Math 300: Midterm 1 Solutions Northwestern University, Spring 2017

1. Give an example of each of the following with brief justification.
(a) Sets S, A, B such that $S \subseteq A \cup B$ but $S \nsubseteq A$ and $S \nsubseteq B$.
(b) A subset A of \mathbb{R} such that $(\mathbb{R} \times \mathbb{R})-(A \times A) \neq(\mathbb{R}-A) \times(\mathbb{R}-A)$.

Solution. (a) Take A to be the interval $(-\infty, 0], B$ to be the interval $[0, \infty)$, and S the interval $[-1,1]$. Then $A \cup B=\mathbb{R}$ so $S \subseteq A \cup B$ but S is neither a subset of A nor B individually.
(b) Take A to be the interval $[-1,1]$. Then the point $(0,2)$ is not in $A \times A$ since $2 \notin[-1,1]$, so $(0,2)$ is in $(\mathbb{R} \times \mathbb{R})-(A \times A)$, but $(0,2)$ is not in $(\mathbb{R}-A) \times(\mathbb{R}-A)$ since $0 \notin \mathbb{R}-A$.
2. Suppose A and B are the following sets:

$$
\begin{gathered}
A=\{n \in \mathbb{Z} \mid n=6 k-4 \text { for some } k \in \mathbb{Z}\} \text { and } \\
B=\{n \in \mathbb{Z} \mid n=3 k+2 \text { for some } k \in \mathbb{Z}\} .
\end{gathered}
$$

Show that $A \subseteq B$ and $B \nsubseteq A$.
Proof. Let $n \in A$. Then there exists $k \in \mathbb{Z}$ such that $n=6 k-4$. Rewriting this as

$$
n=6 k-4=3(2 k-2)+2
$$

shows there exists $\ell \in \mathbb{Z}$, namely $\ell=2 k-2$, such that $n=3 \ell+2$, so $n \in B$. Hence $A \subseteq B$. (To figure out which ℓ we need, set up $6 k-4=3 \ell+2$ and solve for ℓ in terms of k.)

Now, note that $5 \in B$ since we can write 5 as $5=3(1)+2$. However, in order for 5 to be in A we would need the existence of $k \in \mathbb{Z}$ such that $5=6 k-4$, but only $k=\frac{3}{2}$ satisfies this property and $\frac{3}{2} \notin \mathbb{Z}$, so no such $k \in \mathbb{Z}$ exists. Hence $5 \notin A$, so $B \nsubseteq A$. (To be clear, $B \subseteq A$ means "if $x \in B$, then $x \in A$ ", so after negating wee that $B \nsubseteq A$ means "there exists $x \in B$ such that $x \notin A$ ".)
3. (a) Suppose $x \in \mathbb{R}$. Show that if $1-r \leq x$ for all $r>0$, then $1 \leq x$.
(b) Determine the following intersection, and prove that your answer is correct.

$$
\bigcap_{r>0}(1-r, 3] .
$$

To be clear, we are considering intervals $(1-r, 3]=\{x \in \mathbb{R} \mid 1-r<x \leq 3\}$ as r ranges over all positive real numbers.

Proof. (a) We instead prove the contrapositive: if $1>x$, then there exists $r>0$ such that $1-r>x$. (To see what to do, rewrite the desired inequality as $1-x>r$, so we need a positive r satisfying this inequality.) Suppose $1>x$ and set $r=\frac{1}{2}(1-x)$, which is positive since $1-x>0$. Then

$$
1-x>\frac{1}{2}(1-x)=r, \text { so } 1-r>x
$$

as desired. Thus the original implication is true.
(b) We claim that

$$
\bigcap_{r>0}(1-r, 3]=[1,3] .
$$

Indeed, let $x \in[1,3]$. Then for any $r>0$ we have

$$
1-r<1 \leq x \leq 3,
$$

so $x \in(1-r, 3]$ for all $r>0$. Hence $x \in \bigcap_{r>0}(1-r, 3]$, so $\bigcap_{r>0}(1-r, 3] \supseteq[1,3]$.
Now let $x \in \bigcap_{r>0}(1-r, 3]$. Then $x \in(1-r, 3]$ for all $r>0$. In particular, this gives that $x \leq 3$, and since $1-r<x$ for all $r>0$, the result of part (a) gives that $1 \leq x$. Thus $1 \leq x \leq 3$, so $x \in[1,3]$. Hence $\bigcap_{r>0}(1-r, 3] \subseteq[1,3]$, so equality holds as claimed.
4. Suppose A, B, C are sets. Show that

$$
(A \cap B)-C=(A \cap B)-(A \cap C) .
$$

Proof. Let $x \in(A \cap B)-C$. Then $x \in A \cap B$ and $x \notin C$. Since $x \notin C, x \notin A \cap C$. (This comes from negating the definitions of $x \in A \cap C: x \in A \cap C$ means $x \in A$ and $x \in C$, so $x \notin A$ means $x \notin A$ or $x \notin C$.) Thus $x \in A \cap B$ and $x \notin A \cap C$, so $x \in(A \cap B)-(A \cap C)$. Hence $(A \cap B)-C \subseteq(A \cap B)-(A \cap C)$.

Conversely let $x \in(A \cap B)-(A \cap C)$. Then $x \in A \cap B$ and $x \notin A \cap C$. Since $x \notin A \cap C, x \notin A$ or $x \notin C$. But $x \in A \cap B$ gives that $x \in A$, so it must be the case that $x \notin C$. Hence $x \in A \cap B$ and $x \notin C$, so $x \in(A \cap B)-C$. Thus $(A \cap B)-C \supseteq(A \cap B)-(A \cap C)$, so equality holds.
5. Suppose $n \in \mathbb{Z}$. Show that n is divisible by 10 if and only if n is divisible by both 2 and 5 . (Recall that to say n is divisible by $k \in \mathbb{Z}$ means there exists $\ell \in \mathbb{Z}$ such that $n=k \ell$.)

It is NOT enough to say something along the lines of "if n has 2 and 5 as factors, then it must have $2 \cdot 5=10$ as a factor as well since 2 and 5 have no common factors apart from ± 1 " without proof. Ask if you're unsure about whether you can take some fact for granted.

Proof. Suppose n is divisible by 10 . Then there exists $k \in \mathbb{Z}$ such that $n=10 k$. This gives

$$
n=2(5 k) \text { and } n=5(2 k),
$$

which show that n is divisible by 2 and 5 respectively.
Conversely suppose n is divisible by 2 and 5 . Since n is divisible by 5 , there exists $k \in \mathbb{Z}$ such that $n=5 k$. Now, if k were odd, $5 k=n$ would be odd, in which case n would not be divisible by 2. Since n is divisible by $2, k$ must thus be even. Hence $k=2 \ell$ for some $\ell \in \mathbb{Z}$, so

$$
n=5 k=5(2 \ell)=10 \ell
$$

showing that n is divisible by 10 as claimed.

