Math 291-2: Midterm 1 Northwestern University, Winter 2017

Name: _

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.

- (a) A 3×3 matrix with determinant 1 must be orthogonal.
- (b) If λ is a real eigenvalue of an orthogonal matrix, then $\lambda = \pm 1$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are orthonormal vectors in \mathbb{R}^n . Show that for any $\mathbf{x} \in \mathbb{R}^n$,

 $\mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{x} \cdot \mathbf{u}_n)\mathbf{u}_n.$

3. (10 points) Find two 3×3 orthogonal matrices Q satisfying

$$Q\begin{bmatrix} 2/3\\1/3\\2/3\end{bmatrix} = \begin{bmatrix} 0\\1\\0\end{bmatrix}.$$

4. (10 points) Suppose n is odd and that A is an $n \times n$ matrix which is skew-symmetric, meaning $A^T = -A$. Show that A is not invertible. Hint: What is the determinant of A?

5. (10 points) Let $T : P_6(\mathbb{R}) \to P_6(\mathbb{R})$ be the linear transformation which sends p(x) to p(-x). (To be clear, p(-x) is the polynomial you get by replacing with -x all instances of x in p(x).) Determine the eigenvalues of T and find a basis for each of its eigenspaces.