
Math 291-2: Midterm 2 Solutions
Northwestern University, Winter 2017

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) There is a 2× 2 symmetric matrix A such that A [ 11 ] = 2 [ 11 ] and A [ 12 ] = 3 [ 12 ].
(b) There is a differentiable function f : R2 → R2 such that Df(x) =

[
1 2
−1 1

]
for every x ∈ R2.

Solution. (a) This is false. Note that this given equalities say that [ 11 ] and [ 13 ] would be eigenvectors
of A corresponding to 2 and 3 respectively. If there were such a symmetric matrix, [ 11 ] and [ 12 ] would
have to be orthogonal, which they are not, since eigenvectors corresponding to distinct eigenvalues
of a symmetric matrix must always be orthogonal.

(b) This is true: the function f(x, y) = (x + 2y,−x + y) works. This function is differentiable
since the component functions x+ 2y and −x+ y, being polynomials, are differentiable. Also, the
partial derivatives of the first components are 1 and 2, and those of the second component are −1
and 1, so the Jacobian matrix of this function at any x is indeed

[
1 2
−1 1

]
.

2. Determine the values of k for which the following matrix is diagonalizable. The eigenvalues are
k, 1, and −3.

A =

0 0 3
3 k 3
1 0 −2


Solution. (Note that this was essentially the first problem from Discussion 3.) This matrix has
either two or three distinct eigenvalues depending on what k is. If k 6= 1,−3, there are three
distinct eigenvalues and so in this case A is for sure diagonalizable: with three distinct eigenvalues
each eigenspace is 1-dimensional and finding a basis vector for each gives 3 linearly independent
eigenvectors overall.

If k = 1, then there are only two eigenvalues: 1 with algebraic multiplicity 2 and −3 with
algebraic multiplicity 1. We will get one basis eigenvector corresponding to −3, so what determines
whether or not A is diagonalizable is how many basis eigenvectors we get for the eigenvalue 1. We
have (keeping in mind that k = 1):

A− I =

−1 0 3
3 0 3
1 0 −3

→
−1 0 3

0 0 12
0 0 0

 ,
so E1 is 1-dimensional. Hence we only get one basis eigenvector for λ = 1, and together with the
basis eigenvector for −3 we only get two overall, so A is not diagonalizable.

If k = −3, then again there are two eigenvalues, but now 1 has algebraic multiplicity 1 and
−3 has algebraic multiplicity 2. We will get one basis eigenvector corresponding to 1, and since
(keeping in mind that k = −3)

A+ 3I =

3 0 3
3 0 3
1 0 1

→
3 0 3

0 0 0
0 0 0


has a 2-dimensional kernel, E−3 is two dimensional so we get two basis eigenvectors. These together
with the basis eigenvector for 1 gives three in total, so A is diagonalizable.

To summarize, A is diagonalizable for all k 6= 1. Note however that the reasons differ for k 6= −3
and k = −3: in the former case there are three distinct eigenvalues, while in the latter there are
only two but the geometric multiplicity of each eigenvalue agrees with its algebraic multiplicity.



3. For fixed k, determine whether the surface in R3 with equation

3x2 − y2 + 3z2 + 2xz = k

is an ellipsoid, a double cone, a one-sheeted hyperboloid, or a two-sheeted hyperboloid. The answer
will depend on k.

Solution. (Note that was essentially the second problem from Discussion 4.) First we rewrite the
left-hand side in terms of new coordinates. This left-hand side is a quadratic form with symmetric
matrix 3 0 1

0 −1 0
1 0 3

 .
After finding eigenvalues and eigenvectors, this can be orthogonally diagonalized as:3 0 1

0 −1 0
1 0 3

 =

0 1/
√

3 −1/
√

2

1 1/
√

3 0

0 1/
√

3 1/
√

2

−1 0 0
0 4 0
0 0 2

0 1/
√

3 −1/
√

2

1 1/
√

3 0

0 1/
√

3 1/
√

2

T

.

After picking coordinates c1, c2, c3 with respect to the orthonormal eigenvectors making up the
columns of the first matrix above, the given equation becomes:

−c21 + 4c22 + 2c23 = k.

For k > 0 the surface is a hyperboloid of one sheet centered along the c1-axis with level curves
the ellipses in the c2, c3-plane given by

4c22 + 2c23 = k + c21.

For k = 0 the level surface is the double cone centered along the c1-axis given by

4c22 + 2c23 = c21.

For k < 0, the level surface is the hyperboloid of two sheets centered along the c1-axis with level
curves the ellipses in the c2, c3-plane given by

4c22 + 2c23 = k + c21.

This hyperboloid of two sheets intersects the c1-axis at c1 = ±
√
k (recall that k < 0 here), and no

portion of this hyperboloid lies between these values of c1.

4. Recall that U ⊆ R2 is open if for any p ∈ U , there exists r > 0 such that Br(p) ⊆ U . Show,
using this definition, that the region

{(x, y) ∈ R2 | −1 < x < 1,−1 < y < 1}

is open. (This is the square with vertices at (−1,−1), (−1, 1), (1,−1), and (1, 1), only with the
corners and sides of the square excluded.)
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Proof. Denote the given square by U and let (p, q) ∈ U . Then −1 < p < 1 and −1 < q < 1, so
|p| < 1 and |q| < 1. Thus 1− |p| and 1− |q| are both positive, so their minimum

r = min{1− |p|, 1− |q|}

is positive as well. We claim that for this radius, Br(p, q) ⊆ U , which will show that U is open.
Indeed, let (x, y) ∈ Br(p, q), Then the distance between x and p is no more than r, and the

distance between y and q is no more than r. Thus

|x| = |x− p+ p| ≤ |x− p|+ |p| < r + |p| ≤ (1− |p|) + |p| = 1

and
|y| = |y − q + q| ≤ |y − q|+ |q| < r + |q| ≤ (1− |q|) + |q| = 1.

Hence −1 < x < 1 and −1 < y < 1, so (x, y) ∈ U and thus Br(p, q) ⊆ U as claimed.

5. Determine whether or not the following function is differentiable at (0, 0).

f(x, y) =

{
y − 3x3−2y4

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Solution. First we compute the partial derivatives of f at (0, 0). We have

f(x, 0) = −3x3

x2
= −3x for all x and f(0, y) = y − −2y4

y2
= y + 2y2 for all y.

Differentiating these single-variable functions and evaluating at 0 gives fx(0, 0) = −3 and fy(0, 0) =
1, so Df(0, 0) =

[
−3 1

]
.

Now we compute:

f(h, k)− f(0, 0)−Df(0, 0)
[
h
k

]
= k − 3h3 − 2k4

h2 + k2
+ 3h− k

=
k(h2 + k2)− 3h3 + 2k4 + 3h(h2 + k2)− k(h2 + k2)

h2 + k2

=
2k4 + 3hk2

h2 + k2
.

Thus
f(h, k)− f(0, 0)−Df(0, 0)

[
h
k

]
‖(h, k)‖

=
2k4 + 3hk2

(h2 + k2)3/2
.

Converting to polar coordinates using h = r cos θ, k = r sin θ gives

2r4 sin4 θ + 3r3 cos θ sin2 θ

r3
= 2r sin4 θ + 3 cos θ sin2 θ.

Taking the limit as r → 0 along θ = 0 gives a different value than that along θ = π/4, so

lim
r→0

2r4 sin4 θ + 3r3 cos θ sin2 θ

r3

does not exist. Hence

lim
(h,k)→(0,0)

f(h, k)− f(0, 0)−Df(0, 0)
[
h
k

]
‖(h, k)‖

does not exist either, so f is not differentiable at (0, 0).
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