
Math 300: Final Exam Solutions
Northwestern University, Spring 2017

1. Give an example of each of the following with brief justification.
(a) A true implication P ⇒ Q whose converse Q⇒ P is false.
(b) A function f : R→ R which is injective but not surjective.
(c) A countable subset of the power set of R.

Solution. (a) The implication “If x > 3, then x > 1” is true, but the the converse “If x > 1, then
x > 3” is not since x = 2 is a counterexample.

(b) The function f defined by f(x) = ex is injective since ex = ey implies x = y, but it is not
surjective since there is no x satisfying ex = 0.

(c) The set {{n} | n ∈ N}, which is the set whose elements are singletons {n} for n ∈ N, is a
subset of P(R) since each {n} is in P(R), and is countable since there are only countably many
choices for n.

2. (a) Show that for any ε > 0, there exists N ∈ N such that 1
N < ε. You may take for granted the

fact that for any x ∈ R, there exists M ∈ N such that x < M .
(b) Show that if x ≤ y + 1

n for all n ∈ N, then x ≤ y.

Proof. (a) Let ε > 0. Then 1
ε ∈ R, so there exists M ∈ N such that 1

ε < M . Rearranging this
inequality gives 1

M < ε, where the direction of the inequality is maintained since M > 0. This gives
the desired result.

(b) By way of contrapositive, suppose x > y. Then x− y > 0, so by part (a) there exists N ∈ N
such that 1

N < x− y. Then x > y + 1
N , which justifies the contrapositive.

3. Let A and B be sets. Show that

(A ∪B)− (A ∩B) = (A−B) ∪ (B −A).

(This is known as the symmetric difference of A and B, and consists of all elements which belong
to either A or B, but not both.)

Proof. Let x ∈ (A∪B)− (A∩B). Then x ∈ A∪B and x /∈ A∩B. Since x ∈ A∪B, we have that
x ∈ A or x ∈ B. Suppose x ∈ A. Since x /∈ A ∩ B, x /∈ A or x /∈ B. But since we are assuming
x ∈ A, it must be that x /∈ B. Hence x ∈ A − B, so x ∈ (A − B) ∪ (B − A). Similarly, if x ∈ B,
then x /∈ A ∩B implies that x /∈ A, so x ∈ B −A and again x ∈ (A−B) ∪ (B −A). Thus

(A ∪B)− (A ∩B) ⊆ (A−B) ∪ (B −A).

Now let x ∈ (A − B) ∪ (B − A). Then x ∈ A − B or x ∈ B − A; without loss of generality
we may assume x ∈ A − B. Then x ∈ A and x /∈ B. Since x ∈ A, x ∈ A ∪ B, and since x /∈ B,
x /∈ A ∩B. Thus x ∈ (A ∪B)− (A ∩B), so

(A ∪B)− (A ∩B) ⊇ (A−B) ∪ (B −A).

Since both containments hold we conclude that (A∪B)−(A∩B) = (A−B)∪(B−A) as claimed.

4. Suppose f : A→ B is a function and that S is a subset of B.
(a) Show that f(f−1(S)) ⊆ S.
(b) Show that if f is surjective, then f(f−1(S)) = S.



Proof. (a) Let y ∈ f(f−1(S)). Then there exists x ∈ f−1(S) such that f(x) = y. But by definition
of f−1(S), f(x) ∈ S, so y = f(x) ∈ S. Hence f(f−1(S)) ⊆ S.

(b) We need only show the backwards containment. Let b ∈ S. Since f is surjective, there exists
a ∈ A such that f(a) = b. Since f(a) = b ∈ S, this means that a ∈ f−1(S), so f(a) = b is actually
in f(f−1(S)). Thus S ⊆ f(f−1(S)), and combined with part (a) we thus have equality.

5. Determine whether or not the function f : R3 → R3 defined by

f(x, y, z) = (x+ y + z, y + z, z)

is invertible.

Solution. This function is invertible. Indeed, we claim that g : R3 → R3 defined by

g(a, b, c) = (a− b, b− c, c)

is the inverse of f . We check:

g(f(x, y, z)) = g(x+ y + z, y + z, z) = ([x+ y + z]− [y + z], [y + z]− z, z) = (x, y, z),

so g ◦ f = id, and

f(g(a, b, c)) = f(a− b, b− c, c) = ([a− b] + [b− c] + c, [b− c] + c, c) = (a, b, c),

so f ◦ g = id as well. Thus f is invertible with inverse g.

6. Define an equivalence relation on R by saying x ∼ y if x− y ∈ Q. Determine, with justification,
whether each equivalence class is countable or uncountable, and whether the set of equivalence
classes is countable or uncountable.

Proof. Fix x ∈ R. Then the equivalence class of x consists of all y ∈ R such that x − y is some
rational number. But this means that y is of the form x+ (rational), so

[x] = {x+ r | r ∈ R}.

Since Q is countable, there are only countably many choices for r, so there are only countably many
elements in [x]. Hence each equivalence class [x] is countable.

Now, the union of all equivalence classes is all of R, so if there were only countably many
equivalence classes

[x1], [x2], [x3], . . . ,

we would have that
R = [x1] ∪ [x2] ∪ [x3] ∪ · · ·

is a countable union of countable sets, so it would be countable itself. But R is uncountable, so there
must be uncountably many equivalence classes, so the set of equivalence classes is uncountable.

7. A sequence (r1, r2, r3, . . .) of rational numbers is eventually constant if there exists r ∈ Q and
N ∈ N such that rn = r for all n > N . (In other words, all terms beyond some point are the same.)
Show that the set of sequences of rational numbers which are eventually constant is countable.
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Proof. For each N ∈ N and r ∈ Q, let

SN,r := {(r1, r2, . . .) ∈ Q∞ | rn = r for n > N}.

So, SN,r is the set of sequences of rational numbers which are r beyond the N -th term. Such
a sequence is thus fully characterized by the first N terms r1, . . . , rN and the number r, so the
function SN,r → QN+1 defined by

(r1, r2, . . . , rN , r, r, r, . . .) 7→ (r1, r2, . . . , rN , r)

is bijective. Since QN+1 is a product of finitely many countable sets, it is countable so SN,r is
countable as well. Hence, for each r ∈ Q, the set

Sr := S1,r ∪ S2,r ∪ S3,r ∪ · · ·

of sequences which are eventually r is a countable union of countable sets, so it is countable. The
set of eventually constant sequences is then the union of the sets Sr for varying r:⋃

r∈Q
Sr,

so it too is a countable union of countable sets and is thus countable as well.

8. Show that the set Q∞ of all sequences (r1, r2, r3, . . .) of rational numbers is uncountable by
showing directly that given any infinite list of elements of Q∞, there always exists an element of
Q∞ not included in that list. (Or in other words, given any function N → Q∞, there exists an
element of Q∞ not included in its image.)

Proof. Let f : N→ Q∞ be any function. List the elements in the image as:

f(1) = (r11, r12, r13, . . .)

f(2) = (r21, r22, r23, . . .)

f(3) = (r31, r32, r33, . . .)

...

where each rij is in Q. Define the sequence (y1, y2, . . .) by picking yi to be different from rii; say:

yi :=

{
3 if rii 6= 3

5 if rii = 3.

Then (y1, y2, y3, . . .) ∈ Q∞ is not equal to any f(n) since it differs from f(n) in the n-th term, so
it is not in the range of f . Hence f is not surjective, so no bijection between N and Q∞ can exist,
so Q∞ is uncountable.
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