Math 291-2: Midterm 2
 Northwestern University, Winter 2017

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) There is a 2×2 symmetric matrix A such that $A\left[\begin{array}{l}1 \\ 1\end{array}\right]=2\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=3\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(b) There is a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $D f(\mathbf{x})=\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right]$ for every $\mathbf{x} \in \mathbb{R}^{2}$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Determine the values of k for which the following matrix is diagonalizable. The eigenvalues are $k, 1$, and -3 .

$$
A=\left[\begin{array}{ccc}
0 & 0 & 3 \\
3 & k & 3 \\
1 & 0 & -2
\end{array}\right]
$$

3. (10 points) For fixed k, determine whether the surface in \mathbb{R}^{3} with equation

$$
3 x^{2}-y^{2}+3 z^{2}+2 x z=k
$$

is an ellipsoid, a double cone, a one-sheeted hyperboloid, or a two-sheeted hyperboloid. The answer will depend on k.
4. (10 points) Recall that $U \subseteq \mathbb{R}^{2}$ is open if for any $\mathbf{p} \in U$, there exists $r>0$ such that $B_{r}(\mathbf{p}) \subseteq U$. Show, using this definition, that the region

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1,-1<y<1\right\}
$$

is open. (This is the square with vertices at $(-1,-1),(-1,1),(1,-1)$, and $(1,1)$, only with the corners and sides of the square excluded.)
5. (10 points) Determine whether or not the following function is differentiable at $(0,0)$.

$$
f(x, y)= \begin{cases}y-\frac{3 x^{3}-2 y^{4}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

