Math 291-2: Midterm 2
 Northwestern University, Winter 2018

Name: \qquad

1. (10 points) Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
(a) If A is a symmetric matrix whose only eigenvalue is 3 , then $A=3 I$.
(b) The level surfaces of $f(x, y, z)=x^{2}-y^{2}-z^{2}$ are all hyperboloids.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Let A be a 5×5 matrix of rank 3 , for which 1 is an eigenvalue with a 1 -dimensional eigenspace and -1 an eigenvalue with a 2 -dimensional eigenspace. Show that $A^{5}=A$. Hint: It is not true that 1 and -1 are the only eigenvalues of A.
3. (10 points) Find the two points on the surface given by the following equation which are closest to the origin.

$$
-x^{2}+y^{2}-z^{2}+10 x z=1
$$

To save some work, take it for granted that the eigenvalues of $\left[\begin{array}{ccc}-1 & 0 & 5 \\ 0 & 1 & 0 \\ 5 & 0 & -1\end{array}\right]$ are $1,-6,4$.
4. (10 points) Show that the set $U \subseteq \mathbb{R}^{3}$ defined by $U=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y \neq 1\right\}$ is open in \mathbb{R}^{3}.
5. (10 points) Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{-2 x^{3}+3 y^{4}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

is not differentiable at $(0,0)$, even though both partial derivatives $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist.

