Math 291-3: Midterm 2 Solutions Northwestern University, Spring 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If \mathbf{F} is C^{1} and satisfies $\operatorname{div} \mathbf{F}=x$, then there does not exist a C^{2} field \mathbf{G} such that $\operatorname{curl} \mathbf{G}=\mathbf{F}$.
(b) If C is a curve and $\int_{C} \mathbf{F} \cdot d \mathbf{s}=0$, then \mathbf{F} is conservative.

Solution. (a) This is true. If there did exist such a \mathbf{G}, we would have $\operatorname{div} \mathbf{F}=\operatorname{div}(\operatorname{curl} \mathbf{G})=0$.
(b) This is false. Take $\mathbf{F}=x y \mathbf{i}$. Then \mathbf{F} is not conservative (for instance, it's curl is nonzero), but integrating \mathbf{F} over a vertical line segment would give zero since \mathbf{F} has no \mathbf{j}-component.
2. Recall that the surface area of a smooth C^{1} surface with parametrization $\mathbf{X}(u, v)$ where $(u, v) \in$ D is given by

$$
\iint_{D}\left\|\mathbf{X}_{u} \times \mathbf{X}_{v}\right\| d u d v
$$

Compute the surface area of the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ lying below $z=4$.
Solution. We parametrize the portion of the cone we want using:

$$
\mathbf{X}(r, \theta)=(r \cos \theta, r \sin \theta, r) \text { for } 0 \leq r \leq 4,0 \leq \theta \leq 2 \pi
$$

We have

$$
\mathbf{X}_{r}=(\cos \theta, \sin \theta, 1) \text { and } \mathbf{X}_{\theta}=(-r \sin \theta, r \cos \theta, 0)
$$

so

$$
\mathbf{X}_{r} \times \mathbf{X}_{\theta}=(-r \cos \theta,-r \sin \theta, r)
$$

The surface area is thus given by:

$$
\begin{aligned}
\iint_{D}\left\|\mathbf{X}_{r} \times \mathbf{X}_{\theta}\right\| d r d \theta & =\int_{0}^{2 \pi} \int_{0}^{4} \sqrt{2 r^{2}} d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{4} r d r d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} 8 d \theta \\
& =16 \pi \sqrt{2} .
\end{aligned}
$$

3. Suppose $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a C^{2} vector field. Show that

$$
\operatorname{curl}(\operatorname{curl} \mathbf{F})=\nabla(\operatorname{div} \mathbf{F})-\langle\operatorname{div}(\nabla P), \operatorname{div}(\nabla Q), \operatorname{div}(\nabla R)\rangle .
$$

Start by computing the left-hand side.
Proof. First, we have:

$$
\operatorname{curl} \mathbf{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)
$$

Thus:

$$
\begin{aligned}
\operatorname{curl}(\operatorname{curl} \mathbf{F}) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
R_{y}-Q_{z} & P_{z}-R_{x} & Q_{x}-P_{y}
\end{array}\right| \\
& =\left(Q_{x y}-P_{y y}-P_{z z}+R_{x z}, R_{y z}-Q_{z z}-Q_{x x}+P_{y x}, P_{z x}-R_{x x}-R_{y y}+Q_{z y}\right) .
\end{aligned}
$$

Next we compute:

$$
\nabla(\operatorname{div} \mathbf{F})=\nabla\left(P_{x}+Q_{y}+R_{z}\right)=\left(P_{x x}+Q_{y x}+R_{z x}, P_{x y}+Q_{y y}+R_{z y}, P_{x z}+Q_{y z}+R_{x x}\right)
$$

Finally,

$$
\begin{aligned}
(\operatorname{div} \nabla P, \operatorname{div} \nabla Q, \operatorname{div} \nabla R) & =\left(\operatorname{div}\left(P_{x}, P_{y}, P_{z}\right), \operatorname{div}\left(Q_{x}, Q_{y}, Q_{z}\right), \operatorname{div}\left(R_{x}, R_{y}, R_{z}\right)\right) \\
& =\left(P_{x x}+P_{y y}+P_{z z}, Q_{x x}+Q_{y y}+Q_{z z}, R_{x x}+R_{y y}+R_{z z}\right)
\end{aligned}
$$

