
Math 291-1: Midterm 2 Solutions
Northwestern University, Fall 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample. (A counterexample is a specific example in which the given
claim is indeed false.)

(a) If A ∈M2(R) describes reflection across a line passing through the origin, then A is invertible.
(b) The space M4(R) does not have a 5-dimensional subspace.

Solution. (a) This is true. A reflection satisfies A2x = x for all x ∈ R2, since reflecting a vector,
then reflecting the result will ways give back the original vector. Hence A2 = I, so AA = I and
A is invertible since there is a matrix (namely A itself) such that multiplying by A on either side
gives the identity. (In other words, a reflection is its own inverse.)

(b) This is false. For instance the set of all matrices of the form
a b c d
e 0 0 0
0 0 0 0
0 0 0 0


is a 5-dimensional subspace of M4(R). Indeed, this set is just the span of

E11, E12, E13, E14, E21,

where Eij is just the matrix which as a 1 in row i, column j and zeroes everywhere else. This
span is a subspace of M4(R), and since E11, E12, E13, E14, E21 form a basis for it, this subspace is
5-dimensional.

2. On the board (or in a separate file) is a proof that if A is a 2 × 2 matrix and v1,v2 ∈ R2 are
linearly independent vectors such that

Av1 = 0 and Av2 ∈ span(v1),

then A2 = 0. Using this as a guide, prove that if A is an n × n matrix and v1, . . . ,vn ∈ Rn are
linearly independent vectors such that

Av1 = 0 and Avk ∈ span(v1, . . . ,vk−1) for k = 2, . . . , n,

then An = 0.

Proof. We first claim that A`v` = 0 for each ` = 1, . . . , n. Indeed, we’re given that Av1 = 0. Since
Av2 ∈ span(v1), we have Av2 = bv1 for some b ∈ R. Then

A2v2 = A(Av2) = A(bv1) = bAv1 = b0 = 0.

Now, Av3 ∈ span(v1,v2), so

Av3 = c1v1 + c2v2 for some c1, c2 ∈ R.

Thus
A2v3 = A(Av3) = A(c1v1 + c2v2) = c1Av1 + c2Av2 = c2bv1,



and then
A3v3 = A(A2v3) = A(c2bv1) = c2bAv1 = 0.

Notice the pattern in the computations above: Av3 depended on v1 and v2, and after multiplying
by A we see that one term is “killed off” so that Av3 only depends on v1, and then multiplying by
A once more kills this final term off as well.

The same reasoning will show that Av4 depends on v1,v2,v3, A2v4 only depends on v1,v2,
A3v4 only depends on v1, and A4v4 is zero, and that the pattern continues for other vk. To phrase
this all more clearly, consider the cases worked out above as base cases and suppose we have shown
that Aivi = 0 for all i up to some k. (You did not have to write this out as formally in your own
solution; noting the pattern above would have been enough.) Note that this implies

Akvi = 0 for all i ≤ k

as well since once Aivi is zero, multiplying by more powers of A will still give zero. Then since
Avk+1 ∈ span(v1, . . . ,vk), we have

Avk+1 = d1v1 + · · ·+ dkvk for some d1, . . . , dk ∈ R.

This gives:

Ak+1vk+1 = Ak(Avk+1) = Ak(d1v1 + · · ·+ dkvk) = d1A
kv1 + · · ·+ dkA

kvk = 0 + · · ·+ 0 = 0.

Thus knowing that Aivi = 0 for all i ≤ k implies that Ak+1vk+1 = 0 as well, so we conclude that

A`v` = 0 for all `.

Since multiplying 0 by more powers of A still gives 0, this implies that

Anvk = 0 for all 1 ≤ k ≤ n.

Now, v1, . . . ,vn are n linearly independent vectors in Rn, so they automatically span Rn. Let
x ∈ Rn. Then

x = a1v1 + · · ·+ anvn for some a1, . . . , an ∈ R.

Hence
Anx = a1A

nv1 + · · ·+ anA
nvn = 0 + · · ·+ 0 = 0,

so Anx = 0 for all x ∈ Rn. Thus An = 0 as claimed. (The point is that one you know An = 0 on a
basis of Rn, it must be zero on all of Rn.)

3. Suppose A is an n × n matrix and that v1, . . . ,vn ∈ Rn form a basis of Rn. Show that A is
invertible if and only if Av1, . . . , Avn form a basis of Rn.

Proof 1. Let
[
v1 · · · vn

]
be the n× n matrix with the given basis vectors as its columns. This

matrix is invertible by the Amazingly Awesome Theorem since its columns form a basis of Rn.
Then

A
[
v1 · · · vn

]
=
[
Av1 · · · Avn

]
,

where the matrix on the right is the one with Av1, . . . , Avn as columns. If A is invertible, then the
product on the left is invertible since it is a product of invertible matrices, so[

Av1 · · · Avn

]
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is invertible and hence Av1, . . . , Avn form a basis of Rn by the Amazingly Awesome Theorem.
If instead Av1, . . . , Avn form a basis for Rn, then the matrix on the right is invertible. Multi-

plying both sides on the right by the inverse of
[
v1 · · · vn

]
gives

A =
[
Av1 · · · Avn

] [
v1 · · · vn

]−1
,

which expresses A as a product of invertible matrices. Hence A is invertible as claimed.

