Math 291-1: Midterm 2 Northwestern University, Fall 2016

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample. (A counterexample is a specific example in which the given claim is indeed false.)
(a) If $A \in M_{2}(\mathbb{R})$ describes reflection across a line passing through the origin, then A is invertible.
(b) The space $M_{4}(\mathbb{R})$ does not have a 5 -dimensional subspace.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. On the board is a proof that if A is a 2×2 matrix and $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ are linearly independent vectors such that

$$
A \mathbf{v}_{1}=\mathbf{0} \text { and } A \mathbf{v}_{2} \in \operatorname{span}\left(\mathbf{v}_{1}\right),
$$

then $A^{2}=0$. Using this as a guide, prove that if A is an $n \times n$ matrix and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ are linearly independent vectors such that

$$
A \mathbf{v}_{1}=\mathbf{0} \text { and } A \mathbf{v}_{k} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right) \text { for } k=2, \ldots, n
$$

then $A^{n}=0$.
3. (10 points) Suppose A is an $n \times n$ matrix and that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ form a basis of \mathbb{R}^{n}. Show that A is invertible if and only if $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n}.
4. (10 points) Suppose V is a complex vector space of dimension n over \mathbb{C}. Complete the following proof that V has dimension $2 n$ over \mathbb{R}.

Proof. Let $v_{1}, \ldots, v_{n} \in V$ be a basis for V over \mathbb{C}. We claim that
form a basis for V over \mathbb{R}. First, suppose that

$$
a_{1} v_{1}+b_{1}\left(i v_{1}\right)+\cdots+a_{n} v_{n}+b_{n}\left(i v_{n}\right)=0
$$

for some real scalars $a_{1}, b_{1}, \ldots, a_{n}, b_{n} \in \mathbb{R}$. This equation is the same as

$$
\left(a_{1}+i b_{1}\right) v_{1}+\ldots=0 .
$$

Since v_{1}, \ldots, v_{n} are linearly independent over \mathbb{C} (because they form a basis for V over \mathbb{C}), all coefficients above must be zero:

But a complex number is zero if and only if both its real and imaginary parts are zero, so we conclude that
and hence \qquad are linearly independent over \mathbb{R}.
Let $w \overline{\in V}$. Since v_{1}, \ldots, v_{n} span V over \mathbb{C}, there are complex scalars $a_{j}+i b_{j} \in \mathbb{C}$ (with $a_{j}, b_{j} \in \mathbb{R}$) satisfying

$$
w=
$$

But this can be written as

$$
w=
$$

which expresses w as a linear combination of \qquad over \mathbb{R}. Hence these vectors span V over \mathbb{R}, so they form a basis for V over \mathbb{R}. There are $2 n$ vectors in this basis, so V has dimension $2 n$ over \mathbb{R}.
5. (10 points) Let W be the set of all polynomials $p(x)$ in $P_{3}(\mathbb{R})$ such that $p^{\prime \prime}(x)+p^{\prime}(x)+p(x)=0$.
(a) Show that W is a subspace of $P_{3}(\mathbb{R})$.
(b) Find a basis for W and hence determine the dimension of W.

