Math 291-1: Midterm 2 Solutions
 Northwestern University, Fall 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample. (A counterexample is a specific example in which the given claim is indeed false.)
(a) If $A \in M_{2}(\mathbb{R})$ describes reflection across a line passing through the origin, then A is invertible.
(b) The space $M_{4}(\mathbb{R})$ does not have a 5 -dimensional subspace.

Solution. (a) This is true. A reflection satisfies $A^{2} \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{2}$, since reflecting a vector, then reflecting the result will ways give back the original vector. Hence $A^{2}=I$, so $A A=I$ and A is invertible since there is a matrix (namely A itself) such that multiplying by A on either side gives the identity. (In other words, a reflection is its own inverse.)
(b) This is false. For instance the set of all matrices of the form

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is a 5-dimensional subspace of $M_{4}(\mathbb{R})$. Indeed, this set is just the span of

$$
E_{11}, E_{12}, E_{13}, E_{14}, E_{21}
$$

where $E_{i j}$ is just the matrix which as a 1 in row i, column j and zeroes everywhere else. This span is a subspace of $M_{4}(\mathbb{R})$, and since $E_{11}, E_{12}, E_{13}, E_{14}, E_{21}$ form a basis for it, this subspace is 5-dimensional.
2. On the board (or in a separate file) is a proof that if A is a 2×2 matrix and $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ are linearly independent vectors such that

$$
A \mathbf{v}_{1}=\mathbf{0} \text { and } A \mathbf{v}_{2} \in \operatorname{span}\left(\mathbf{v}_{1}\right)
$$

then $A^{2}=0$. Using this as a guide, prove that if A is an $n \times n$ matrix and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ are linearly independent vectors such that

$$
A \mathbf{v}_{1}=\mathbf{0} \text { and } A \mathbf{v}_{k} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right) \text { for } k=2, \ldots, n
$$

then $A^{n}=0$.
Proof. We first claim that $A^{\ell} \mathbf{v}_{\ell}=\mathbf{0}$ for each $\ell=1, \ldots, n$. Indeed, we're given that $A \mathbf{v}_{1}=\mathbf{0}$. Since $A \mathbf{v}_{2} \in \operatorname{span}\left(\mathbf{v}_{1}\right)$, we have $A \mathbf{v}_{2}=b \mathbf{v}_{1}$ for some $b \in \mathbb{R}$. Then

$$
A^{2} \mathbf{v}_{2}=A\left(A \mathbf{v}_{2}\right)=A\left(b \mathbf{v}_{1}\right)=b A \mathbf{v}_{1}=b \mathbf{0}=\mathbf{0}
$$

Now, $A \mathbf{v}_{3} \in \operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, so

$$
A \mathbf{v}_{3}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} \text { for some } c_{1}, c_{2} \in \mathbb{R}
$$

Thus

$$
A^{2} \mathbf{v}_{3}=A\left(A \mathbf{v}_{3}\right)=A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\right)=c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}=c_{2} b \mathbf{v}_{1}
$$

and then

$$
A^{3} \mathbf{v}_{3}=A\left(A^{2} \mathbf{v}_{3}\right)=A\left(c_{2} b \mathbf{v}_{1}\right)=c_{2} b A \mathbf{v}_{1}=\mathbf{0} .
$$

Notice the pattern in the computations above: $A \mathbf{v}_{3}$ depended on \mathbf{v}_{1} and \mathbf{v}_{2}, and after multiplying by A we see that one term is "killed off" so that $A \mathbf{v}_{3}$ only depends on \mathbf{v}_{1}, and then multiplying by A once more kills this final term off as well.

The same reasoning will show that $A \mathbf{v}_{4}$ depends on $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, A^{2} \mathbf{v}_{4}$ only depends on $\mathbf{v}_{1}, \mathbf{v}_{2}$, $A^{3} \mathbf{v}_{4}$ only depends on \mathbf{v}_{1}, and $A^{4} \mathbf{v}_{4}$ is zero, and that the pattern continues for other \mathbf{v}_{k}. To phrase this all more clearly, consider the cases worked out above as base cases and suppose we have shown that $A^{i} \mathbf{v}_{i}=\mathbf{0}$ for all i up to some k. (You did not have to write this out as formally in your own solution; noting the pattern above would have been enough.) Note that this implies

$$
A^{k} \mathbf{v}_{i}=\mathbf{0} \text { for all } i \leq k
$$

as well since once $A^{i} \mathbf{v}_{i}$ is zero, multiplying by more powers of A will still give zero. Then since $A \mathbf{v}_{k+1} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, we have

$$
A \mathbf{v}_{k+1}=d_{1} \mathbf{v}_{1}+\cdots+d_{k} \mathbf{v}_{k} \text { for some } d_{1}, \ldots, d_{k} \in \mathbb{R}
$$

