Math 291-2: Midterm 1 Solutions Northwestern University, Winter 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) A 3×3 matrix with determinant 1 must be orthogonal.
(b) If λ is a real eigenvalue of an orthogonal matrix, then $\lambda= \pm 1$.

Solution. (a) This is false. The matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

has determinant 1 but is not orthogonal since not all columns have length 1.
(b) This is true. Suppose λ is a real eigenvalue of an orthogonal matrix Q, and let \mathbf{v} be a corresponding eigenvector. Then $Q \mathbf{v}=\lambda \mathbf{v}$. But since Q is orthogonal we have $\|Q \mathbf{v}\|=\|\mathbf{v}\|$, which means that $|\lambda|=1$, and hence $\lambda= \pm 1$ as claimed.
2. Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are orthonormal vectors in \mathbb{R}^{n}. Show that for any $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}
$$

Proof. Since $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are orthogonal, they are linearly independent and hence form a basis for \mathbb{R}^{n} since \mathbb{R}^{n} is n-dimensional. Thus for any $\mathbf{x} \in \mathbb{R}^{n}$ we have

$$
\mathbf{x}=c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}
$$

for some $c_{1}, \ldots, c_{n} \in \mathbb{R}$. Taking dot products of both sides with \mathbf{u}_{i} gives

$$
\mathbf{x} \cdot \mathbf{u}_{i}=\left(c_{i} \mathbf{u}_{i}\right) \cdot \mathbf{u}_{i}
$$

since the dot product of \mathbf{u}_{i} with all other \mathbf{u} 's is zero. Since $\mathbf{u}_{i} \cdot \mathbf{u}_{i}=1$, we get

$$
\mathbf{x} \cdot \mathbf{u}_{i}=c_{i}\left(\mathbf{u}_{i} \cdot \mathbf{u}_{i}\right)=c_{i}
$$

so

$$
\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n}
$$

as claimed.
3. Find two 3×3 orthogonal matrices Q satisfying

$$
Q\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Solution. Since Q is meant to be orthogonal, $Q^{T}=Q^{-1}$ so the given equation can be written as

$$
\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]=Q^{T}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Thus the second column of Q^{T} must be the vector on the left. For the first column of Q^{T} we can take any vector orthogonal to this given second column, say

$$
\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

and divide by length to get

$$
\left[\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right] .
$$

Now for the third column we need a vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ which is orthogonal to both of the first two columns, meaning we need

$$
-\frac{1}{\sqrt{2}} a+\frac{1}{\sqrt{2}} c=0 \text { and } \frac{2}{3} a+\frac{1}{3} b+\frac{2}{3} c=0,
$$

or equivalently

$$
-a+c=0 \text { and } 2 a+b+2 c=0 .
$$

Solving this system of equations gives

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
1 \\
-4 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4 \\
-1
\end{array}\right]
$$

as two possible solutions, and dividing by lengths gives

$$
\left[\begin{array}{c}
1 / \sqrt{18} \\
-4 / \sqrt{18} \\
1 / \sqrt{18}
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 / \sqrt{18} \\
4 / \sqrt{18} \\
-1 / \sqrt{18}
\end{array}\right]
$$

as two possible third columns of Q^{T}. Hence taking transposes gives

$$
\left[\begin{array}{ccc}
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
2 / 3 & 1 / 3 & 2 / 3 \\
1 / \sqrt{18} & -4 / \sqrt{18} & 1 / \sqrt{18}
\end{array}\right] \text { and }\left[\begin{array}{ccc}
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
2 / 3 & 1 / 3 & 2 / 3 \\
-1 / \sqrt{18} & 4 / \sqrt{18} & -1 / \sqrt{18}
\end{array}\right]
$$

as two possible choices for Q.
4. Suppose n is odd and that A is an $n \times n$ matrix which is skew-symmetric, meaning $A^{T}=-A$. Show that A is not invertible. Hint: What is the determinant of A ?

Proof. In general $\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A$, since multiplying A by -1 scales each column by -1 , and each such scaling contributes a factor of -1 to $\operatorname{det}(-A)$. Since n is odd, we thus have $\operatorname{det}(-A)=$ - $\operatorname{det} A$. Taking determinants of both sides in $A^{T}=-A$ thus gives

$$
\operatorname{det} A=\operatorname{det} A^{T}=\operatorname{det}(-A)=-\operatorname{det} A,
$$

which implies that $2 \operatorname{det} A=0$ and hence $\operatorname{det} A=0$. Thus A is not invertible as claimed.
5. Let $T: P_{6}(\mathbb{R}) \rightarrow P_{6}(\mathbb{R})$ be the linear transformation which sends $p(x)$ to $p(-x)$. (To be clear, $p(-x)$ is the polynomial you get by replacing with $-x$ all instances of x in $p(x)$.) Determine the eigenvalues of T and find a basis for each of its eigenspaces.

Proof. For n even we have $T\left(x^{n}\right)=(-x)^{n}=x^{n}$, so any such x^{n} is an eigenvector of T with eigenvalue 1. For n odd, we get $T\left(x^{n}\right)=(-x)^{n}=-x^{n}$, so any such x^{n} is an eivenvector with eigenvalue -1 . Thus $1, x^{2}, x^{4}, x^{6}$ are eigenvectors of T with eigenvalue 1 and x, x^{3}, x^{5} are eigenvectors with eigenvalue -1 .

These given eigenvectors are all linearly independent and already give the maximum number of linearly independent vectors possible in $P_{6}(\mathbb{R})$ since $P_{6}(\mathbb{R})$ is 7 -dimensional. Thus there can be no additional eigenvalues since any additional eigenvalues would contribute more linearly independent eigenvectors. In addition, it must be that $1, x^{2}, x^{4}, x^{6}$ span the entire eigenspace corresponding to 1 and that x, x^{3}, x^{5} span the eigenspace corresponding to -1 , since if not any additional basis vectors for either of these eigenspaces would give more than 7 linearly independent vectors overall.

