Math 291-1: Midterm 2 Northwestern University, Fall 2017

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) There is no 2×2 matrix A such that $A^{2} \neq I$ but $A^{4}=I$.
(b) There is no vector space over \mathbb{C} which has dimension 5 over \mathbb{R}.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose A is an $n \times n$ matrix and that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ are linearly independent vectors such that

$$
A \mathbf{v}_{1}=\mathbf{v}_{2}, A \mathbf{v}_{2}=\mathbf{v}_{3}, \ldots, A \mathbf{v}_{n-1}=\mathbf{v}_{n}, \text { and } A \mathbf{v}_{n}=\mathbf{v}_{1} .
$$

To be clear, A has the effect of sending each of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to the next vector in the list, except that \mathbf{v}_{n} is sent to \mathbf{v}_{1}. Show that $A^{n}=I$.
3. (10 points) Suppose A and B are $n \times n$ matrices such that $A B=I_{n}$. Show that A and B are each invertible. (You cannot use the fact that if $A B=I_{n}$ for square matrices, then $B A=I_{n}$ automatically since that fact relies on the claim given here. You also cannot use the fact that if $A B$ is invertible, then A and B are each invertible, since this also relies on the claim given here.) Hint: Show that B is invertible first, using some aspect of the Amazingly Awesome Theorem.
4. (10 points) Suppose V is a vector space over \mathbb{K} and that U is a (linear) subspace of V. Suppose $b \in V$ is not in U, and define $b+U$ to be the set of all vectors in V obtained by adding V to elements of U :

$$
b+U=\{b+u \in V \mid u \in U\} .
$$

Let $w_{1}, \ldots, w_{k} \in b+U$ and $c_{1}, \ldots, c_{k} \in \mathbb{K}$. Show that $c_{1} w_{1}+\cdots+c_{k} w_{k} \in b+U$ if and only if $c_{1}+\cdots+c_{k}=1$. (You cannot take it for granted that $b+U$ is an affine subspace of V, since this fact is a consequence of this problem.)

Be careful: the forward direction, namely that if $c_{1} w_{1}+\cdots+c_{k} w_{k} \in b+U$ then $c_{1}+\cdots+c_{k}=1$, is not as obvious as it seems and requires some real thought.
5. (10 points) Let U be the subset of $M_{2}(\mathbb{C})$ consisting of all 2×2 complex matrices which equal their own transpose:

$$
U:=\left\{A \in M_{2}(\mathbb{C}) \mid A^{T}=A\right\} .
$$

Show that U is a subspace of $M_{2}(\mathbb{C})$ over \mathbb{R}, and find a basis for U over \mathbb{R}. You can take it for granted that $(A+B)^{T}=A^{T}+B^{T}$ and $(c A)^{T}=c A^{T}$, where c is a scalar. You do NOT have to justify the fact that your claimed basis is actually a basis.

