mathbf{z}_{2}$. (Recall that the distinction between complex and real linear combinations comes in the types of scalars we allow as coefficients.)

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4} \in \mathbb{R}^{n}$ and that $\mathbf{u} \in \mathbb{R}^{n}$ can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$. Show that \mathbf{u} can also be written as a linear combination of

$$
\mathbf{v}_{1}-\mathbf{v}_{3}, \mathbf{v}_{2}, \mathbf{v}_{2}-\mathbf{v}_{4}, \mathbf{v}_{3}-\mathbf{v}_{4}
$$

3. (10 points) If $n \geq 2$, show that for any $a \in \mathbb{R}$ and any $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{2}$, we have

$$
a\left(\mathbf{v}_{1}+\cdots+\mathbf{v}_{n}\right)=a \mathbf{v}_{1}+\cdots+a \mathbf{v}_{n}
$$

The only distributive property you can take for granted is that $a(b+c)=a b+a c$ for $a, b, c \in \mathbb{R}$.
4. (10 points) Let A be a 4×3 matrix, and let \mathbf{b} and \mathbf{c} be two vectors in \mathbb{R}^{4}. We are told that the system $A \mathbf{x}=\mathbf{b}$ has a unique solution. What can you say about the number of solutions of the system $A \mathbf{x}=\mathbf{c}$? In other words, is it possible for $A \mathbf{x}=\mathbf{c}$ to have no solutions? exactly one solution? infinitely many solutions?
5. (10 points) Consider the system of linear equations with augmented matrix:

$$
\left[\begin{array}{cccccc}
1 & 2 & 1 & 5 & -1 & 3 \\
-1 & -2 & 0 & -3 & 1 & -2 \\
-2 & -4 & -1 & -8 & 2 & -5
\end{array}\right] .
$$

Show that there exist three linearly independent vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{5}$ with the property that any solution $\mathbf{x} \in \mathbb{R}^{5}$ of this system can be written as

$$
\mathbf{x}=\left[\begin{array}{c}
-2 \\
1 \\
-1 \\
1 \\
1
\end{array}\right]+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}
$$

for some $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. (Be sure to explain why the vectors you find are indeed linearly independent!)