Proof 2. Suppose A is invertible and suppose

c1Av1 + · · ·+ cnAvn = 0.

Multiplying through by A−1 gives

c1v1 + · · ·+ cnvn = A−10 = 0.

Since v1, . . . ,vn are linearly independent, we must have c1 = · · · = cn = 0, so we conclude that
Av1, . . . , Avn are linearly independent. Since these are n linearly independent vectors in an n-
dimensional space, they automatically form a basis.

Conversely suppose Av1, . . . , Avn form a basis of Rn and suppose x ∈ Rn satisfies Ax = 0.
Since v1, . . . ,vn form a basis of Rn, we have

x = c1v1 + · · ·+ cnvn for some c1, . . . , cn ∈ R.

Then
0 = Ax = c1Av1 + · · ·+ cnAvn.

Since Av1, . . . , Avn are linearly independent, c1, . . . , cn are all zero, so

x = 0v1 + · · ·+ 0vn = 0.

Thus the only solution to Ax = 0 is x = 0, so A is invertible by the Amazingly Awesome Theorem.
(There are of course other possible proofs, using other aspects of this theorem.)

4. Suppose V is a complex vector space of dimension n over C. Complete the following proof that
V has dimension 2n over R.

Proof. Let v1, . . . , vn ∈ V be a basis for V over C. We claim that

v1, iv1, v2, iv2, . . . , vn, ivn

form a basis for V over R. First, suppose that

a1v1 + b1(iv1) + · · ·+ anvn + bn(ivn) = 0

for some real scalars a1, b1, . . . , an, bn ∈ R. This equation is the same as

(a1 + ib1)v1 + · · ·+ (an + ibn)vn = 0.

Since v1, . . . , vn are linearly independent over C (because they form a basis for V over C), all
coefficients above must be zero:

a1 + ib1 = 0, . . . , an + ibn = 0.
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But a complex number is zero if and only if both its real and imaginary parts are zero, so we
conclude that

a1 = 0 = b1, . . . , an = 0 = bn,

and hence v1, iv1, v2, iv2, . . . , vn, ivn are linearly independent over R.
Let w ∈ V . Since v1, . . . , vn span V over C, there are complex scalars aj + ibj ∈ C (with

aj , bj ∈ R) satisfying
w = (a1 + ib1)v1 + · · ·+ (an + ibn)vn.

But this can be written as

w = a1v1 + b1(iv1) + · · ·+ anvn + bn(ivn),

which expresses w as a linear combination of v1, iv1, v2, iv2, . . . , vn, ivn over R. Hence these vectors
span V over R, so they form a basis for V over R. There are 2n vectors in this basis, so V has
dimension 2n over R.

5. Let W be the set of all polynomials p(x) in P3(R) such that p′′(x) + p′(x) + p(x) = 0.
(a) Show that W is a subspace of P3(R).
(b) Find a basis for W and hence determine the dimension of W .

Solution. (a) First, the constant zero polynomial 0 satisfies

0′′ + 0′ + 0 = 0 + 0 + 0 = 0,

so 0 ∈W . If p(x), q(x) ∈W , then

(p(x) + q(x))′′ + (p(x) + q(x))′ + (p(x) + q(x)) = p′′(x) + q′′(x) + p′(x) + q′(x) + p(x) + q(x)

= (p′′(x) + p′(x) + p(x)) + (q′′(x) + q′(x) + q(x))

= 0 + 0

= 0,

where in the third line we use the fact that p(x) and q(x) are both in W in order to say that the
previous expressions were zero. Hence W is closed under addition. Finally, with p(x) ∈ W and
c ∈ R, we have

(cp(x))′′ + (cp(x))′ + (cp(x)) = cp′′(x) + cp′(x) + cp(x) = c(p′′(x) + p′(x) + p(x)) = c0 = 0,

so cp(x) ∈W and W is closed under scalar multiplication. Thus W is a subspace of P3(R).
(b) We first determine explicitly what an element of W looks like. Suppose

p(x) = a + bx + cx2 + dx3 ∈W.

Then p′′(x) + p′(x) + p(x) = 0, so

(2c + 6dx) + (b + 2cx + 3dx2) + (a + bx + cx2 + dx3) = 0.

Rearranging gives
(2c + b + a) + (6d + 2c + b)x + (3d + c)x2 + dx3 = 0.
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In order for a polynomial to be zero requires that the coefficients of xk each be zero, so we get that

a + b + 2c = 0

b + 2c + 6d = 0

c + 3d = 0

d = 0.

Solving this system gives a = b = c = d = 0, so p(x) = 0. Hence only thing in W is the zero
polynomial, so W = {0} and is thus zero dimensional. By convention, a basis for W is the empty
set ∅ (with nothing in it), but no points were deducted for missing this subtle point.
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