Math 300: Midterm 1
Northwestern University, Spring 2017

Name:

1. (10 points) Give an example of each of the following with brief justification.
(a) Sets S, A, B such that $S \subseteq A \cup B$ but $S \nsubseteq A$ and $S \nsubseteq B$.
(b) A subset A of \mathbb{R} such that $(\mathbb{R} \times \mathbb{R})-(A \times A) \neq(\mathbb{R}-A) \times(\mathbb{R}-A)$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose A and B are the following sets:

$$
\begin{gathered}
A=\{n \in \mathbb{Z} \mid n=6 k-4 \text { for some } k \in \mathbb{Z}\} \text { and } \\
B=\{n \in \mathbb{Z} \mid n=3 k+2 \text { for some } k \in \mathbb{Z}\} .
\end{gathered}
$$

Show that $A \subseteq B$ and $B \nsubseteq A$.
3. (a) (5 points) Suppose $x \in \mathbb{R}$. Show that if $1-r \leq x$ for all $r>0$, then $1 \leq x$.
(b) (5 points) Determine the following intersection, and prove that your answer is correct.

$$
\bigcap_{r>0}(1-r, 3] .
$$

To be clear, we are considering intervals $(1-r, 3]=\{x \in \mathbb{R} \mid 1-r<x \leq 3\}$ as r ranges over all positive real numbers.
4. (10 points) Suppose A, B, C are sets. Show that

$$
(A \cap B)-C=(A \cap B)-(A \cap C) .
$$

5. (10 points) Suppose $n \in \mathbb{Z}$. Show that n is divisible by 10 if and only if n is divisible by both 2 and 5. (Recall that to say n is divisible by $k \in \mathbb{Z}$ means there exists $\ell \in \mathbb{Z}$ such that $n=k \ell$.)

It is NOT enough to say something along the lines of "if n has 2 and 5 as factors, then it must have $2 \cdot 5=10$ as a factor as well since 2 and 5 have no common factors apart from ± 1 " without proof. Ask if you're unsure about whether you can take some fact for granted.

