Math 291-3: Midterm 1 Solutions Northwestern University, Spring 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If $f:[-1,1] \times[-2,2] \times[-3,3] \rightarrow \mathbb{R}$ is a constant function, then all Riemann sums of f (for any partition of $[-1,1] \times[-2,2] \times[-3,3]$ and any collection of sample points) have the same value.
(b) If $f:[-5,5] \times[-5,5] \rightarrow \mathbb{R}$ is bounded but not continuous, then f is not integrable.

Solution. (a) This is true. Say that $f(\mathbf{x})=M$ for all \mathbf{x} and let P be any partition of the given box and let \mathbf{c}_{i} be any collection of sample points. Then letting B_{i} denote the smaller boxes determined by the partition P, we have:

$$
\begin{aligned}
R\left(f, P, \mathbf{c}_{i}\right) & =\sum_{i} f\left(\mathbf{c}_{i}\right) \operatorname{Vol}\left(B_{i}\right) \\
& =\sum_{i} M \operatorname{Vol}\left(B_{i}\right) \\
& =M \sum_{i} \operatorname{Vol}\left(B_{i}\right) \\
& =M \operatorname{Vol}([-1,1] \times[-2,2] \times[-3,3])
\end{aligned}
$$

where in the third step we can pull out M since it is a constant, and in the last step we use the fact that adding together the volumes of all the B_{i} gives the volume of the original larger box.
(b) This is false. For example, the function which is 1 everywhere except at $(0,0)$, where it is 2 , is bounded and not continuous at $(0,0)$, but it is integrable since it only fails to be continuous at a single point, which has measure zero in \mathbb{R}^{2}.
2. Fix $K>0$ and consider all nonnegative numbers x_{1}, \ldots, x_{n} satisfying

$$
x_{1}+x_{2}+\cdots+x_{n}=K .
$$

Show that among all such numbers there exists ones which maximize the product $x_{1} x_{2} \cdots x_{n}$ and find the specific values of those which do.

Proof. First, the functions $f(\mathbf{x})=x_{1} \cdots x_{n}$ is continuous on the constraint set, which is compact. (It is compact because it closed and bounded, since none of the x_{i} can be larger than K and still satisfy the constraint.) Thus f has a maximum value over the constraint set by the Extreme Value Theorem. Note also that taking each $x_{i}=\frac{K}{n}$ gives points satisfying the constraint at which f is positive, so the maximum value of f over the constraint set must be positive as well.

By the method of Lagrange Multipliers, the points which give this maximum value are among those which satisfy

$$
\nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x})
$$

for some $\lambda \in \mathbb{R}$, where $g(\mathbf{x})=x_{1}+\cdots+x_{n}$ is the function defining the constraint. This equation becomes

$$
\left\langle x_{2} x_{3} \cdots x_{n}, \ldots, x_{1} x_{2} \cdots x_{n-1}\right\rangle=\lambda\langle 1, \ldots, 1\rangle
$$

which after comparing components turns into the condition that

$$
x_{2} x_{3} \cdots x_{n}=x_{1} x_{3} \cdots x_{n}=x_{1} x_{2} x_{4} \cdots x_{n}=\cdots=x_{1} x_{2} \cdots x_{n-1} .
$$

We may assume that none of the x_{i} are zero since otherwise $f(\mathbf{x})=0$ and we know that 0 is not the maximum value of f for which we are looking. Thus we may divide all expressions above by various variables to get that

$$
x_{1}=x_{2}=\cdots=x_{n}
$$

in the end. Thus the maximum of f on the constraint set is attained when all x_{i} are the same (this is not a minimum since the minimum is 0 when some x_{i} is zero), and the value of these variables according to the constraint is then $x_{i}=\frac{K}{n}$ for all i.
3. Show that for any compact region $D \subseteq \mathbb{R}^{2}$ of area 10 , the following inequality holds:

$$
\iint_{D}\left(3-x^{2}+2 x-y^{2}+2 y\right) d A \leq 50 .
$$

You may assume that any local maximum of $f(x, y)=3-x^{2}+2 x-y^{2}+2 y$ is actually a global maximum.

