Math 291-2: Midterm 2 Solutions Northwestern University, Winter 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) There is a 2×2 symmetric matrix A such that $A\left[\begin{array}{l}1 \\ 1\end{array}\right]=2\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=3\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(b) There is a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $D f(\mathbf{x})=\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$ for every $\mathbf{x} \in \mathbb{R}^{2}$.

Solution. (a) This is false. Note that this given equalities say that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ would be eigenvectors of A corresponding to 2 and 3 respectively. If there were such a symmetric matrix, $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ would have to be orthogonal, which they are not, since eigenvectors corresponding to distinct eigenvalues of a symmetric matrix must always be orthogonal.
(b) This is true: the function $f(x, y)=(x+2 y,-x+y)$ works. This function is differentiable since the component functions $x+2 y$ and $-x+y$, being polynomials, are differentiable. Also, the partial derivatives of the first components are 1 and 2 , and those of the second component are -1 and 1 , so the Jacobian matrix of this function at any \mathbf{x} is indeed $\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$.
2. Determine the values of k for which the following matrix is diagonalizable. The eigenvalues are $k, 1$, and -3 .

$$
A=\left[\begin{array}{ccc}
0 & 0 & 3 \\
3 & k & 3 \\
1 & 0 & -2
\end{array}\right]
$$

Solution. (Note that this was essentially the first problem from Discussion 3.) This matrix has either two or three distinct eigenvalues depending on what k is. If $k \neq 1,-3$, there are three distinct eigenvalues and so in this case A is for sure diagonalizable: with three distinct eigenvalues each eigenspace is 1-dimensional and finding a basis vector for each gives 3 linearly independent eigenvectors overall.

If $k=1$, then there are only two eigenvalues: 1 with algebraic multiplicity 2 and -3 with algebraic multiplicity 1 . We will get one basis eigenvector corresponding to -3 , so what determines whether or not A is diagonalizable is how many basis eigenvectors we get for the eigenvalue 1 . We have (keeping in mind that $k=1$):

$$
A-I=\left[\begin{array}{ccc}
-1 & 0 & 3 \\
3 & 0 & 3 \\
1 & 0 & -3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
-1 & 0 & 3 \\
0 & 0 & 12 \\
0 & 0 & 0
\end{array}\right]
$$

so E_{1} is 1-dimensional. Hence we only get one basis eigenvector for $\lambda=1$, and together with the basis eigenvector for -3 we only get two overall, so A is not diagonalizable.

If $k=-3$, then again there are two eigenvalues, but now 1 has algebraic multiplicity 1 and -3 has algebraic multiplicity 2 . We will get one basis eigenvector corresponding to 1 , and since (keeping in mind that $k=-3$)

$$
A+3 I=\left[\begin{array}{lll}
3 & 0 & 3 \\
3 & 0 & 3 \\
1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
3 & 0 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

has a 2-dimensional kernel, E_{-3} is two dimensional so we get two basis eigenvectors. These together with the basis eigenvector for 1 gives three in total, so A is diagonalizable.

To summarize, A is diagonalizable for all $k \neq 1$. Note however that the reasons differ for $k \neq-3$ and $k=-3$: in the former case there are three distinct eigenvalues, while in the latter there are only two but the geometric multiplicity of each eigenvalue agrees with its algebraic multiplicity.
3. For fixed k, determine whether the surface in \mathbb{R}^{3} with equation

$$
3 x^{2}-y^{2}+3 z^{2}+2 x z=k
$$

is an ellipsoid, a double cone, a one-sheeted hyperboloid, or a two-sheeted hyperboloid. The answer will depend on k.

Solution. (Note that was essentially the second problem from Discussion 4.) First we rewrite the left-hand side in terms of new coordinates. This left-hand side is a quadratic form with symmetric matrix

$$
\left[\begin{array}{ccc}
3 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 3
\end{array}\right] .
$$

After finding eigenvalues and eigenvectors, this can be orthogonally diagonalized as:

$$
\left[\begin{array}{ccc}
3 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 3
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 / \sqrt{3} & -1 / \sqrt{2} \\
1 & 1 / \sqrt{3} & 0 \\
0 & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 / \sqrt{3} & -1 / \sqrt{2} \\
1 & 1 / \sqrt{3} & 0 \\
0 & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right]^{T} .
$$

