Math 291-3: Midterm 2
 Northwestern University, Spring 2017

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If \mathbf{F} is C^{1} and satisfies $\operatorname{div} \mathbf{F}=x$, then there does not exist a C^{2} field \mathbf{G} such that curl $\mathbf{G}=\mathbf{F}$.
(b) If C is a curve and $\int_{C} \mathbf{F} \cdot d \mathbf{s}=0$, then \mathbf{F} is conservative.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Recall that the surface area of a smooth C^{1} surface with parametrization $\mathbf{X}(u, v)$ where $(u, v) \in D$ is given by

$$
\iint_{D}\left\|\mathbf{X}_{u} \times \mathbf{X}_{v}\right\| d u d v
$$

Compute the surface area of the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ lying below $z=4$.
3. (10 points) Suppose $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a C^{2} vector field. Show that

$$
\operatorname{curl}(\operatorname{curl} \mathbf{F})=\nabla(\operatorname{div} \mathbf{F})-\langle\operatorname{div}(\nabla P), \operatorname{div}(\nabla Q), \operatorname{div}(\nabla R)\rangle .
$$

Start by computing the left-hand side.
4. (10 points) Suppose C is the curve consisting of the line segment from $(0,0)$ to $(1,2)$, followed by the line segment from $(1,2)$ to $(2,0)$. Compute the following line integral:

$$
\int_{C}\left(2 x y e^{x^{2} y}+e^{y}\right) d x+x^{2} e^{x^{2} y} d y
$$

5. (10 points) Suppose C is the ellipse $4 x^{2}+9 y^{2}=1$ oriented counterclockwise. Determine the value of the line integral

$$
\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}
$$

justifying every step you take along the way. The only thing you may take for granted is that the exterior derivative of the 1 -form in question is 0 . Hint: Argue that you can replace C by a different curve.

