## Math 291-3: Midterm 2 Solutions Northwestern University, Spring 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.

(a) If  $\mathbf{F}$  is  $C^1$  and satisfies div  $\mathbf{F} = x$ , then there does not exist a  $C^2$  field  $\mathbf{G}$  such that curl  $\mathbf{G} = \mathbf{F}$ . (b) If C is a curve and  $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$ , then  $\mathbf{F}$  is conservative.

Solution. (a) This is true. If there did exist such a **G**, we would have div  $\mathbf{F} = \operatorname{div}(\operatorname{curl} \mathbf{G}) = 0$ .

(b) This is false. Take  $\mathbf{F} = xy\mathbf{i}$ . Then  $\mathbf{F}$  is not conservative (for instance, it's curl is nonzero), but integrating  $\mathbf{F}$  over a vertical line segment would give zero since  $\mathbf{F}$  has no  $\mathbf{j}$ -component.

**2.** Recall that the surface area of a smooth  $C^1$  surface with parametrization  $\mathbf{X}(u, v)$  where  $(u, v) \in D$  is given by

$$\iint_D \|\mathbf{X}_u \times \mathbf{X}_v\| \, du \, dv.$$

Compute the surface area of the portion of the cone  $z = \sqrt{x^2 + y^2}$  lying below z = 4.

Solution. We parametrize the portion of the cone we want using:

$$\mathbf{X}(r,\theta) = (r\cos\theta, r\sin\theta, r) \text{ for } 0 \le r \le 4, 0 \le \theta \le 2\pi$$

We have

$$\mathbf{X}_r = (\cos\theta, \sin\theta, 1) \text{ and } \mathbf{X}_\theta = (-r\sin\theta, r\cos\theta, 0)$$

 $\mathbf{so}$ 

$$\mathbf{X}_r \times \mathbf{X}_{\theta} = (-r\cos\theta, -r\sin\theta, r).$$

The surface area is thus given by:

$$\iint_{D} \|\mathbf{X}_{r} \times \mathbf{X}_{\theta}\| dr d\theta = \int_{0}^{2\pi} \int_{0}^{4} \sqrt{2r^{2}} dr d\theta$$
$$= \sqrt{2} \int_{0}^{2\pi} \int_{0}^{4} r dr d\theta$$
$$= \sqrt{2} \int_{0}^{2\pi} 8 d\theta$$
$$= 16\pi\sqrt{2}.$$

**3.** Suppose  $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$  is a  $C^2$  vector field. Show that

$$\operatorname{curl}(\operatorname{curl} \mathbf{F}) = \nabla(\operatorname{div} \mathbf{F}) - \langle \operatorname{div}(\nabla P), \operatorname{div}(\nabla Q), \operatorname{div}(\nabla R) \rangle.$$

Start by computing the left-hand side.

*Proof.* First, we have:

$$\operatorname{curl} \mathbf{F} = (R_y - Q_z, P_z - R_x, Q_x - P_y).$$

Thus:

$$\operatorname{curl}(\operatorname{curl} \mathbf{F}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ R_y - Q_z & P_z - R_x & Q_x - P_y \end{vmatrix}$$
$$= (Q_{xy} - P_{yy} - P_{zz} + R_{xz}, R_{yz} - Q_{zz} - Q_{xx} + P_{yx}, P_{zx} - R_{xx} - R_{yy} + Q_{zy})$$

Next we compute:

$$\nabla(\operatorname{div} \mathbf{F}) = \nabla(P_x + Q_y + R_z) = (P_{xx} + Q_{yx} + R_{zx}, P_{xy} + Q_{yy} + R_{zy}, P_{xz} + Q_{yz} + R_{xx}).$$

Finally,

$$(\operatorname{div} \nabla P, \operatorname{div} \nabla Q, \operatorname{div} \nabla R) = (\operatorname{div}(P_x, P_y, P_z), \operatorname{div}(Q_x, Q_y, Q_z), \operatorname{div}(R_x, R_y, R_z))$$
$$= (P_{xx} + P_{yy} + P_{zz}, Q_{xx} + Q_{yy} + Q_{zz}, R_{xx} + R_{yy} + R_{zz}).$$

Computing  $\nabla(\operatorname{div} \mathbf{F}) - (\operatorname{div} \nabla P, \operatorname{div} \nabla Q, \operatorname{div} \nabla R)$  using these final two expressions and using the fact that each of P, Q, R is  $C^2$ , we get the expression computed above for curl curl  $\mathbf{F}$  as claimed.  $\Box$ 

