Math 300: Final Exam Solutions
 Northwestern University, Spring 2017

1. Give an example of each of the following with brief justification.
(a) A true implication $P \Rightarrow Q$ whose converse $Q \Rightarrow P$ is false.
(b) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is injective but not surjective.
(c) A countable subset of the power set of \mathbb{R}.

Solution. (a) The implication "If $x>3$, then $x>1$ " is true, but the the converse "If $x>1$, then $x>3$ " is not since $x=2$ is a counterexample.
(b) The function f defined by $f(x)=e^{x}$ is injective since $e^{x}=e^{y}$ implies $x=y$, but it is not surjective since there is no x satisfying $e^{x}=0$.
(c) The set $\{\{n\} \mid n \in \mathbb{N}\}$, which is the set whose elements are singletons $\{n\}$ for $n \in \mathbb{N}$, is a subset of $\mathcal{P}(\mathbb{R})$ since each $\{n\}$ is in $\mathcal{P}(\mathbb{R})$, and is countable since there are only countably many choices for n.
2. (a) Show that for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. You may take for granted the fact that for any $x \in \mathbb{R}$, there exists $M \in \mathbb{N}$ such that $x<M$.
(b) Show that if $x \leq y+\frac{1}{n}$ for all $n \in \mathbb{N}$, then $x \leq y$.

Proof. (a) Let $\epsilon>0$. Then $\frac{1}{\epsilon} \in \mathbb{R}$, so there exists $M \in \mathbb{N}$ such that $\frac{1}{\epsilon}<M$. Rearranging this inequality gives $\frac{1}{M}<\epsilon$, where the direction of the inequality is maintained since $M>0$. This gives the desired result.
(b) By way of contrapositive, suppose $x>y$. Then $x-y>0$, so by part (a) there exists $N \in \mathbb{N}$ such that $\frac{1}{N}<x-y$. Then $x>y+\frac{1}{N}$, which justifies the contrapositive.
3. Let A and B be sets. Show that

$$
(A \cup B)-(A \cap B)=(A-B) \cup(B-A) .
$$

(This is known as the symmetric difference of A and B, and consists of all elements which belong to either A or B, but not both.)

Proof. Let $x \in(A \cup B)-(A \cap B)$. Then $x \in A \cup B$ and $x \notin A \cap B$. Since $x \in A \cup B$, we have that $x \in A$ or $x \in B$. Suppose $x \in A$. Since $x \notin A \cap B, x \notin A$ or $x \notin B$. But since we are assuming $x \in A$, it must be that $x \notin B$. Hence $x \in A-B$, so $x \in(A-B) \cup(B-A)$. Similarly, if $x \in B$, then $x \notin A \cap B$ implies that $x \notin A$, so $x \in B-A$ and again $x \in(A-B) \cup(B-A)$. Thus

$$
(A \cup B)-(A \cap B) \subseteq(A-B) \cup(B-A)
$$

Now let $x \in(A-B) \cup(B-A)$. Then $x \in A-B$ or $x \in B-A$; without loss of generality we may assume $x \in A-B$. Then $x \in A$ and $x \notin B$. Since $x \in A, x \in A \cup B$, and since $x \notin B$, $x \notin A \cap B$. Thus $x \in(A \cup B)-(A \cap B)$, so

$$
(A \cup B)-(A \cap B) \supseteq(A-B) \cup(B-A)
$$

Since both containments hold we conclude that $(A \cup B)-(A \cap B)=(A-B) \cup(B-A)$ as claimed.
4. Suppose $f: A \rightarrow B$ is a function and that S is a subset of B.
(a) Show that $f\left(f^{-1}(S)\right) \subseteq S$.
(b) Show that if f is surjective, then $f\left(f^{-1}(S)\right)=S$.

Proof. (a) Let $y \in f\left(f^{-1}(S)\right)$. Then there exists $x \in f^{-1}(S)$ such that $f(x)=y$. But by definition of $f^{-1}(S), f(x) \in S$, so $y=f(x) \in S$. Hence $f\left(f^{-1}(S)\right) \subseteq S$.
(b) We need only show the backwards containment. Let $b \in S$. Since f is surjective, there exists $a \in A$ such that $f(a)=b$. Since $f(a)=b \in S$, this means that $a \in f^{-1}(S)$, so $f(a)=b$ is actually in $f\left(f^{-1}(S)\right.$). Thus $S \subseteq f\left(f^{-1}(S)\right)$, and combined with part (a) we thus have equality.
5. Determine whether or not the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
f(x, y, z)=(x+y+z, y+z, z)
$$

is invertible.
Solution. This function is invertible. Indeed, we claim that $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
g(a, b, c)=(a-b, b-c, c)
$$

is the inverse of f. We check:

$$
g(f(x, y, z))=g(x+y+z, y+z, z)=([x+y+z]-[y+z],[y+z]-z, z)=(x, y, z)
$$

so $g \circ f=i d$, and

$$
f(g(a, b, c))=f(a-b, b-c, c)=([a-b]+[b-c]+c,[b-c]+c, c)=(a, b, c),
$$

so $f \circ g=i d$ as well. Thus f is invertible with inverse g.
6. Define an equivalence relation on \mathbb{R} by saying $x \sim y$ if $x-y \in \mathbb{Q}$. Determine, with justification, whether each equivalence class is countable or uncountable, and whether the set of equivalence classes is countable or uncountable.

