Math 291-3: Midterm 1
 Northwestern University, Spring 2018

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable and f has a local maximum at a among points satisfying $g(\mathbf{x})=10$ and $\nabla f(\mathbf{a}) \neq \mathbf{0}$, then there exists $\lambda \in \mathbb{R}$ such that $\nabla g(\mathbf{a})=\lambda \nabla f(\mathbf{a})$.
(b) The function

$$
f(x, y)= \begin{cases}\frac{1}{x y} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is integrable over any square.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Consider rectangles of a fixed area $A>0$ whose sides have length at most $100 \sqrt{A}$. Show that among all such rectangles there is one of minimal perimeter and determine this minimal perimeter.
3. (10 points) Let D be the region \mathbb{R}^{2} enclosed by the circle with equation $(x-4)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{16}$. Show that

$$
\frac{3 \pi}{8} \leq \iint_{D}\left(x y+\frac{8}{x}+\frac{1}{y}\right) d A .
$$

You may assume that the global minimum of the integrand does not occur on the boundary of D.
4. (10 points) Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a continuous function. Rewrite the following iterated integral with respect to the order $d y d x d z$ instead.

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

5. (10 points) Let D be the region in \mathbb{R}^{2} enclosed by the circle with equation $x^{2}+y^{2}=4 x$. Show that

$$
\iint_{D}\left(y^{101}+\sqrt{x^{2}+y^{2}}\right) d A=\int_{-\pi / 2}^{\pi / 2} \frac{64}{3} \cos ^{3} \theta d \theta .
$$

You do NOT have to compute the integral on the right.

