Math 291-3: Midterm 2
Northwestern University, Spring 2018

Name: $\qquad$

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If $U \subseteq \mathbb{R}^{2}$ is open and $\mathbf{F}$ is a $C^{1}$ vector field of curl zero on $U$, then $\mathbf{F}$ is conservative on $U$.
(b) There does not exist a 1 -form $\omega$ on $\mathbb{R}^{3}$ such that $d \omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$.

| Problem | Score |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| Total |  |

2. (10 points) Suppose $\mathbf{F}, \mathbf{G}$ are $C^{1}$ vector fields on $\mathbb{R}^{3}$. Show that

$$
\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl}(\mathbf{F})-\mathbf{F} \cdot \operatorname{curl}(\mathbf{G})
$$

where $\mathbf{F} \times \mathbf{G}$ denotes the vector field defined by $(\mathbf{F} \times \mathbf{G})(\mathbf{p})=\mathbf{F}(\mathbf{p}) \times \mathbf{G}(\mathbf{p})$.
3. (10 points) Suppose $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a $C^{1}$ vector field on $\mathbb{R}^{n}$ and that $C$ is an oriented smooth $C^{1}$ curve in $\mathbb{R}^{n}$. Show that the line integral of $\mathbf{F}$ over $C$ is independent of parametrization of $C$. To be precise, if $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is a smooth $C^{1}$ parametrization of $C$ and $\mathbf{y}=\mathbf{x} \circ \tau$ is a different parametrization which determines the same orientation, where $\tau:[c, d] \rightarrow[a, b]$ is an injective, onto $C^{1}$ change of variables with nonzero derivative, you want to show that the line integral of $\mathbf{F}$ computed using $\mathbf{x}$ is the same as the line integral computed using $\mathbf{y}$.
4. (10 points) Suppose $C_{1}, C_{2}$ are smooth oriented $C^{1}$ curves in $\mathbb{R}^{3}$ which both begin at a point $\mathbf{q} \in \mathbb{R}^{3}$ and end at a point $\mathbf{p} \in \mathbb{R}^{3}$. Show that

$$
\int_{C_{1}}\left\langle y^{2} z^{3}, 2 x y z^{3}+z, 3 x y^{2} z^{2}+y-z\right\rangle \cdot d \mathbf{s}=\int_{C_{2}}\left\langle y^{2} z^{3}, 2 x y z^{3}+z, 3 x y^{2} z^{2}+y-z\right\rangle \cdot d \mathbf{s} .
$$

5. (10 points) Let $C$ be the top half of the unit circle oriented counterclockwise. Compute

$$
\int_{C}\left(y^{2} x+x^{2}\right) d x+\left(x^{2} y+x-y^{y^{2} \sin ^{2} y+1}\right) d y .
$$

Hint: Find a way to apply Green's Theorem.