**4.** Suppose C is the curve consisting of the line segment from (0,0) to (1,2), followed by the line segment from (1,2) to (2,0). Compute the following line integral:

$$\int_C (2xye^{x^2y} + e^y) \, dx + x^2 e^{x^2y} \, dy$$

Solution. Write the integrand as

$$(2xye^{x^2y}\,dx + x^2e^{x^2y}\,dy) + e^y\,dx$$

The first term is the differential of the function  $f(x, y) = e^{x^2 y}$ , so the Fundamental Theorem of Line Integrals gives:

$$\begin{split} \int_{C} (2xye^{x^{2}y} + e^{y}) \, dx + x^{2}e^{x^{2}y} \, dy &= \int_{C} df + \int_{C} e^{y} \, dx \\ &= f(\text{end point}) - f(\text{start point}) + \int_{C} e^{y} \, dx. \\ &= f(2,0) - f(0,0) + \int_{C} e^{y} \, dx \\ &= e^{0} - e^{0} + \int_{C} e^{y} \, dx \\ &= \int_{C} e^{y} \, dx. \end{split}$$

For this remaining integral we use parametric equations. The first line segment making up C has equation y = 2x, so we use

$$\mathbf{x}(t) = (t, 2t), \ 0 \le t \le 1.$$

Hence the line integral over this portion is

$$\int_0^1 e^{2t} \, dt = \frac{1}{2}(e^2 - 1).$$

The second line segment making up C has equation y = 4 - 2x, which we parametrize using

$$\mathbf{x}(t) = (t, 4 - 2t), \ 1 \le t \le 2.$$

Hence the line integral over this portion is

$$\int_{1}^{2} e^{4-2t} dt = -\frac{1}{2}(1-e^{2}) = \frac{1}{2}(e^{2}-1).$$

Adding these two thus gives our final value:

$$\int_C (2xye^{x^2y} + e^y) \, dx + x^2 e^{x^2y} \, dy = e^2 - 1.$$

5. Suppose C is the ellipse  $4x^2 + 9y^2 = 1$  oriented counterclockwise. Determine the value of the line integral

$$\int_C \frac{y\,dx - x\,dy}{x^2 + y^2},$$

justifying every step you take along the way. The only thing you may take for granted is that the exterior derivative of the 1-form in question is 0. Hint: Argue that you can replace C by a different curve.

Solution. Let  $C_1$  be the unit circle centered at the origin, oriented clockwise. The combined curve  $C + C_1$  is then the boundary of the region D lying outside the circle and within the ellipse. This curve has the correct orientation to be able to apply Green's Theorem, so Green's Theorem gives:

$$\oint_{\partial D} \frac{y \, dx - x \, dy}{x^2 + y^2} = \iint_D \left( \frac{\partial [-x/(x^2 + y^2)]}{\partial x} - \frac{\partial [y/(x^2 + y^2)]}{\partial y} \right) \, dA = \iint_D 0 \, dA = 0,$$

where the 0 comes from direct computation or using fact which was stated we can take for granted. Now, since  $\partial D = C + C_1$ , this line integral can be split up into:

$$\oint_C \frac{y \, dx - x \, dy}{x^2 + y^2} + \oint_{C_1} \frac{y \, dx - x \, dy}{x^2 + y^2}$$

so since this sum is zero, we get

$$\oint_C \frac{y \, dx - x \, dy}{x^2 + y^2} = -\oint_{C_1} \frac{y \, dx - x \, dy}{x^2 + y^2} = \oint_{-C_1} \frac{y \, dx - x \, dy}{x^2 + y^2}$$

where  $-C_1$  now denotes the unit circle with counterclockwise orientation. We parametrize this using

$$\mathbf{x}(t) = (\cos t, \sin t), \ 0 \le t \le 2\pi$$

We thus have:

$$\oint_{-C_1} \frac{y \, dx - x \, dy}{x^2 + y^2} = \int_0^{2\pi} \left[ \sin t (-\sin t) - \cos t (\cos t) \right] dt = \int_0^{2\pi} -1 \, dt = -2\pi$$

Thus

$$\int_C \frac{y\,dx - x\,dy}{x^2 + y^2} = -2\pi.$$