
Math 291-1: Midterm 1 Solutions
Northwestern University, Fall 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample. (A counterexample is a specific example in which the given
claim is indeed false.)

(a) If A and B are 2×2 matrices such that rref(A) = rref(B) and A [ πe ] = [ 00 ], then B [ 2π2e ] = [ 00 ].
(b) If w, z1, z2 ∈ C2 and w is a complex linear combination of z1, z2, then w is also a real linear

combination of z1, z2. (Recall that the distinction between complex and real linear combinations
comes in the types of scalars we allow as coefficients.)

Solution. (a) This is true. Since A and B have the same reduced row-echelon form, the equations
Ax = 0 and Bx = 0 have the same solutions. Thus since A [ πe ] = [ 00 ], it is also true that B [ πe ] = [ 00 ],
so

B

[
2π
2e

]
= 2B

[
π
e

]
= 2

[
0
0

]
=

[
0
0

]
as claimed.

(b) This is false. For an explicit counterexample, take

z1 =

[
1
0

]
, z2 =

[
0
1

]
, and w =

[
i
i

]
.

Then w = iz1 + iz2, so w is a complex linear combination of z1 and z2, but w is not a real linear
combination of z1 and z2 since for real a, b,

a

[
1
0

]
+ b

[
0
1

]
=

[
a
b

]
can never equal w.

2. Suppose v1,v2,v3,v4 ∈ Rn and that u ∈ Rn can be written as a linear combination of
v1,v2,v3,v4. Show that u can also be written as a linear combination of

v1 − v3, v2, v2 − v4, v3 − v4.

Proof. Note: This is meant to be similar-in-spirit to the problem on Quiz 2.
Since u is a linear combination of v1,v2,v3,v4, there exist c1, c2, c3, c4 ∈ R such that

u = c1v1 + c2v2 + c3v3 + c4v4.

In order to show that u is a linear combination of v1−v3,v2,v2−v4,v3−v4, we must show there
exist a1, a2, a3, a4 ∈ R such that

u = a1(v1 − v3) + a2v2 + a3(v2 − v4) + a4(v3 − v4).

Define a1, a2, a3, a4 to be:

a1 = c1, a2 = c1 + c2 + c3 + c4, a3 = −c1 − c3 − c4, a4 = c1 + c3.

Then

a1(v1 − v3) + a2v2 + a3(v2 − v4) + a4(v3 − v4)



= c1(v1 − v3) + (c1 + c2 + c3 + c4)v2 + (−c1 − c3 − c4)(v2 − v4) + (c1 + c3)(v3 − v4)

= c1v1 + (c1 + c2 + c3 + c4 − c1 − c3 − c4)v2 + (−c1 + c1 + c3)v3 + (−c1 − c3 + c4 + c1 + c3)v4

= c1v1 + c2v2 + c3v3 + c4v4

= u

as desired. Hence given u = c1v1 + c2v2 + c3v3 + c4v4, u is also expressible as a linear combination
of v1 − v3,v2,v2 − v4,v3 − v4 using the coefficients a1, a2, a3, a4 defined above.

Note that the values for a1, a2, a3, a4 come from rewriting

a1(v1 − v3) + a2v2 + a3(v2 − v4) + a4(v3 − v4)

as
a1v1 + (a2 + a3)v2 + (−a1 + a4)v3 + (−a3 − a4)v4

and comparing these coefficients to those in c1v1 + c2v2 + c3v3 + c4v4; in order to satisfy needed
requirements, a1, a2, a3, a4 should satisfy

a1 = c1, a2 + a3 = c2, −a1 + a4 = c3, −a3 − a4 = c4,

and using this to express a1, a2, a3, a4 in terms of c1, c2, c3, c4 gives the values used above.

3. If n ≥ 2, show that for any a ∈ R and any v1, . . . ,vn ∈ R2, we have

a(v1 + · · ·+ vn) = av1 + · · ·+ avn.

The only distributive property you can take for granted is that a(b+ c) = ab+ ac for a, b, c ∈ R.

Proof. First suppose

v1 =

[
x1
y1

]
and v2 =

[
x2
y2

]
are two vectors in R2. Then for any a ∈ R, we have

a(v1 + v2) = a

([
x1
y1

]
+

[
x2
y2

])
= a

[
x1 + y1
x2 + y2

]
=

[
a(x1 + x2)
a(y1 + y2)

]

=

[
ax1 + ax2
ay1 + ay2

]
=

[
ax1
ay1

]
+
[
ax2 + ay2

]
= a

[
x1
y1

]
+ a

[
x2
y2

]
= av1 + av2.