Proof. We first find the local, and hence global, maximum of f within D. Setting $\nabla f=0$ gives

$$
\langle-2 x+2,-2 y+2\rangle=\langle 0,0\rangle,
$$

so $x=1$ and $y=1$. The Hessian of f at $(1,1)$ is

$$
\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]
$$

and since this is negative definite we know that $(1,1)$ is a local maximum of f. Thus the maximum value of f over all of D is $f(1,1)=5$. Hence since $f(x, y) \geq 5$ for all $(x, y) \in D$, we have

$$
\iint_{D}\left(3-x^{2}+2 x-y^{2}+2 y\right) d A \leq \iint_{D} 5 d A=5 \iint_{D} d A=5 \operatorname{Area}(D)
$$

and the claim follows since $\operatorname{Area}(D)=10$.
4. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuous. Rewrite the following as an iterated integral with respect to the order $d y d x d z$.

$$
\int_{0}^{1} \int_{z^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d x d y d z
$$

Solution. The region of integration E in the given integral looks like

Indeed, the shadow in the $y z$-plane lies above $z=0$, below $y=z^{2}$, and to the left of $y=1$ according the given bounds on z and y, and then at a fixed (y, z), the values for x start on the $y z$-plane at $x=0$ and move out forward as far as the plane $x=1-y$. The top/left of E is given by the surface $y=z^{2}$, the front/right by the plane $x=1-y$, the bottom by the $x y$-plane, and the back by the $y z$-plane.

The shadow of E in the $x z$-plane is drawn on the left in the picture above. The curve $1-x=z^{2}$ lies directly to the left of the curve in E formed by intersecting the surface $y=z^{2}$ with the plane $x=1-y$, and its equation is found by eliminating y in these two equations. Thus, with respect to $d y d x d z, z$ goes from 0 to 1 , and at a fixed z the value of x goes from $x=0$ to $x=1-z^{2}$. Then, at a fixed (x, z), the value of y in E begins on the left at $y=z^{2}$ and moves to the right until $y=1-x$. Hence the given integral becomes

$$
\int_{0}^{1} \int_{0}^{1-z^{2}} \int_{z^{2}}^{1-x} f(x, y, z) d y d x d z
$$

5. Write the following as a single iterated integral in polar coordinates.

$$
\int_{0}^{1} \int_{y}^{1}\left(x^{2}+y^{2}\right) d x d y+\int_{1}^{2} \int_{0}^{\sqrt{2 x-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

Note that the order of integration in the first expression is $d x d y$ while in the second it is $d y d x$.
Solution. The first set of bounds describes the triangular region in the $x y$-plane lying below $y=x$, above $y=0$ and to the left of $x=1$. The second set of bounds then covers x values from 1 to 2 , with y moving at a fixed x from $y=0$ up to the curve $y=\sqrt{2 x-x^{2}}$. After squaring both sides and completing the square, this latter curve becomes $(x-1)^{2}+y^{2}=1$, so it describes a circle of radius 1 centered at $(1,0)$. This forms the right boundary of the region in question, so the combined region looks like:

Now, in polar coordinates, this region is given by θ values going from 0 to $\frac{\pi}{4}$, and at any fixed θ the value of r moves from $r=0$ at the origin out towards the given circle. Writing the equation of this circle as $x^{2}+y^{2}=2 x$, we see that in polar coordinates this becomes $r^{2}=2 r \cos \theta$, or $r=2 \cos \theta$. Hence r moves from 0 to $2 \cos \theta$, so the integral in polar coordinates is:

$$
\int_{0}^{\frac{\pi}{4}} \int_{0}^{2 \cos \theta} r^{3} d r d \theta
$$

where one factor of r in the integrand comes from the Jacobian factor and two factors from converting $x^{2}+y^{2}$.

