Math 291-2: Midterm 1 Solutions Northwestern University, Winter 2018

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis of \mathbb{R}^{2} and $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then $\mathbf{x}=\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}+\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{x}$.
(b) If A is a 2×2 matrix which sends a disk of radius 2 onto a disk of radius 1 , then $|\operatorname{det} A|<1$.

Solution. (a) This is false, and is in fact only true for an orthogonal basis. For a counterexample take $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Then

$$
\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \operatorname{proj}_{\mathbf{v}_{2}} \mathbf{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

which do not add up to \mathbf{x}.
(b) This is true. The expansion factor interpretation of $|\operatorname{det} A|$ says that

$$
(\text { area of image disk })=|\operatorname{det} A|(\text { area of original disk }),
$$

so $\pi=|\operatorname{det} A|(4 \pi)$ and hence $|\operatorname{det} A|=\frac{1}{4}<1$.
2. Let A be an $n \times n$ symmetric matrix and let V be a subspace of \mathbb{R}^{n} with the property that $A \mathbf{v} \in V$ for any $\mathbf{v} \in V$. Show that if $\mathbf{w} \in V^{\perp}$, then $A \mathbf{w} \in V^{\perp}$.

Proof. (This was on the first homework.) Let $\mathbf{w} \in V^{\perp}$. Then for any $\mathbf{v} \in V$ we have:

$$
A \mathbf{w} \cdot \mathbf{v}=\mathbf{w} \cdot A \mathbf{v}=0
$$

where the first equality follows from the fact that A is symmetric and the second from the fact that $A \mathbf{v} \in v$ and \mathbf{w} is orthogonal to everything in V. Thus $A \mathbf{w}$ is orthogonal to everything in V, so $A \mathbf{w} \in V^{\perp}$.
3. Suppose A and B are $n \times n$ orthogonal matrices such that $A B^{T}$ is upper triangular with positive diagonal entries. Show that $A=B$. Hint: The product of orthogonal matrices is orthogonal.

Proof. First, since B is orthogonal B^{T} is orthogonal as well, and thus $A B^{T}$ is orthogonal. Say that $A B^{T}$ looks like

$$
\left[\begin{array}{cccc}
a_{1} & * & \cdots & * \\
& a_{2} & \cdots & * \\
& & \ddots & \vdots \\
& & & a_{n}
\end{array}\right]
$$

where a_{1}, \ldots, a_{n} are all positive and blanks denote zeroes. If this is orthogonal, the first column must have length 1 , so $a_{1}= \pm 1$ and hence $a_{1}=1$ since this entry should be positive. Next the second column must be orthogonal to the first, which implies that the entry above a_{2} must be 0 , so the second column looks like

$$
\left[\begin{array}{c}
0 \\
a_{2} \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

But then this should have length 1 , so $a_{2}= \pm 1$ and thus $a_{2}=1$ since this should be positive. In general, if we've already shown that the first k columns are simply $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$, then the ($k+1$)-st column must look like

$$
\left[\begin{array}{c}
0 \\
\vdots \\
a_{k+1} \\
\vdots \\
0
\end{array}\right]
$$

in order for this to be orthogonal to the previous $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$. As before, the fact that this has length 1 with $a_{k+1}>0$ implies that this column is \mathbf{e}_{k+1}, so we conclude that $A B^{T}=I$ is the identity matrix. Multiplying by B on both sides gives $A B^{T} B=B$, so $A=B$ since $B^{T} B=I$ because B is orthogonal.
4. Suppose A, B are $n \times n$ matrices. Show that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$. Hint: In the case where A is invertible, consider what happens when you row-reduce the matrix $\left[\begin{array}{ll}A & A B\end{array}\right]$ to turn the A on the left into I.

Proof. First, if A is non-invertible, then $A B$ is also non-invertible so $\operatorname{det} A$ and $\operatorname{det}(A B)$ are both 0 in this case, so $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$ is true.

Suppose now that A is invertible, so that A is row-reducible to the identity. This reduction gives

$$
\operatorname{det} I=(-1)^{k} c_{\ell} \cdots c_{1}(\operatorname{det} A)
$$

where k is the number of row swaps used in the reduction and the c_{i} are the nonzero scalars used in any operations which scale a row by a nonzero value. (Recall that adding a multiple of one row to another does not affect the determinant.) This gives

$$
\operatorname{det} A=\frac{1}{(-1)^{k} c_{\ell} \cdots c_{1}} .
$$

Now, the operations which transform A into I will also transform $A B$ into B :

$$
\left[\begin{array}{ll}
A & A B
\end{array}\right] \rightarrow\left[\begin{array}{ll}
I & B
\end{array}\right]
$$

since they amount to multiplying A by A^{-1} on the left, so we get

$$
\operatorname{det} B=(-1)^{k} c_{\ell} \cdots c_{1}(\operatorname{det} A B)
$$

for the same k and c_{i} as before. Thus

$$
\operatorname{det}(A B)=\frac{1}{(-1)^{k} c_{\ell} \cdots c_{1}}(\operatorname{det} B)=(\operatorname{det} A)(\operatorname{det} B)
$$

as required.
5. Let $T: P_{5}(\mathbb{R}) \rightarrow P_{5}(\mathbb{R})$ be the linear transformation defined by

$$
T(p(x))=2 x^{2} p^{\prime \prime}(x)
$$

Determine all eigenvalues and eigenvectors of T. Be sure to justify why the eigenvalues and eigenvectors you find are indeed all of them.

Solution. First note that for any $0 \leq k \leq 5$, we have:

$$
T\left(x^{k}\right)=2 x^{2}\left[k(k-1) x^{k-2}\right]=2 k(k-1) x^{k} .
$$

This shows that each x^{k} is an eigenvector of T with eigenvalue $2 k(k-1$), so we (so far) get eigenvalues

$$
0,0,4,12,24,40
$$

with eigenvectors

$$
1, x, x^{2}, x^{3}, x^{4}, x^{5}
$$

respectively. Now, this so far gives the following information about the geometric multiplicities:

$$
\operatorname{dim} E_{0} \geq 2, \operatorname{dim} E_{4} \geq 1, \operatorname{dim} E_{12} \geq 1, \operatorname{dim} E_{24} \geq 1, \operatorname{dim} E_{40} \geq 1
$$

Since this lower bounds already add up to $\operatorname{dim} P_{5}(\mathbb{R})=6$, there can be no further eigenvalues and these lower bounds must in fact equal the given dimensions. Thus we see that

$$
E_{0}=\operatorname{span}\{1, x\}, E_{4}=\operatorname{span}\left\{x^{2}\right\}, E_{12}=\operatorname{span}\left\{x^{3}\right\}, E_{24}=\operatorname{span}\left\{x^{4}\right\}, E_{40}=\operatorname{span}\left\{x^{5}\right\}
$$

describe all eigenspaces explicitly.

