Math 300: Final Exam Northwestern University, Spring 2018

Name: _

- 1. (10 points) Give an example of each of the following with brief justification.
 - (a) An true implication $P \Rightarrow Q$ for which ${\sim}P \Rightarrow {\sim}Q$ is false.
 - (b) A function $f: [0,1] \to (0,1)$ which is surjective but not injective.
 - (c) A countably infinite number of points in \mathbb{R}^2 .

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
Total	

2. (10 points) Let A and B be the following sets:

$$A = \left\{ n \in \mathbb{Z} \mid n = 8k^2 + 15 \text{ for some } k \in \mathbb{Z} \right\}$$

and

$$B = \{ n \in \mathbb{Z} \mid n = 4k + 3 \text{ for some } k \in \mathbb{Z} \}.$$

Show that $A \subseteq B$ and $A \neq B$.

3. (a) (5 points) Determine the following union and prove that your answer is correct.

$$\bigcup_{n\in\mathbb{N}}\left(\frac{1}{n},n\right)$$

(b) (5 points) Determine the following intersection and prove that your answer is correct.

$$\bigcap_{a < 0} (a, 1]$$

- 4. Suppose f: A → B is a function and that S is a subset of A.
 (a) (5 points) Show that S ⊆ f⁻¹(f(S)).
 (b) (5 points) Show that if f is injective, then S = f⁻¹(f(S)).

5. (10 points) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by

$$f(x, y) = (2x + y, x + 2y).$$

Show that f is invertible by finding its inverse and verifying that it is indeed the inverse.

6. (10 points) Define an equivalence relation on \mathbb{R}^2 by saying

$$(x, y) \sim (a, b)$$
 if there exists $\lambda \neq 0$ such that $a = \lambda x$ and $b = \lambda y$.

Show that the set of equivalence classes has the same cardinality as \mathbb{R} . (Careful: this is not asking about the cardinality of each equivalence class, but rather of the set whose **elements** are the equivalence classes.)

7. (10 points) Let F be the set of all finite subsets of \mathbb{Q} :

$$F = \{ S \subseteq \mathbb{Q} \mid S \text{ is finite} \}.$$

Show that F is countable. Hint: For a fixed $n \ge 0$, how many subsets of \mathbb{Q} have at most n elements?

8. (10 points) Suppose S is a finite set with at least two elements. Show that

$$\underbrace{S \times S \times S \times \cdots}_{\text{countably infinitely many}}$$

is uncountable. To be clear, elements in this set look like infinite sequences

$$(x_1, x_2, x_3, \ldots)$$

where each x_i is in S. Also, what is the cardinality of this set when $|S| \leq 1$?