Math 291-1: Midterm 2 Northwestern University, Fall 2016

Name:

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample. (A counterexample is a specific example in which the given claim is indeed false.)

- (a) If $A \in M_2(\mathbb{R})$ describes reflection across a line passing through the origin, then A is invertible.
- (b) The space $M_4(\mathbb{R})$ does not have a 5-dimensional subspace.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. On the board is a proof that if A is a 2×2 matrix and $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$ are linearly independent vectors such that

$$A\mathbf{v}_1 = \mathbf{0} \text{ and } A\mathbf{v}_2 \in \operatorname{span}(\mathbf{v}_1),$$

then $A^2 = 0$. Using this as a guide, prove that if A is an $n \times n$ matrix and $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^n$ are linearly independent vectors such that

$$A\mathbf{v}_1 = \mathbf{0}$$
 and $A\mathbf{v}_k \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_{k-1})$ for $k = 2, \dots, n$,

then $A^n = 0$.

3. (10 points) Suppose A is an $n \times n$ matrix and that $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^n$ form a basis of \mathbb{R}^n . Show that A is invertible if and only if $A\mathbf{v}_1, \ldots, A\mathbf{v}_n$ form a basis of \mathbb{R}^n .

4. (10 points) Suppose V is a complex vector space of dimension n over \mathbb{C} . Complete the following proof that V has dimension 2n over \mathbb{R} .

Proof. Let $v_1, \ldots, v_n \in V$ be a basis for V over \mathbb{C} . We claim that

form a basis for V over \mathbb{R} . First, suppose that

 $a_1v_1 + b_1(iv_1) + \dots + a_nv_n + b_n(iv_n) = 0$

for some real scalars $a_1, b_1, \ldots, a_n, b_n \in \mathbb{R}$. This equation is the same as

 $(a_1 + ib_1)v_1 + \underline{\qquad} = 0.$

Since v_1, \ldots, v_n are linearly independent over \mathbb{C} (because they form a basis for V over \mathbb{C}), all coefficients above must be zero:

But a complex number is zero if and only if both its real and imaginary parts are zero, so we conclude that

and hence are linearly independent over \mathbb{R} . Let $w \in V$. Since v_1, \ldots, v_n span V over \mathbb{C} , there are complex scalars $a_j + ib_j \in \mathbb{C}$ (with $a_i, b_i \in \mathbb{R}$) satisfying

w = .

But this can be written as

w = _____,

which expresses w as a linear combination of ______ over \mathbb{R} . Hence these vectors span V over \mathbb{R} , so they form a basis for V over \mathbb{R} . There are 2n vectors in this basis, so V has dimension 2n over \mathbb{R} .

- 5. (10 points) Let W be the set of all polynomials p(x) in $P_3(\mathbb{R})$ such that p''(x) + p'(x) + p(x) = 0. (a) Show that W is a subspace of $P_3(\mathbb{R})$.
 - (b) Find a basis for W and hence determine the dimension of W.