Math 291-3: Midterm 1 Solutions
Northwestern University, Spring 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.
(a) If f:[—1,1] x [-2,2] x [-3,3] — R is a constant function, then all Riemann sums of f (for
any partition of [—1, 1] x [-2, 2] x [—3, 3] and any collection of sample points) have the same value.
(b) If f:[-5,5] x [-5,5] — R is bounded but not continuous, then f is not integrable.

Solution. (a) This is true. Say that f(x) = M for all x and let P be any partition of the given box
and let ¢; be any collection of sample points. Then letting B; denote the smaller boxes determined
by the partition P, we have:

R(f,P,c;) = Z f(c;) Vol(B)
= i:MVol(Bi)
= M > Vol(By)
— MViol([—l, 1] x [-2,2] x [-3,3))

where in the third step we can pull out M since it is a constant, and in the last step we use the
fact that adding together the volumes of all the B; gives the volume of the original larger box.

(b) This is false. For example, the function which is 1 everywhere except at (0,0), where it is
2, is bounded and not continuous at (0,0), but it is integrable since it only fails to be continuous
at a single point, which has measure zero in R2. O

2. Fix K > 0 and consider all nonnegative numbers 1, ..., x, satisfying
v+ w24+ x, = K.

Show that among all such numbers there exists ones which maximize the product zizs - - - x, and
find the specific values of those which do.

Proof. First, the functions f(x) = x---x, is continuous on the constraint set, which is compact.
(It is compact because it closed and bounded, since none of the x; can be larger than K and still
satisfy the constraint.) Thus f has a maximum value over the constraint set by the Extreme Value
Theorem. Note also that taking each x; = % gives points satisfying the constraint at which f is
positive, so the maximum value of f over the constraint set must be positive as well.

By the method of Lagrange Multipliers, the points which give this maximum value are among
those which satisfy

V() = AVy(x)

for some A € R, where g(x) = x1 + --- + z,, is the function defining the constraint. This equation
becomes
(Xox3 -+ Tpy.o o XX Tp1) = A(1,..., 1),

which after comparing components turns into the condition that

XoX3 Ty = XL1X3 Ty = X1X2L4 Ty = -+ = T1T2" " Typ—1-



We may assume that none of the x; are zero since otherwise f(x) = 0 and we know that 0 is not
the maximum value of f for which we are looking. Thus we may divide all expressions above by
various variables to get that

Ty=Ty = =In

in the end. Thus the maximum of f on the constraint set is attained when all z; are the same (this
is not a minimum since the minimum is 0 when some z; is zero), and the value of these variables
according to the constraint is then x; = % for all 4. O

3. Show that for any compact region D C R? of area 10, the following inequality holds:
// (3 — 2% 42z —y? + 2y) dA < 50.
D

You may assume that any local maximum of f(x,y) = 3 — 22 4+ 2z — y? + 2y is actually a global
maximum.

Proof. We first find the local, and hence global, maximum of f within D. Setting V f = 0 gives
(—2z+2,-2y +2) =(0,0),
soz =1 and y = 1. The Hessian of f at (1,1) is
v
0 -2|’

and since this is negative definite we know that (1,1) is a local maximum of f. Thus the maximum
value of f over all of D is f(1,1) = 5. Hence since f(x,y) > 5 for all (z,y) € D, we have

//(3—x2+2x—y2+2y)dA§// 5dA:5// dA = 5 Area(D),
D D D

and the claim follows since Area(D) = 10. O

4. Suppose f : R? — R is continuous. Rewrite the following as an iterated integral with respect to

the order dy dx dz.
1 p1 pl—y
/// f(z,y,2)dedydz
0 Jz2Jo

Solution. The region of integration F in the given integral looks like



Indeed, the shadow in the yz-plane lies above z = 0, below y = 22, and to the left of y = 1 according
the given bounds on z and y, and then at a fixed (y, z), the values for z start on the yz-plane at
x = 0 and move out forward as far as the plane x = 1 —y. The top/left of E is given by the surface
y = 22, the front/right by the plane 2 = 1 — ¥, the bottom by the zy-plane, and the back by the
yz-plane.

The shadow of F in the xz-plane is drawn on the left in the picture above. The curve 1 —x = z
lies directly to the left of the curve in E formed by intersecting the surface y = 22 with the plane
x =1 —y, and its equation is found by eliminating y in these two equations. Thus, with respect
to dydx dz, z goes from 0 to 1, and at a fixed z the value of = goes from z = 0 to z = 1 — 2°.
Then, at a fixed (z, z), the value of 3 in E begins on the left at y = 22 and moves to the right until
y = 1 — . Hence the given integral becomes

1 pl—22 pl-x
/ / / f(z,y, z)dydx dz.
0 Jo 22

5. Write the following as a single iterated integral in polar coordinates.

1,1 2 pV2x—2?
/ / (2 +y2)dxdy—i—/ / (2% + 9?) dy dx
0 Jy 1 Jo

Note that the order of integration in the first expression is dx dy while in the second it is dy dx.

2

Solution. The first set of bounds describes the triangular region in the xy-plane lying below y = z,
above y = 0 and to the left of x = 1. The second set of bounds then covers x values from 1 to 2,
with y moving at a fixed  from y = 0 up to the curve y = v/2x — 22. After squaring both sides and
completing the square, this latter curve becomes (z —1)2 442 = 1, so it describes a circle of radius 1
centered at (1,0). This forms the right boundary of the region in question, so the combined region
looks like:



Now, in polar coordinates, this region is given by 6 values going from 0 to 7, and at any fixed ¢
the value of r moves from r = 0 at the origin out towards the given circle. Writing the equation of
this circle as 22 +y? = 2z, we see that in polar coordinates this becomes r? = 2r cos 6, or r = 2 cos 6.
Hence r moves from 0 to 2cos 8, so the integral in polar coordinates is:

T [2cosO
/ / r3 dr de,
0 0

where one factor of r in the integrand comes from the Jacobian factor and two factors from con-
verting 22 + 3. O