Computing $\nabla(\operatorname{div} \mathbf{F})-(\operatorname{div} \nabla P, \operatorname{div} \nabla Q, \operatorname{div} \nabla R)$ using these final two expressions and using the fact that each of P, Q, R is C^{2}, we get the expression computed above for curl curl \mathbf{F} as claimed.
4. Suppose C is the curve consisting of the line segment from $(0,0)$ to $(1,2)$, followed by the line segment from $(1,2)$ to $(2,0)$. Compute the following line integral:

$$
\int_{C}\left(2 x y e^{x^{2} y}+e^{y}\right) d x+x^{2} e^{x^{2} y} d y
$$

Solution. Write the integrand as

$$
\left(2 x y e^{x^{2} y} d x+x^{2} e^{x^{2} y} d y\right)+e^{y} d x
$$

The first term is the differential of the function $f(x, y)=e^{x^{2} y}$, so the Fundamental Theorem of Line Integrals gives:

$$
\begin{aligned}
\int_{C}\left(2 x y e^{x^{2} y}+e^{y}\right) d x+x^{2} e^{x^{2} y} d y & =\int_{C} d f+\int_{C} e^{y} d x \\
& =f(\text { end point })-f(\text { start point })+\int_{C} e^{y} d x \\
& =f(2,0)-f(0,0)+\int_{C} e^{y} d x \\
& =e^{0}-e^{0}+\int_{C} e^{y} d x \\
& =\int_{C} e^{y} d x
\end{aligned}
$$

For this remaining integral we use parametric equations. The first line segment making up C has equation $y=2 x$, so we use

$$
\mathbf{x}(t)=(t, 2 t), 0 \leq t \leq 1
$$

Hence the line integral over this portion is

$$
\int_{0}^{1} e^{2 t} d t=\frac{1}{2}\left(e^{2}-1\right)
$$

The second line segment making up C has equation $y=4-2 x$, which we parametrize using

$$
\mathbf{x}(t)=(t, 4-2 t), 1 \leq t \leq 2 .
$$

Hence the line integral over this portion is

$$
\int_{1}^{2} e^{4-2 t} d t=-\frac{1}{2}\left(1-e^{2}\right)=\frac{1}{2}\left(e^{2}-1\right) .
$$

Adding these two thus gives our final value:

$$
\int_{C}\left(2 x y e^{x^{2} y}+e^{y}\right) d x+x^{2} e^{x^{2} y} d y=e^{2}-1 .
$$

5. Suppose C is the ellipse $4 x^{2}+9 y^{2}=1$ oriented counterclockwise. Determine the value of the line integral

$$
\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}},
$$

justifying every step you take along the way. The only thing you may take for granted is that the exterior derivative of the 1 -form in question is 0 . Hint: Argue that you can replace C by a different curve.

Solution. Let C_{1} be the unit circle centered at the origin, oriented clockwise. The combined curve $C+C_{1}$ is then the boundary of the region D lying outside the circle and within the ellipse. This curve has the correct orientation to be able to apply Green's Theorem, so Green's Theorem gives:

$$
\oint_{\partial D} \frac{y d x-x d y}{x^{2}+y^{2}}=\iint_{D}\left(\frac{\partial\left[-x /\left(x^{2}+y^{2}\right)\right]}{\partial x}-\frac{\partial\left[y /\left(x^{2}+y^{2}\right)\right]}{\partial y}\right) d A=\iint_{D} 0 d A=0,
$$

where the 0 comes from direct computation or using fact which was stated we can take for granted. Now, since $\partial D=C+C_{1}$, this line integral can be split up into:

$$
\oint_{C} \frac{y d x-x d y}{x^{2}+y^{2}}+\oint_{C_{1}} \frac{y d x-x d y}{x^{2}+y^{2}}
$$

so since this sum is zero, we get

$$
\oint_{C} \frac{y d x-x d y}{x^{2}+y^{2}}=-\oint_{C_{1}} \frac{y d x-x d y}{x^{2}+y^{2}}=\oint_{-C_{1}} \frac{y d x-x d y}{x^{2}+y^{2}}
$$

where $-C_{1}$ now denotes the unit circle with counterclockwise orientation. We parametrize this using

$$
\mathbf{x}(t)=(\cos t, \sin t), 0 \leq t \leq 2 \pi .
$$

We thus have:

$$
\oint_{-C_{1}} \frac{y d x-x d y}{x^{2}+y^{2}}=\int_{0}^{2 \pi}[\sin t(-\sin t)-\cos t(\cos t)] d t=\int_{0}^{2 \pi}-1 d t=-2 \pi .
$$

Thus

$$
\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}=-2 \pi
$$

