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Northwestern University, Spring 2018

1. Give an example of each of the following with brief justification.
(a) A function f : R→ R and sets X,Y ⊆ R such that f(X\Y ) 6= f(X)\f(Y ).
(b) An injective function f : (0, 2)→ (0, 2) which is not invertible.

Solution. (a) Take f(x) = x2, X = [−1, 0] and Y = [0, 1]. Then X\Y = [−1, 0), so f(X\Y ) = (0, 1].
But f(X) = f(Y ) = [0, 1], so f(X)\f(Y ) = ∅.

(b) The function f(x) = x
2 works. It is injective since x

2 = y
2 implies x = y, but it is not

surjective since no x ∈ (0, 2) satisfies f(x) = x
2 = 1.5. (Note that for x ∈ (0, 2), x2 is still in (0, 2) so

f indeed maps (0, 2) into (0, 2).)

2. For a complex number z = a+ ib, where a and b are real numbers, the complex conjugate of z is
the complex number z = a− ib. Show that for any n complex numbers, where n ≥ 2, the following
equality holds:

z1z2 · · · zn = z1 z2 · · · zn.

Proof. Let z1 = a1 + ib1 and z2 = a2 + ib2, where a1, b1, a2, b2 ∈ R. Then

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1),

so
z1z2 = (a1a2 − b1b2)− i(a1b2 + a2b1).

Now,
z1 z2 = (a1 − ib1)(a2 − ib2) = (a1a2 − b1b2)− i(a1b2 + a2b1),

so we see that z1z2 = z1 z2, so the required identity holds for the base case of n = 2.
Suppose now that for some n ≥ 2, the required identity holds for any n complex numbers. Let

z1, . . . , zn+1 be n + 1 complex numbers. Then

z1 · · · zn−1zn = (z1 · · · zn−1)zn = z1 · · · zn−1 zn

by the base case, and
z1 · · · zn−1 = z1 · · · zn−1

by the induction hypothesis. Putting it all together gives

z1 · · · zn+1 = z1 · · · zn+1,

so the required identity holds for n + 1 complex numbers. Hence by induction we conclude that it
holds for any n ≥ 2 complex numbers.

3. Let f : Z→ Z be the function defined by

f(n) =

{
2n + 1 if n is even

n− 1 if n is odd.

Show that the image of 2Z is equal to the inverse image of 4Z. (Recall that 2Z denotes the set
of even integers and 4Z the set of multiples of 4.)



Proof. Let b ∈ f(2Z). Then there exists 2k ∈ 2Z, where k ∈ Z, such that f(2k) = b. By the
definition of f , this gives

2(2k) + 1 = b, so b = 4k + 1.

Since b is then odd, we have f(b) = b− 1 = (4k + 1)− 1 = 4k ∈ 4Z. Hence b ∈ f−1(4Z), so we have
that f(2Z) ⊆ f−1(4Z).

Now suppose y ∈ f−1(4Z). Then f(y) ∈ 4Z, so f(y) = 4k for some k ∈ Z. By the definition of
f , in order for f(y) to be even, y must be odd, so 4k = f(y) = y − 1. Hence y = 4k + 1. Thus

f(2k) = 2(2k) + 1 = 4k + 1 = y,

so y ∈ f(2Z). Hence f−1(4Z) ⊆ f(2Z), so f(2Z) = f−1(4Z) as claimed.

4. Suppose f : A → B and g : B → C are functions such that g ◦ f : A → C is bijective. Show
that g is injective if and only if f is surjective.

Proof. Suppose g is injective. Let b ∈ B. Then g(b) ∈ C, so since g ◦ f is surjective, there exists
a ∈ A such that g(f(a)) = g(b). Since g is injective, f(a) = b, so we have found a ∈ A which f
sends to b. Since b ∈ B was arbitrary, this shows that f is surjective.

Conversely suppose f is surjective. Suppose b1, b2 ∈ B are such that g(b1) = g(b2). Since f is
surjective, there exist a1, a2 ∈ A such that f(a1) = b1 and f(a2) = b2. Then we have

g(f(a1)) = g(f(a2)), so a1 = a2

since g ◦ f is injective. Applying f gives f(a1) = f(a2), so b1 = b2. Hence g is injective.

5. Let R∗ denote the set of nonzero real numbers. Define a relation on R∗ × R∗ by saying

(x, y) ∼ (a, b) if xa > 0 and yb > 0.

Show that ∼ is an equivalence relation, and show that there are only four distinct equivalence
classes, which you should be able to describe explicitly. (So, the equivalence class of any point
(x, y) will be equal to one of these four.)

Proof. Let (x, y) ∈ R∗ × R∗. Since x and y are nonzero, xx > 0 and yy > 0. Hence (x, y) ∼ (x, y),
so ∼ is reflexive. Suppose (x, y) ∼ (a, b). Then xa > 0 and yb > 0. But this is the same as ax > 0
and by > 0, so (a, b) ∼ (x, y). Hence ∼ is symmetric.

Finally suppose (x, y) ∼ (a, b) and (a, b) ∼ (p, q). Then xa > 0, yb > 0, ap > 0, and bq > 0.
Since ap > 0 and a 6= 0, p

a > 0. Thus

xp = (xa)
p

a
> 0

since the right is the product of two positive numbers. Similarly, since bq > 0 and b 6= 0, q
b > 0. So

yq = (yb)
q

b
> 0.

Thus (x, y) ∼ (p, q), so ∼ is transitive.
Now, (x, y) ∼ (1, 1) if and only if x(1) > 0 and y(1) > 0. Thus the equivalence class of (1, 1)

consists of all points whose coordinates are both positive, so [(1, 1)] is the first quadrant of R∗×R∗.
Next, (x, y) ∼ (−1, 1) if and only if x(−1) > 0 and y(1) > 0, which says that x < 0 and y > 0.
Thus [(−1, 1)] consists of all points with negative x-coordinate and positive y-coordinate, so it is
the second quadrant. Similarly, (x, y) ∼ (−1, 1) if and only if x, y are both negative, so [(−1, 1)] is
the third quadrant, and (x, y) ∼ (1,−1) if and only if x is positive and y is negative, so [(1,−1)] is
the fourth quadrant. Since these four equivalence classes already cover everything in R∗ × R∗, we
conclude that they are the only distinct equivalence classes as claimed.

2