Proof. Fix $x \in \mathbb{R}$. Then the equivalence class of x consists of all $y \in \mathbb{R}$ such that $x-y$ is some rational number. But this means that y is of the form $x+$ (rational), so

$$
[x]=\{x+r \mid r \in \mathbb{R}\} .
$$

Since \mathbb{Q} is countable, there are only countably many choices for r, so there are only countably many elements in $[x]$. Hence each equivalence class $[x]$ is countable.

Now, the union of all equivalence classes is all of \mathbb{R}, so if there were only countably many equivalence classes

$$
\left[x_{1}\right],\left[x_{2}\right],\left[x_{3}\right], \ldots,
$$

we would have that

$$
\mathbb{R}=\left[x_{1}\right] \cup\left[x_{2}\right] \cup\left[x_{3}\right] \cup \cdots
$$

is a countable union of countable sets, so it would be countable itself. But \mathbb{R} is uncountable, so there must be uncountably many equivalence classes, so the set of equivalence classes is uncountable.
7. A sequence $\left(r_{1}, r_{2}, r_{3}, \ldots\right)$ of rational numbers is eventually constant if there exists $r \in \mathbb{Q}$ and $N \in \mathbb{N}$ such that $r_{n}=r$ for all $n>N$. (In other words, all terms beyond some point are the same.) Show that the set of sequences of rational numbers which are eventually constant is countable.

Proof. For each $N \in \mathbb{N}$ and $r \in \mathbb{Q}$, let

$$
S_{N, r}:=\left\{\left(r_{1}, r_{2}, \ldots\right) \in \mathbb{Q}^{\infty} \mid r_{n}=r \text { for } n>N\right\} .
$$

So, $S_{N, r}$ is the set of sequences of rational numbers which are r beyond the N-th term. Such a sequence is thus fully characterized by the first N terms r_{1}, \ldots, r_{N} and the number r, so the function $S_{N, r} \rightarrow \mathbb{Q}^{N+1}$ defined by

$$
\left(r_{1}, r_{2}, \ldots, r_{N}, r, r, r, \ldots\right) \mapsto\left(r_{1}, r_{2}, \ldots, r_{N}, r\right)
$$

is bijective. Since \mathbb{Q}^{N+1} is a product of finitely many countable sets, it is countable so $S_{N, r}$ is countable as well. Hence, for each $r \in \mathbb{Q}$, the set

$$
S_{r}:=S_{1, r} \cup S_{2, r} \cup S_{3, r} \cup \cdots
$$

of sequences which are eventually r is a countable union of countable sets, so it is countable. The set of eventually constant sequences is then the union of the sets S_{r} for varying r :

$$
\bigcup_{r \in \mathbb{Q}} S_{r},
$$

so it too is a countable union of countable sets and is thus countable as well.
8. Show that the set \mathbb{Q}^{∞} of all sequences $\left(r_{1}, r_{2}, r_{3}, \ldots\right)$ of rational numbers is uncountable by showing directly that given any infinite list of elements of \mathbb{Q}^{∞}, there always exists an element of \mathbb{Q}^{∞} not included in that list. (Or in other words, given any function $\mathbb{N} \rightarrow \mathbb{Q}^{\infty}$, there exists an element of \mathbb{Q}^{∞} not included in its image.)

Proof. Let $f: \mathbb{N} \rightarrow \mathbb{Q}^{\infty}$ be any function. List the elements in the image as:

$$
\begin{aligned}
& f(1)=\left(r_{11}, r_{12}, r_{13}, \ldots\right) \\
& f(2)=\left(r_{21}, r_{22}, r_{23}, \ldots\right) \\
& f(3)=\left(r_{31}, r_{32}, r_{33}, \ldots\right)
\end{aligned}
$$

where each $r_{i j}$ is in \mathbb{Q}. Define the sequence $\left(y_{1}, y_{2}, \ldots\right)$ by picking y_{i} to be different from $r_{i i}$; say:

$$
y_{i}:= \begin{cases}3 & \text { if } r_{i i} \neq 3 \\ 5 & \text { if } r_{i i}=3\end{cases}
$$

Then $\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in \mathbb{Q}^{\infty}$ is not equal to any $f(n)$ since it differs from $f(n)$ in the n-th term, so it is not in the range of f. Hence f is not surjective, so no bijection between \mathbb{N} and \mathbb{Q}^{∞} can exist, so \mathbb{Q}^{∞} is uncountable.

