
Math 291-1: Midterm 1 Solutions
Northwestern University, Fall 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample. (A counterexample is a specific example in which the given
claim is indeed false.)

(a) If w1,w2,w3 ∈ C2 are complex vectors which are linearly dependent over C, then w1,w2,w3

are also linearly dependent over R. (Recall that the distinction between “over C” and “over R” is
whether or not we allow arbitrary complex scalars or only real scalars as coefficients.)

(b) If A,B are matrices for which Ax = 0 and Bx = 0 have the same solutions, then A = B.

Solution. (a) This is false. For instance, the vectors

w1 =

[
1
0

]
, w2 =

[
i
0

]
, w3 =

[
0
1

]
are linearly dependent over C since

w2 = iw1 + 0w3.

However, these are linearly independent over R. Indeed, suppose

a

[
1
0

]
+ b

[
i
0

]
+ c

[
0
1

]
=

[
0
0

]
where a, b, c ∈ R. Then

a + bi = 0 and c = 0.

Since a, b ∈ R, the only way for a + bi to be 0 is for a and b to both be 0, so we get a = b = c = 0,
and hence w1,w2,w3 are linearly independent over R.

(b) This is false. Take for instance

A =

[
1 0
0 1

]
and B =

[
2 0
0 2

]
.

Then the only solution of both Ax = 0 and Bx = 0 is x = 0, and yet A 6= B. The point is that
the given condition implies that A and B are row equivalent, but certainly row equivalent matrices
do not have to be equal.

2. Let v1,v2,v3 ∈ R3. Show that b ∈ R3 is a linear combination of v1,v2,v3 if and only if b is
a linear combination of v1,v2 − v1,v3 − v2. (This shows that v1,v2,v3 and v1,v2 − v1,v3 − v2

have the same span.)

Bonus (2 extra points): Let v1, . . . ,vk ∈ Rn. Show that b ∈ Rn is a linear combination of
v1, . . . ,vk if and only if b is a linear combination of v1,v2 − v1, . . . ,vk − vk−1, where each vector
in this new list except the first is of the form vi − vi−1 for i = 2, . . . , k. Note that the original
problem is a special case of the Bonus, so doing the Bonus alone will get you the full 12 points.

Proof. We’ll give the proof of the Bonus only, since the stated problem is the special case of
the bonus when n = 3. First suppose b is a linear combination of v1, . . . ,vk, so there exist
a1, . . . , ak ∈ R such that

b = a1v1 + · · ·+ akvk.



We can rewrite this as:

b = (a1 + · · ·+ ak)v1 + (a2 + · · ·+ ak)(v2 − v1) + · · ·+ (ak−1 + ak)(vk−1 − vk−2) + ak(vk − vk−1),

which shows that b is a linear combination of

v1,v2 − v2, . . . ,vk − vk−1

as desired. (Note that the coefficients above were found by setting

b = c1v1 + c2(v2 − v1) + · · ·+ ck(vk − vk−1),

and rearranging to get

b = (c1 − c2)v1 + (c2 − c3)v2 + · · ·+ (ck−1 − ck)vk−1 + ckvk.

Comparing this with the original expression for b, we are thus looking for scalars c1, . . . , ck satisfying

a1 = c1 − c2, a2 = c2 − c3, . . . , ak−1 = ck−1 − ck, ak = ck.

Starting from the end, this gives

ck = ak, ck−1 = ak−1 + ck = ak−1 + ak, ck−2 = ak−2 + ck−1 = ak−2 + ak−1 + ak,

and so on until c1 = a1 + · · ·+ ak.)
Conversely suppose b is a linear combination of v1,v2 − v1, . . . ,vk − vk−1:

b = c1v1 + c2(v2 − v1) + · · ·+ ck(vk − vk−1).

Rearranging terms gives:

b = (c1 − c2)v1 + (c2 − c3)v2 + · · ·+ (ck−1 + ck)vk−1 + ckvk,

so b is a linear combination of v1, . . . ,vk as desired.

3. Consider the system of linear equations in four variables with augmented matrix
1 3 1 1 2
1 3 2 3 3
−3 −9 −4 −5 −7
2 6 4 6 6

 .

