Math 291-2: Midterm 1
 Northwestern University, Winter 2018

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis of \mathbb{R}^{2} and $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then $\mathbf{x}=\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}+\operatorname{proj}_{\mathbf{v}_{2}} \mathbf{x}$.
(b) If A is a 2×2 matrix which sends a disk of radius 2 onto a disk of radius 1 , then $|\operatorname{det} A|<1$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Let A be an $n \times n$ symmetric matrix and let V be a subspace of \mathbb{R}^{n} with the property that $A \mathbf{v} \in V$ for any $\mathbf{v} \in V$. Show that if $\mathbf{w} \in V^{\perp}$, then $A \mathbf{w} \in V^{\perp}$.
3. (10 points) Suppose A and B are $n \times n$ orthogonal matrices such that $A B^{T}$ is upper triangular with positive diagonal entries. Show that $A=B$. Hint: The product of orthogonal matrices is orthogonal.
4. (10 points) Suppose A, B are $n \times n$ matrices. Show that $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$. Hint: In the case where A is invertible, consider what happens when you row-reduce the matrix $\left[\begin{array}{ll}A & A B\end{array}\right]$ to turn the A on the left into I.
5. (10 points) Let $T: P_{5}(\mathbb{R}) \rightarrow P_{5}(\mathbb{R})$ be the linear transformation defined by

$$
T(p(x))=2 x^{2} p^{\prime \prime}(x)
$$

Determine all eigenvalues and eigenvectors of T. Be sure to justify why the eigenvalues and eigenvectors you find are indeed all of them.