After picking coordinates c_{1}, c_{2}, c_{3} with respect to the orthonormal eigenvectors making up the columns of the first matrix above, the given equation becomes:

$$
-c_{1}^{2}+4 c_{2}^{2}+2 c_{3}^{2}=k
$$

For $k>0$ the surface is a hyperboloid of one sheet centered along the c_{1}-axis with level curves the ellipses in the c_{2}, c_{3}-plane given by

$$
4 c_{2}^{2}+2 c_{3}^{2}=k+c_{1}^{2} .
$$

For $k=0$ the level surface is the double cone centered along the c_{1}-axis given by

$$
4 c_{2}^{2}+2 c_{3}^{2}=c_{1}^{2}
$$

For $k<0$, the level surface is the hyperboloid of two sheets centered along the c_{1}-axis with level curves the ellipses in the c_{2}, c_{3}-plane given by

$$
4 c_{2}^{2}+2 c_{3}^{2}=k+c_{1}^{2} .
$$

This hyperboloid of two sheets intersects the c_{1}-axis at $c_{1}= \pm \sqrt{k}$ (recall that $k<0$ here), and no portion of this hyperboloid lies between these values of c_{1}.
4. Recall that $U \subseteq \mathbb{R}^{2}$ is open if for any $\mathbf{p} \in U$, there exists $r>0$ such that $B_{r}(\mathbf{p}) \subseteq U$. Show, using this definition, that the region

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1,-1<y<1\right\}
$$

is open. (This is the square with vertices at $(-1,-1),(-1,1),(1,-1)$, and $(1,1)$, only with the corners and sides of the square excluded.)

Proof. Denote the given square by U and let $(p, q) \in U$. Then $-1<p<1$ and $-1<q<1$, so $|p|<1$ and $|q|<1$. Thus $1-|p|$ and $1-|q|$ are both positive, so their minimum

$$
r=\min \{1-|p|, 1-|q|\}
$$

is positive as well. We claim that for this radius, $B_{r}(p, q) \subseteq U$, which will show that U is open.
Indeed, let $(x, y) \in B_{r}(p, q)$, Then the distance between x and p is no more than r, and the distance between y and q is no more than r. Thus

$$
|x|=|x-p+p| \leq|x-p|+|p|<r+|p| \leq(1-|p|)+|p|=1
$$

and

$$
|y|=|y-q+q| \leq|y-q|+|q|<r+|q| \leq(1-|q|)+|q|=1 .
$$

Hence $-1<x<1$ and $-1<y<1$, so $(x, y) \in U$ and thus $B_{r}(p, q) \subseteq U$ as claimed.
5. Determine whether or not the following function is differentiable at $(0,0)$.

$$
f(x, y)= \begin{cases}y-\frac{3 x^{3}-2 y^{4}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Solution. First we compute the partial derivatives of f at $(0,0)$. We have

$$
f(x, 0)=-\frac{3 x^{3}}{x^{2}}=-3 x \text { for all } x \text { and } f(0, y)=y-\frac{-2 y^{4}}{y^{2}}=y+2 y^{2} \text { for all } y .
$$

Differentiating these single-variable functions and evaluating at 0 gives $f_{x}(0,0)=-3$ and $f_{y}(0,0)=$ 1 , so $D f(0,0)=\left[\begin{array}{ll}-3 & 1\end{array}\right]$.

Now we compute:

$$
\begin{aligned}
f(h, k)-f(0,0)-D f(0,0)\left[\begin{array}{l}
h \\
k
\end{array}\right] & =k-\frac{3 h^{3}-2 k^{4}}{h^{2}+k^{2}}+3 h-k \\
& =\frac{k\left(h^{2}+k^{2}\right)-3 h^{3}+2 k^{4}+3 h\left(h^{2}+k^{2}\right)-k\left(h^{2}+k^{2}\right)}{h^{2}+k^{2}} \\
& =\frac{2 k^{4}+3 h k^{2}}{h^{2}+k^{2}} .
\end{aligned}
$$

Thus

$$
\frac{f(h, k)-f(0,0)-D f(0,0)\left[\begin{array}{l}
h \\
k
\end{array}\right]}{\|(h, k)\|}=\frac{2 k^{4}+3 h k^{2}}{\left(h^{2}+k^{2}\right)^{3 / 2}} .
$$

Converting to polar coordinates using $h=r \cos \theta, k=r \sin \theta$ gives

$$
\frac{2 r^{4} \sin ^{4} \theta+3 r^{3} \cos \theta \sin ^{2} \theta}{r^{3}}=2 r \sin ^{4} \theta+3 \cos \theta \sin ^{2} \theta
$$

Taking the limit as $r \rightarrow 0$ along $\theta=0$ gives a different value than that along $\theta=\pi / 4$, so

$$
\lim _{r \rightarrow 0} \frac{2 r^{4} \sin ^{4} \theta+3 r^{3} \cos \theta \sin ^{2} \theta}{r^{3}}
$$

does not exist. Hence

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(h, k)-f(0,0)-D f(0,0)\left[\begin{array}{l}
h \\
k
\end{array}\right]}{\|(h, k)\|}
$$

does not exist either, so f is not differentiable at $(0,0)$.