Show that any solution x ∈ R4 of this system can be written as

x =


1
0
1
0

+ a


−3
1
0
0

+ b


4
−1
−2
1


for some a, b ∈ R. Hint: You can use the result of the Bonus in Problem 2 without justification.
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Proof. Reducing the given augmented matrix via row operations gives:
1 3 1 1 2
1 3 2 3 3
−3 −9 −4 −5 −7
2 6 4 6 6

→


1 3 1 1 2
0 0 1 2 1
0 0 −1 −2 −1
0 0 2 4 2

→


1 3 1 1 2
0 0 1 2 1
0 0 0 0 0
0 0 0 0 0

→


1 3 0 −1 1
0 0 1 2 1
0 0 0 0 0
0 0 0 0 0

 .

Thus the general solution is of the form
x1
x2
x3
x4

 =


1− 3x2 + x4

x2
1− 2x4

x4

 =


1
0
1
0

+ x2


−3
1
0
0

+ x4


1
0
−2
1

 .

Now, by the Bonus on Problem 2, any vectors which is a linear combination of
−3
1
0
0

 and


1
0
−2
1


is also a linear combination of 

−3
1
0
0

 and


1
0
−2
1

−

−3
1
0
0

 =


4
−1
−2
1

 .

Thus the portion of the general solution which looks like

x2


−3
1
0
0

+ x4


1
0
−2
1


can be rewritten as

a


−3
1
0
0

+ b


4
−1
−2
1


for some a, b ∈ R, so the general solution is also of the form

1
0
1
0

+ a


−3
1
0
0

+ b


4
−1
−2
1


as claimed.

4. Let A be a 2× 2 matrix. Prove that

A(c1x1 + · · ·+ cnxn) = c1Ax1 + · · ·+ cnAxn

for any x1, . . . ,xn ∈ R2 and any c1, . . . , cn ∈ R. You cannot take A(x + y) = Ax + Ay nor
A(cx) = cAx for granted, and must justify these facts first if you need them.
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Proof. Let

A =

[
a b
c d

]
.

Then for x = [ x1
x2 ] and y = [ y1y2 ] we have:

A(x + y) =

[
a b
c d

] [
x1 + y1
x2 + y2

]
=

[
ax1 + ay1 + bx2 + by2
cx1 + cy1 + dx2 + dy2

]
=

[
ax1 + bx2
cx1 + dx2

]
+

[
ay1 + by2
cy1 + dy2

]
= Ax + Ay.

Also, if r ∈ R, we have:

A(rx) =

[
a b
c d

] [
rx1
rx2

]
=

[
arx1 + brx2
crx1 + drx2

]
= r

[
ax1 + bx2
cx1 + dx2

]
= rAx.

Now, using the facts above, we see that for x1,x2 ∈ R2 and c1, c2 ∈ R we have:

A(c1x1 + c2x3) = A(c1x1) + A(c2x2) = c1Ax1 + c2Ax2.

Hence the required property holds in the base case of two vectors. Suppose it holds for any number
of n− 1 ≥ 2 vectors and let x1, . . . ,xn ∈ R2 and c1, . . . , cn ∈ R. Then

A(c1x1 + · · ·+ cnxn) = A([c1x1 + · · ·+ cn−1xn−1] + cnxn)

= A(c1x1 + · · ·+ cn−1xn−1) + cnAxn

= c1Ax1 + · · ·+ cnAxn,

where in the second line we use the base case and in the third line we use the induction hypothesis.
We conclude by induction that the claimed property indeed holds for any number of vectors.

5. Let v1,v2,v3 ∈ R3 and let A be the matrix with v1,v2,v3 as columns. If there exists b ∈ R3

for which Ax = b has no solution, show that v1,v2,v3 are linearly dependent.

Proof. Consider the augmented matrix
[
A b

]
. If the corresponding system has no solution, then

the reduced form of this augmented matrix must have a row of the form[
0 0 0 1

]
in order for there to be a row corresponding to the impossible equation

0 = 1.

This says that the reduced form of A itself must have at least one row of all zeroes. Now, reducing
the augmented matrix

[
A 0

]
gives [

A 0
]
→
[
rref(A) 0

]
.

Since rref(A) has a row of all zeroes, this reduce augmented matrix must have a column without a
pivot since there are only at most 2 pivots. This implies that Ax = 0 has infinitely many solutions,
which implies that the columns v1,v2,v3 of A are linearly dependent.
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