Math 300: Final Exam Northwestern University, Winter 2019

Name: _

- 1. (10 points) Give an example of each of the following with brief justification.
 - (a) A function $f : \mathbb{R} \to \mathbb{R}$ which is surjective but not injective.
 - (b) Nonempty subsets A_n of \mathbb{Z} indexed by $n \in \mathbb{N}$ such that $\bigcap_{n \in \mathbb{N}} A_n$ is empty.
 - (c) A subset of \mathbb{R} not containing π but whose supremum is π .

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
Total	

2. (10 points) Let A and B be the following sets:

$$A = \{ n \in \mathbb{Z} \mid n = 7k - 17 \text{ for some } k \in \mathbb{Z} \}$$

and

$$B = \{ n \in \mathbb{Z} \mid n = 14k^3 + 4 \text{ for some } k \in \mathbb{Z} \}.$$

Show that $B \subseteq A$ and $A \neq B$.

3. (a) (5 points) Prove the following set containment:

$$[0,1) \subseteq \bigcup_{\epsilon > 0} [0,1-\epsilon)$$

(b) (5 points) Prove the following set containment:

$$\bigcap_{\epsilon>0} [0,1+\epsilon] \subseteq [0,1]$$

- 4. Suppose f: A → B is a function and that X, Y ⊆ A.
 (a) (5 points) Show that f(X) f(Y) ⊆ f(X Y).
 (b) (5 points) Show that if f is injective, then f(X Y) ⊆ f(X) f(Y).

5. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by

$$f(x, y) = (2x - y - 1, x + 3).$$

(a) (5 points) Show that f is surjective.

(b) (5 points) Let S denote the subset of \mathbb{R}^2 consisting of all points on the line y = x. Show that the preimage $f^{-1}(S)$ of S under f is also a line by finding an explicit equation of this line. Just write the equation down after you work it out—you do not have to prove formally that $f^{-1}(S)$ equals the line you find by showing that each is a subset of the other. **6.** (10 points) Define an equivalence relation on \mathbb{R}^2 by saying

$$(x, y) \sim (a, b)$$
 if $2(y - b) = -3(x - a)$.

Show that the set of equivalence classes has the same cardinality as \mathbb{R} . (Careful: this is not asking about the cardinality of each equivalence class, but rather of the set whose **elements** are the equivalence classes.) Hint: Think about what each equivalence class looks like geometrically, and how you can characterize an entire class using a single real number.

7. (10 points) A function $f: \mathbb{N} \to \mathbb{N}$ is said to be *periodic* if there exists $N \in \mathbb{N}$ such that

$$f(x+N) = f(x)$$
 for all $x \in \mathbb{N}$.

(So, the values of f begin to repeat after some point: f(N+1) = f(1), f(N+2) = f(2), etc.) Show that the set of periodic functions from N to N is countable.

Hint: For a fixed $N \in \mathbb{N}$, consider the set X_N of functions from \mathbb{N} to \mathbb{N} satisfying the periodic condition f(x+N) = f(x) for that specific N. Show that each X_N is countable, making use of the fact that such a function is characterized by the values of $f(1), f(2), \ldots, f(N)$ since other values beyond this are determined by the periodic condition.

8. (10 points) Show that the set of *all* functions from \mathbb{N} to \mathbb{N} is uncountable. Hint: A function $f: \mathbb{N} \to \mathbb{N}$ is determined by the infinite sequence containing its values:

$$(f(1), f(2), f(3), \ldots)$$

which is an element of \mathbb{N}^{∞} . Thus, the set of functions from \mathbb{N} to \mathbb{N} has the same cardinality as \mathbb{N}^{∞} , which can you take for granted. So, in other words, the problem is really to show that \mathbb{N}^{∞} is uncountable, which you must do directly without quoting any result from class.