This gives:

$$
A^{k+1} \mathbf{v}_{k+1}=A^{k}\left(A \mathbf{v}_{k+1}\right)=A^{k}\left(d_{1} \mathbf{v}_{1}+\cdots+d_{k} \mathbf{v}_{k}\right)=d_{1} A^{k} \mathbf{v}_{1}+\cdots+d_{k} A^{k} \mathbf{v}_{k}=\mathbf{0}+\cdots+\mathbf{0}=\mathbf{0} .
$$

Thus knowing that $A^{i} \mathbf{v}_{i}=\mathbf{0}$ for all $i \leq k$ implies that $A^{k+1} \mathbf{v}_{k+1}=\mathbf{0}$ as well, so we conclude that

$$
A^{\ell} \mathbf{v}_{\ell}=\mathbf{0} \text { for all } \ell .
$$

Since multiplying $\mathbf{0}$ by more powers of A still gives $\mathbf{0}$, this implies that

$$
A^{n} \mathbf{v}_{k}=\mathbf{0} \text { for all } 1 \leq k \leq n
$$

Now, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are n linearly independent vectors in \mathbb{R}^{n}, so they automatically span \mathbb{R}^{n}. Let $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
\mathbf{x}=a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n} \text { for some } a_{1}, \ldots, a_{n} \in \mathbb{R} .
$$

Hence

$$
A^{n} \mathbf{x}=a_{1} A^{n} \mathbf{v}_{1}+\cdots+a_{n} A^{n} \mathbf{v}_{n}=\mathbf{0}+\cdots+\mathbf{0}=\mathbf{0}
$$

so $A^{n} \mathbf{x}=\mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Thus $A^{n}=0$ as claimed. (The point is that one you know $A^{n}=0$ on a basis of \mathbb{R}^{n}, it must be zero on all of \mathbb{R}^{n}.)
3. Suppose A is an $n \times n$ matrix and that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ form a basis of \mathbb{R}^{n}. Show that A is invertible if and only if $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n}.

Proof 1. Let $\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right]$ be the $n \times n$ matrix with the given basis vectors as its columns. This matrix is invertible by the Amazingly Awesome Theorem since its columns form a basis of \mathbb{R}^{n}. Then

$$
A\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{n}
\end{array}\right],
$$

where the matrix on the right is the one with $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ as columns. If A is invertible, then the product on the left is invertible since it is a product of invertible matrices, so

$$
\left[\begin{array}{lll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{n}
\end{array}\right]
$$

is invertible and hence $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n} by the Amazingly Awesome Theorem.
If instead $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ form a basis for \mathbb{R}^{n}, then the matrix on the right is invertible. Multiplying both sides on the right by the inverse of $\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right]$ gives

$$
A=\left[\begin{array}{lll}
A \mathbf{v}_{1} & \cdots & A \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right]^{-1}
$$

which expresses A as a product of invertible matrices. Hence A is invertible as claimed.
Proof 2. Suppose A is invertible and suppose

$$
c_{1} A \mathbf{v}_{1}+\cdots+c_{n} A \mathbf{v}_{n}=\mathbf{0}
$$

Multiplying through by A^{-1} gives

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=A^{-1} \mathbf{0}=\mathbf{0}
$$

Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent, we must have $c_{1}=\cdots=c_{n}=0$, so we conclude that $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ are linearly independent. Since these are n linearly independent vectors in an n dimensional space, they automatically form a basis.

Conversely suppose $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n} and suppose $\mathbf{x} \in \mathbb{R}^{n}$ satisfies $A \mathbf{x}=\mathbf{0}$. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form a basis of \mathbb{R}^{n}, we have

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n} \text { for some } c_{1}, \ldots, c_{n} \in \mathbb{R}
$$

Then

$$
\mathbf{0}=A \mathbf{x}=c_{1} A \mathbf{v}_{1}+\cdots+c_{n} A \mathbf{v}_{n}
$$

Since $A \mathbf{v}_{1}, \ldots, A \mathbf{v}_{n}$ are linearly independent, c_{1}, \ldots, c_{n} are all zero, so

$$
\mathbf{x}=0 \mathbf{v}_{1}+\cdots+0 \mathbf{v}_{n}=\mathbf{0}
$$

Thus the only solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$, so A is invertible by the Amazingly Awesome Theorem. (There are of course other possible proofs, using other aspects of this theorem.)
4. Suppose V is a complex vector space of dimension n over \mathbb{C}. Complete the following proof that V has dimension $2 n$ over \mathbb{R}.

