
Math 291-2: Midterm 1 Solutions
Northwestern University, Winter 2018

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) If v1,v2 is a basis of R2 and x = [ 11 ], then x = projv1
x + projv2

x.
(b) If A is a 2×2 matrix which sends a disk of radius 2 onto a disk of radius 1, then | detA| < 1.

Solution. (a) This is false, and is in fact only true for an orthogonal basis. For a counterexample
take v1 = [ 10 ] and v2 = [ 11 ]. Then

projv1
x = [ 10 ] and projv2

x = [ 11 ] ,

which do not add up to x.
(b) This is true. The expansion factor interpretation of | detA| says that

(area of image disk) = |detA|(area of original disk),

so π = | detA|(4π) and hence | detA| = 1
4 < 1.

2. Let A be an n × n symmetric matrix and let V be a subspace of Rn with the property that
Av ∈ V for any v ∈ V . Show that if w ∈ V ⊥, then Aw ∈ V ⊥.

Proof. (This was on the first homework.) Let w ∈ V ⊥. Then for any v ∈ V we have:

Aw · v = w ·Av = 0

where the first equality follows from the fact that A is symmetric and the second from the fact
that Av ∈ v and w is orthogonal to everything in V . Thus Aw is orthogonal to everything in V ,
so Aw ∈ V ⊥.

3. Suppose A and B are n×n orthogonal matrices such that ABT is upper triangular with positive
diagonal entries. Show that A = B. Hint: The product of orthogonal matrices is orthogonal.

Proof. First, since B is orthogonal BT is orthogonal as well, and thus ABT is orthogonal. Say that
ABT looks like 

a1 ∗ · · · ∗
a2 · · · ∗

. . .
...
an


where a1, . . . , an are all positive and blanks denote zeroes. If this is orthogonal, the first column
must have length 1, so a1 = ±1 and hence a1 = 1 since this entry should be positive. Next the
second column must be orthogonal to the first, which implies that the entry above a2 must be 0,
so the second column looks like 

0
a2
0
...
0

 .



But then this should have length 1, so a2 = ±1 and thus a2 = 1 since this should be positive. In
general, if we’ve already shown that the first k columns are simply e1, . . . , ek, then the (k + 1)-st
column must look like 

0
...

ak+1
...
0


in order for this to be orthogonal to the previous e1, . . . , ek. As before, the fact that this has length
1 with ak+1 > 0 implies that this column is ek+1, so we conclude that ABT = I is the identity
matrix. Multiplying by B on both sides gives ABTB = B, so A = B since BTB = I because B is
orthogonal.

4. Suppose A,B are n×n matrices. Show that det(AB) = (detA)(detB). Hint: In the case where
A is invertible, consider what happens when you row-reduce the matrix

[
A AB

]
to turn the A on

the left into I.

Proof. First, if A is non-invertible, then AB is also non-invertible so detA and det(AB) are both
0 in this case, so det(AB) = (detA)(detB) is true.

Suppose now that A is invertible, so that A is row-reducible to the identity. This reduction
gives

det I = (−1)kc` · · · c1(detA)

where k is the number of row swaps used in the reduction and the ci are the nonzero scalars used
in any operations which scale a row by a nonzero value. (Recall that adding a multiple of one row
to another does not affect the determinant.) This gives

detA =
1

(−1)kc` · · · c1
.

Now, the operations which transform A into I will also transform AB into B:[
A AB

]
→
[
I B

]
since they amount to multiplying A by A−1 on the left, so we get

detB = (−1)kc` · · · c1(detAB)

for the same k and ci as before. Thus

det(AB) =
1

(−1)kc` · · · c1
(detB) = (detA)(detB)

as required.

5. Let T : P5(R)→ P5(R) be the linear transformation defined by

T (p(x)) = 2x2p′′(x).

Determine all eigenvalues and eigenvectors of T . Be sure to justify why the eigenvalues and eigen-
vectors you find are indeed all of them.
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Solution. First note that for any 0 ≤ k ≤ 5, we have:

T (xk) = 2x2[k(k − 1)xk−2] = 2k(k − 1)xk.

This shows that each xk is an eigenvector of T with eigenvalue 2k(k − 1), so we (so far) get
eigenvalues

0, 0, 4, 12, 24, 40

with eigenvectors
1, x, x2, x3, x4, x5

respectively. Now, this so far gives the following information about the geometric multiplicities:

dimE0 ≥ 2, dimE4 ≥ 1, dimE12 ≥ 1, dimE24 ≥ 1, dimE40 ≥ 1.

Since this lower bounds already add up to dimP5(R) = 6, there can be no further eigenvalues and
these lower bounds must in fact equal the given dimensions. Thus we see that

E0 = span{1, x}, E4 = span{x2}, E12 = span{x3}, E24 = span{x4}, E40 = span{x5}

describe all eigenspaces explicitly.
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