Thus the claimed equality holds for two vectors.
Suppose now that for some n ≥ 2 the claimed equality holds for any n vectors in R2, and take

any n+ 1 vectors v1, . . . ,vn+1 ∈ R2. Then

a(v1 + · · ·+ vn+1) = a([v1 + · · ·+ vn] + vn+1) = a(v1 + · · ·+ vn) + avn+1

where we use the base case of two vectors. By the induction hypothesis, a(v1 + · · · + vn) =
av1 + · · ·+ avn, so

a(v1 + · · ·+ vn+1) = a(v1 + · · ·+ vn) + avn+1 = av1 + · · ·+ avn + avn+1.

Hence we conclude by induction that the claimed equality holds for any n ≥ 2.
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4. Let A be a 4 × 3 matrix, and let b and c be two vectors in R4. We are told that the system
Ax = b has a unique solution. What can you say about the number of solutions of the system
Ax = c? In other words, is it possible for Ax = c to have no solutions? exactly one solution?
infinitely many solutions?

Solution. Note: This was part of Problem 4 on Homework 3, whose solution we reproduce here.
The reduced row-echelon form of [A | b] must look like

[A | b]→


1 0 0 | ?
0 1 0 | ?
0 0 1 | ?
0 0 0 | 0


since if there were any free variables the system Ax = b would have infinitely many solutions.
Hence the reduced row-echelon form of [A | c] looks like

[A | c]→


1 0 0 | ?
0 1 0 | ?
0 0 1 | ?
0 0 0 | ?

 ,
where now we are no longer guaranteed that the lower right entry must be zero—this depends on
what c was to begin with. Hence Ax = c will have either no solutions or exactly one, depending
on what this lower right entry in the reduced form is.

5. Consider the system of linear equations with augmented matrix: 1 2 1 5 −1 3
−1 −2 0 −3 1 −2
−2 −4 −1 −8 2 −5

 .
Show that there exist three linearly independent vectors v1,v2,v3 ∈ R5 with the property that any
solution x ∈ R5 of this system can be written as

x =


−2
1
−1
1
1

+ c1v1 + c2v2 + c3v3

for some c1, c2, c3 ∈ R. (Be sure to explain why the vectors you find are indeed linearly independent!)

Proof. The given augmented matrix describes the linear system with matrix equation 1 2 1 5 −1
−1 −2 0 −3 1
−2 −4 −1 −8 2

x =

 3
−2
−5

 .
Since  1 2 1 5 −1

−1 −2 0 −3 1
−2 −4 −1 −8 2



−2
1
−1
1
1

 =

 3
−2
−5


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is true, the vector 
−2
1
−1
1
1


is one particular solution to the given equation. By the result we derived describing the solutions
of Ax = b in terms of those of Ax = 0, we know that any solution x of the given equation can thus
be written as

x =


−2
1
−1
1
1

+ y, where y satisfies Ay = 0.

To solve the equation Ay = 0 we row reduce: 1 2 1 5 −1 0
−1 −2 0 −3 1 0
−2 −4 −1 −8 2 0

→
1 2 1 5 −1 0

0 0 1 2 0 0
0 0 0 0 0 0

→
1 2 0 3 −1 0

0 0 1 2 0 0
0 0 0 0 0 0

 .
Considering x2, x4, and x5 to be free variables, we get that any solution y is of the form

y =


−2x2 − 3x4 + x5

x2
−2x4
x4
x5

 = x2


−2
1
0
0
0

+ x4


−3
0
−2
1
0

+ x5


1
0
0
0
1

 ,
so any solution can be written as a linear combination of

v1 =


−2
1
0
0
0

 , v2 =


−3
0
−2
1
0

 , v3 =


1
0
0
0
1

 .
These are linearly independent since if a1, a2, a3 ∈ R satisfy a1v1 + a2v2 + a3v3 = 0, we must have

−2a1 − 3a2 + a3
a1
−2a2
a2
a3

 =


0
0
0
0
0

 ,
so a1 = a2 = a3 = 0. Thus the v1,v2,v3 are three linearly independent vectors in R5 with the
property that any solution x of the original linear system can be written as

x =


−2
1
−1
1
1

+ c1v1 + c2v2 + c3v3

for some c1, c2, c3 ∈ R as required.
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