Math 291-1: Midterm 2 Northwestern University, Fall 2017

Name: _

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.

- (a) There is no 2×2 matrix A such that $A^2 \neq I$ but $A^4 = I$.
- (b) There is no vector space over \mathbb{C} which has dimension 5 over \mathbb{R} .

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose A is an $n \times n$ matrix and that $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^n$ are linearly independent vectors such that

$$A\mathbf{v}_1 = \mathbf{v}_2, \ A\mathbf{v}_2 = \mathbf{v}_3, \ \dots, \ A\mathbf{v}_{n-1} = \mathbf{v}_n, \ \text{and} \ A\mathbf{v}_n = \mathbf{v}_1.$$

To be clear, A has the effect of sending each of $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to the next vector in the list, except that \mathbf{v}_n is sent to \mathbf{v}_1 . Show that $A^n = I$.

3. (10 points) Suppose A and B are $n \times n$ matrices such that $AB = I_n$. Show that A and B are each invertible. (You cannot use the fact that if $AB = I_n$ for square matrices, then $BA = I_n$ automatically since that fact relies on the claim given here. You also cannot use the fact that if AB is invertible, then A and B are each invertible, since this also relies on the claim given here.) Hint: Show that B is invertible first, using some aspect of the Amazingly Awesome Theorem.

4. (10 points) Suppose V is a vector space over \mathbb{K} and that U is a (linear) subspace of V. Suppose $b \in V$ is not in U, and define b + U to be the set of all vectors in V obtained by adding V to elements of U:

$$b + U = \{b + u \in V \mid u \in U\}.$$

Let $w_1, \ldots, w_k \in b + U$ and $c_1, \ldots, c_k \in \mathbb{K}$. Show that $c_1w_1 + \cdots + c_kw_k \in b + U$ if and only if $c_1 + \cdots + c_k = 1$. (You cannot take it for granted that b + U is an affine subspace of V, since this fact is a consequence of this problem.)

Be careful: the forward direction, namely that if $c_1w_1 + \cdots + c_kw_k \in b + U$ then $c_1 + \cdots + c_k = 1$, is not as obvious as it seems and requires some real thought.

5. (10 points) Let U be the subset of $M_2(\mathbb{C})$ consisting of all 2×2 complex matrices which equal their own transpose:

$$U := \{ A \in M_2(\mathbb{C}) \, | \, A^T = A \}.$$

Show that U is a subspace of $M_2(\mathbb{C})$ over \mathbb{R} , and find a basis for U over \mathbb{R} . You can take it for granted that $(A + B)^T = A^T + B^T$ and $(cA)^T = cA^T$, where c is a scalar. You do NOT have to justify the fact that your claimed basis is actually a basis.