Math 291-3: Midterm 2 Northwestern University, Spring 2018

Name:

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.

- (a) If $U \subseteq \mathbb{R}^2$ is open and **F** is a C^1 vector field of curl zero on U, then **F** is conservative on U. (b) There does not exist a 1-form ω on \mathbb{R}^3 such that $d\omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose \mathbf{F}, \mathbf{G} are C^1 vector fields on \mathbb{R}^3 . Show that

$$\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{curl}(\mathbf{F}) - \mathbf{F} \cdot \operatorname{curl}(\mathbf{G})$$

where $\mathbf{F} \times \mathbf{G}$ denotes the vector field defined by $(\mathbf{F} \times \mathbf{G})(\mathbf{p}) = \mathbf{F}(\mathbf{p}) \times \mathbf{G}(\mathbf{p})$.

3. (10 points) Suppose $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 vector field on \mathbb{R}^n and that C is an oriented smooth C^1 curve in \mathbb{R}^n . Show that the line integral of \mathbf{F} over C is independent of parametrization of C. To be precise, if $\mathbf{x} : [a, b] \to \mathbb{R}^n$ is a smooth C^1 parametrization of C and $\mathbf{y} = \mathbf{x} \circ \tau$ is a different parametrization which determines the same orientation, where $\tau : [c, d] \to [a, b]$ is an injective, onto C^1 change of variables with nonzero derivative, you want to show that the line integral of \mathbf{F} computed using \mathbf{x} is the same as the line integral computed using \mathbf{y} .

4. (10 points) Suppose C_1, C_2 are smooth oriented C^1 curves in \mathbb{R}^3 which both begin at a point $\mathbf{q} \in \mathbb{R}^3$ and end at a point $\mathbf{p} \in \mathbb{R}^3$. Show that

$$\int_{C_1} \left\langle y^2 z^3, 2xyz^3 + z, 3xy^2 z^2 + y - z \right\rangle \cdot \, d\mathbf{s} = \int_{C_2} \left\langle y^2 z^3, 2xyz^3 + z, 3xy^2 z^2 + y - z \right\rangle \cdot \, d\mathbf{s}.$$

5. (10 points) Let C be the top half of the unit circle oriented counterclockwise. Compute

$$\int_C (y^2 x + x^2) \, dx + (x^2 y + x - y^{y^2 \sin^2 y + 1}) \, dy.$$

Hint: Find a way to apply Green's Theorem.