Math 300: Final Exam
Northwestern University, Spring 2018

Name:

1. (10 points) Give an example of each of the following with brief justification.
(a) An true implication $P \Rightarrow Q$ for which $\sim P \Rightarrow \sim Q$ is false.
(b) A function $f:[0,1] \rightarrow(0,1)$ which is surjective but not injective.
(c) A countably infinite number of points in \mathbb{R}^{2}.

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
Total	

2. (10 points) Let A and B be the following sets:

$$
A=\left\{n \in \mathbb{Z} \mid n=8 k^{2}+15 \text { for some } k \in \mathbb{Z}\right\}
$$

and

$$
B=\{n \in \mathbb{Z} \mid n=4 k+3 \text { for some } k \in \mathbb{Z}\} .
$$

Show that $A \subseteq B$ and $A \neq B$.
3. (a) (5 points) Determine the following union and prove that your answer is correct.

$$
\bigcup_{n \in \mathbb{N}}\left(\frac{1}{n}, n\right)
$$

(b) (5 points) Determine the following intersection and prove that your answer is correct.

$$
\bigcap_{a<0}(a, 1]
$$

4. Suppose $f: A \rightarrow B$ is a function and that S is a subset of A.
(a) (5 points) Show that $S \subseteq f^{-1}(f(S))$.
(b) (5 points) Show that if f is injective, then $S=f^{-1}(f(S))$.
5. (10 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function defined by

$$
f(x, y)=(2 x+y, x+2 y) .
$$

Show that f is invertible by finding its inverse and verifying that it is indeed the inverse.
6. (10 points) Define an equivalence relation on \mathbb{R}^{2} by saying

$$
(x, y) \sim(a, b) \text { if there exists } \lambda \neq 0 \text { such that } a=\lambda x \text { and } b=\lambda y .
$$

Show that the set of equivalence classes has the same cardinality as \mathbb{R}. (Careful: this is not asking about the cardinality of each equivalence class, but rather of the set whose elements are the equivalence classes.)
7. (10 points) Let F be the set of all finite subsets of \mathbb{Q} :

$$
F=\{S \subseteq \mathbb{Q} \mid S \text { is finite }\} .
$$

Show that F is countable. Hint: For a fixed $n \geq 0$, how many subsets of \mathbb{Q} have at most n elements?
8. (10 points) Suppose S is a finite set with at least two elements. Show that

$$
\underbrace{S \times S \times S \times \cdots}_{\text {countably infinitely many }}
$$

is uncountable. To be clear, elements in this set look like infinite sequences

$$
\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

where each x_{i} is in S. Also, what is the cardinality of this set when $|S| \leq 1$?

