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1. Give an example of each of the following with brief justification.
(a) A function f and sets X,Y such that f(X ∩ Y ) 6= f(X) ∩ f(Y ).
(b) A surjective function f : Z→ N which is not invertible.

Solution. (a) Let f : R → R be f(x) = x2, X = [−1, 0], and Y = [0, 1]. Then X ∩ Y = {0} so
f(X ∩ Y ) = {0}, but f(X) = [0, 1] = f(Y ), so f(X) ∩ f(Y ) = [0, 1].

(b) The function f : Z → N defined by f(x) = |x| + 1 is surjective, since for any n ∈ N we
have f(n − 1) = n, but not injective since f(1) = f(−1). Hence f is not bijective, so it is not
invertible.

2. Suppose x1 > 1 and define the numbers xn recursively by

xn+1 =
1 + xn

2
for n ≥ 1.

Show that xn > 1 and xn ≥ xn+1 for all n ∈ N.

Proof. We proceed by induction on n. First,

x1 > 1 and x2 =
1 + x1

2
<

x1 + x1
2

= x1,

so the claimed inequalities hold in the n = 1 base case. Now suppose that xn > 1 and xn ≥ xn+1

for some n. Then

xn+1 =
1 + xn

2
>

1 + 1

2
= 1

and

xn+2 =
1 + xn+1

2
≤ 1 + xn

2
= xn+1.

Hence xn > 1 and xn ≥ xn+1 implies xn+1 > 1 and xn+1 ≥ xn+2, so by induction we conclude that
xn > 1 and xn ≥ xn+1 hold for all n.

3. Let f : Z→ Z be the function defined by

f(n) =

{
n + 2 if n is even

2n if n is odd.

Show that the image under f of the set of odd integers is the same as the image of the set of
multiples of 4.

Proof. Let O denote the set of odd integers and M the set of multiples of 4. Let x ∈ f(O). Then
there exists 2k+1 ∈ O such that f(2k+1) = x, which means that f(2k+1) = 2(2k+1) = 4k+2 = x.
But then

f(4k) = 4k + 2 = x,

so there exists 4k ∈M such that f(4k) = x. Hence x ∈ f(M), so f(O) ⊆ f(M).
Now let x ∈ f(M). Then there exists 4k ∈ M such that f(4k) = x, which means that

f(4k) = 4k + 2 = x. But then

f(2k + 1) = 2(2k + 1) = 4k + 2 = x,

so x ∈ f(O) since 2k + 1 is an element of O mapping to x. Thus f(M) ⊆ f(O), so f(O) = f(M)
as claimed.



4. Suppose f : A → B is a function. Show that f−1(f(X)) = X for all X ⊆ A if and only if f is
injective.

Proof. Suppose f−1(f(X)) = X for all X ⊆ A, and suppose a, a′ ∈ A satisfy f(a) = f(a′). Then
a′ ∈ f−1(f({a})) since f(a′) ∈ f({a}) = {f(a)}. By our assumption f−1(f({a})) = {a}, so
a′ ∈ {a}. Hence we must have a′ = a, so f is injective.

Conversely suppose f is injective and let X ⊆ A. If x ∈ X, then f(x) ∈ f(X) by definition
of image, so x ∈ f−1(f(X)) by definition of preimage. Thus X ⊆ f−1(f(X)). Now suppose
y ∈ f−1(f(X)). Then f(y) ∈ f(X), so there exists x ∈ X such that f(x) = f(y). Since f is
injective, we get x = y, so y ∈ X as well. Thus f−1(f(X)) ⊆ X, so f−1(f(X)) = X as claimed.

5. Define a relation ∼ on N× N by

(m,n) ∼ (a, b) if m + b = n + a.

Show that ∼ is an equivalence relation and find a bijection between the set of equivalence classes
and Z. Hint: How can you uniquely characterize equivalence classes using integers? As a start,
determine which elements of N × N are in the equivalence class of (1, 1), and which are in the
equivalence class of (1, 2).

Solution. For any (m,n) ∈ N × N, m + n = n + m so (m,n) ∼ (m,n) and hence ∼ is reflexive.
If (m,n) ∼ (a, b), then m + b = n + a, so a + n = b + m as well. Hence (a, b) ∼ (m,n), so ∼ is
symmetric. Finally, suppose (m,n) ∼ (a, b) and (a, b) ∼ (p, q). Then m+b = n+a and a+q = b+p,
so:

m + q = (n + a− b) + (b + p− a) = n + p.

Hence (m,n) ∼ (p, q), so ∼ is transitive and is thus an equivalence relation.
Fix (m,n) ∈ N×N. Then (a, b) ∼ (m,n) when a+n = b+m, or equivalently when m−n = a−b.

Thus [(m,n)] consists of all pairs of positive integers whose difference (first coordinate minus second)
gives the same integer as (m,n). The idea is that an equivalence class is then fully characterized
by this integer difference, so the function from the set of equivalence classes to Z defined by

[(m,n)] 7→ m− n

should be a bijection. Note first that this function is well-defined since [(a, b)] = [(m,n)] give the
same output a− b = m− n. If [(m,n)] and [(a, b)] both give the same output m− n = a− b, then
m+ b = n+a so (m,n) ∼ (a, b) and hence [(m,n)] = [(a, b)], showing that this function is injective.
In addition, for any x ∈ Z, picking positive integers m,n ∈ N such that m − n = x gives a class
[(m,n)] which is sent to x, so this function is surjective as required.

The point of this problem is that this gives a way to “construct” the set of integers from the
set of natural numbers. We define an “integer” to be an equivalence class of N × N under this
equivalence relation, where we interpret [(m,n)] as thus “representing” the integer m− n.


