Math 291-2: Midterm 1
 Northwestern University, Winter 2017

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) A 3×3 matrix with determinant 1 must be orthogonal.
(b) If λ is a real eigenvalue of an orthogonal matrix, then $\lambda= \pm 1$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are orthonormal vectors in \mathbb{R}^{n}. Show that for any $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\left(\mathbf{x} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{u}_{n}\right) \mathbf{u}_{n} .
$$

3. (10 points) Find two 3×3 orthogonal matrices Q satisfying

$$
Q\left[\begin{array}{l}
2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

4. (10 points) Suppose n is odd and that A is an $n \times n$ matrix which is skew-symmetric, meaning $A^{T}=-A$. Show that A is not invertible. Hint: What is the determinant of A ?
5. (10 points) Let $T: P_{6}(\mathbb{R}) \rightarrow P_{6}(\mathbb{R})$ be the linear transformation which sends $p(x)$ to $p(-x)$. (To be clear, $p(-x)$ is the polynomial you get by replacing with $-x$ all instances of x in $p(x)$.) Determine the eigenvalues of T and find a basis for each of its eigenspaces.