Proof. Let $v_{1}, \ldots, v_{n} \in V$ be a basis for V over \mathbb{C}. We claim that

$$
\underline{v_{1}, i v_{1}, v_{2}, i v_{2}, \ldots, v_{n}, i v_{n}}
$$

form a basis for V over \mathbb{R}. First, suppose that

$$
a_{1} v_{1}+b_{1}\left(i v_{1}\right)+\cdots+a_{n} v_{n}+b_{n}\left(i v_{n}\right)=0
$$

for some real scalars $a_{1}, b_{1}, \ldots, a_{n}, b_{n} \in \mathbb{R}$. This equation is the same as

$$
\left(a_{1}+i b_{1}\right) v_{1}+\underline{\cdots+\left(a_{n}+i b_{n}\right) v_{n}}=0
$$

Since v_{1}, \ldots, v_{n} are linearly independent over \mathbb{C} (because they form a basis for V over \mathbb{C}), all coefficients above must be zero:

$$
\underline{a_{1}+i b_{1}=0, \ldots, a_{n}+i b_{n}=0}
$$

But a complex number is zero if and only if both its real and imaginary parts are zero, so we conclude that

$$
\underline{a_{1}=0=b_{1}, \ldots, a_{n}=0=b_{n},}
$$

and hence $v_{1}, i v_{1}, v_{2}, i v_{2}, \ldots, v_{n}, i v_{n}$ are linearly independent over \mathbb{R}.
Let $w \overline{\in V}$. Since v_{1}, \ldots, v_{n} span V over \mathbb{C}, there are complex scalars $a_{j}+i b_{j} \in \mathbb{C}$ (with $\left.a_{j}, b_{j} \in \mathbb{R}\right)$ satisfying

$$
w=\underline{\left(a_{1}+i b_{1}\right) v_{1}+\cdots+\left(a_{n}+i b_{n}\right) v_{n}} .
$$

But this can be written as

$$
w=\underline{a_{1} v_{1}+b_{1}\left(i v_{1}\right)+\cdots+a_{n} v_{n}+b_{n}\left(i v_{n}\right), ~}
$$

which expresses w as a linear combination of $\underline{v_{1}, i v_{1}, v_{2}, i v_{2}, \ldots, v_{n}, i v_{n}}$ over \mathbb{R}. Hence these vectors span V over \mathbb{R}, so they form a basis for V over \mathbb{R}. There are $2 n$ vectors in this basis, so V has dimension $2 n$ over \mathbb{R}.
5. Let W be the set of all polynomials $p(x)$ in $P_{3}(\mathbb{R})$ such that $p^{\prime \prime}(x)+p^{\prime}(x)+p(x)=0$.
(a) Show that W is a subspace of $P_{3}(\mathbb{R})$.
(b) Find a basis for W and hence determine the dimension of W.

Solution. (a) First, the constant zero polynomial 0 satisfies

$$
0^{\prime \prime}+0^{\prime}+0=0+0+0=0
$$

so $0 \in W$. If $p(x), q(x) \in W$, then

$$
\begin{aligned}
(p(x)+q(x))^{\prime \prime}+(p(x)+q(x))^{\prime}+(p(x)+q(x)) & =p^{\prime \prime}(x)+q^{\prime \prime}(x)+p^{\prime}(x)+q^{\prime}(x)+p(x)+q(x) \\
& =\left(p^{\prime \prime}(x)+p^{\prime}(x)+p(x)\right)+\left(q^{\prime \prime}(x)+q^{\prime}(x)+q(x)\right) \\
& =0+0 \\
& =0
\end{aligned}
$$

where in the third line we use the fact that $p(x)$ and $q(x)$ are both in W in order to say that the previous expressions were zero. Hence W is closed under addition. Finally, with $p(x) \in W$ and $c \in \mathbb{R}$, we have

$$
(c p(x))^{\prime \prime}+(c p(x))^{\prime}+(c p(x))=c p^{\prime \prime}(x)+c p^{\prime}(x)+c p(x)=c\left(p^{\prime \prime}(x)+p^{\prime}(x)+p(x)\right)=c 0=0
$$

so $c p(x) \in W$ and W is closed under scalar multiplication. Thus W is a subspace of $P_{3}(\mathbb{R})$.
(b) We first determine explicitly what an element of W looks like. Suppose

$$
p(x)=a+b x+c x^{2}+d x^{3} \in W .
$$

Then $p^{\prime \prime}(x)+p^{\prime}(x)+p(x)=0$, so

$$
(2 c+6 d x)+\left(b+2 c x+3 d x^{2}\right)+\left(a+b x+c x^{2}+d x^{3}\right)=0 .
$$

Rearranging gives

$$
(2 c+b+a)+(6 d+2 c+b) x+(3 d+c) x^{2}+d x^{3}=0
$$

In order for a polynomial to be zero requires that the coefficients of x^{k} each be zero, so we get that

$$
\begin{aligned}
a+b+2 c & =0 \\
b+2 c+6 d & =0 \\
c+3 d & =0 \\
d & =0 .
\end{aligned}
$$

Solving this system gives $a=b=c=d=0$, so $p(x)=0$. Hence only thing in W is the zero polynomial, so $W=\{0\}$ and is thus zero dimensional. By convention, a basis for W is the empty set \emptyset (with nothing in it), but no points were deducted for missing this subtle point.

