Math 300: Midterm 2 Solutions Northwestern University, Winter 2019

1. Give an example of each of the following with brief justification.

- (a) An invertible function $f : \mathbb{Z} \to \mathbb{Z}$ which is not the identity function.
- (b) A subset X of \mathbb{R} such that $f^{-1}(f(X)) \neq X$ where $f : \mathbb{R} \to \mathbb{R}$ is $f(x) = x^2$.

Solution. (a) The function f(n) = n + 1 is invertible since it has inverse $f^{-1}(n) = n - 1$, but is not the identity function.

(b) The subset X = [0,1] works. We have f(X) = [0,1] and $f^{-1}(f(X)) = [-1,1]$, which contains more than [0,1].

2. Suppose $x_1 < 2$ and define the numbers x_n for n > 1 by setting

$$x_{n+1} = \frac{4x_n + 2}{5}$$
 for $n \ge 1$

Show that 2 is an upper bound of the set $\{x_n \mid n \in \mathbb{N}\}$ containing these numbers.

Proof. By assumption, $x_1 < 2$. Suppose now that $x_n < 2$ for some n. Then:

$$x_{n+1} = \frac{4x_n + 2}{5} < \frac{4(2) + 2}{5} = \frac{10}{5} = 2$$

Thus by induction we conclude that $x_n < 2$ for all $n \in \mathbb{N}$, so 2 is an upper bound of the given set containing the numbers x_n of this sequence.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} 3x+1 & \text{if } x > -1 \\ e^x & \text{if } x \le -1 \end{cases}$$

(a) Determine, with proof, the image f([-2, 1]) of the interval [-2, 1] under f. (You can draw a picture of the graph of f to come up with a guess as to what the answer should be, but the picture alone does not constitute a proof.)

(b) Also, determine what the preimage $f^{-1}([1/3, 1])$ of the interval [1/3, 1] is, but you do not have to prove that your answer is correct in this case.

Solution. As a reference, the graph of f looks like:

(a) We claim that f([-2,1]) = (-2,4]. First, suppose $y \in f([-2,1])$. Then there exists $x \in [-2,1]$ such that f(x) = y. If $-1 < x \le 1$, then y = f(x) = 3x + 1 which lies in (-2,4] since $-1 < x \le 1$:

 $-3 < 3x \le 3$, so $-2 < 3x + 1 \le 4$.

If $-2 \le x \le -1$, then $y = f(x) = e^x$ which also lies in (-2, 4]:

$$-2 < e^{-2} \le e^x \le e^{-1} \le 4.$$

Thus either way we have $y \in (-2, 4]$, so $f([-2, 1]) \subseteq (-2, 4]$.

Conversely suppose $y \in (-2, 4]$. Then $-3 < y - 1 \le 3$ so

$$-1 < \frac{y-1}{3} \le 1$$

Since $x := \frac{y-1}{3} \in (-1,1] \subseteq [-2,1]$ satisfies $f(x) = 3x + 1 = 3\left(\frac{y-1}{3}\right) + 1 = y$, we conclude that $y \in f((-2,1])$. Hence $f([-2,1]) \supseteq (-2,4]$, so we have equality as claimed.

(b) We want elements x such that $f(x) \in [1/3, 1]$. First, for $x \leq -1$, this requires that

$$\frac{1}{3} \le e^x \le 1$$
, so $\ln \frac{1}{3} \le x \le \ln 1 = 0$,

and in fact the right side can be strengthened to $x \leq -1$ since in this case we are considering $x \leq -1$. Thus numbers in $[\frac{1}{3}, -1]$ are in the preimage of [1/3, 1]. For x > -1, the requirement is that

$$\frac{1}{3} \le 3x + 1 \le 1$$
, so $-\frac{2}{9} \le x \le 0$.

These numbers should also be in the preimage, so

$$f^{-1}([1/3,1]) = [-\frac{2}{9},0] \cup [\ln\frac{1}{3},-1].$$

4. Suppose $f : A \to B$ and $g : B \to C$ are functions such that $g \circ f : A \to C$ is injective. Show that f is injective. (We did this in class, but of course you cannot simply quote this exact result from class.)

Solution. Suppose $f(a_1) = f(a_2)$ for some $a_1, a_2 \in A$. Then $g(f(a_1)) = g(f(a_2))$, or in other words $(g \circ f)(a_1) = (g \circ f)(a_2)$. Since $g \circ f$ is injective, we conclude that $a_1 = a_2$, and hence that f is injective as claimed.

5. Define a relation \sim on \mathbb{R}^2 by setting

$$(x, y) \sim (a, b)$$
 if $y - b = 3(x - a)$

(a) Show that \sim is an equivalence relation.

(b) For a fixed point $(x, y) \in \mathbb{R}^2$ find the element in the equivalence class [(x, y)] of (x, y) which is on the x-axis. (You can take for granted the fact that each equivalence class intersects the x-axis in exactly one point.) Solution. (a) For $(x, y) \in \mathbb{R}^2$, we have

$$y - y = 3(x - x)$$

so $(x, y) \sim (x, y)$ and hence \sim is reflexive. Suppose $(x, y) \sim (a, b)$. Then

$$y - b = 3(x - a)$$
, so $-(b - y) = -3(a - x)$.

This gives b - y = 3(a - x), so $(a, b) \sim (x, y)$ and hence \sim is symmetric. Finally, suppose $(x, y) \sim (a, b)$ and $(a, b) \sim (p, q)$. Then

$$y - b = 3(x - a)$$
 and $b - q = 3(a - p)$.

Adding these together gives

$$y - q = 3(x - a) + 3(a - p) = 3(x - p),$$

so $(x, y) \sim (p, q)$ and thus \sim is transitive. Hence \sim is an equivalence relation as claimed.

(b) Points in [(x, y)] are those points (a, b) which satisfy

$$y - b = 3(x - a).$$

In order for (a, b) to be on the x-axis we need b = 0, in which case the condition above becomes

$$y = 3(x - a).$$

Thus $a = \frac{3x-y}{3}$. Hence the point in the equivalence class [(x, y)] which is on the x-axis is the point $(\frac{3x-y}{3}, 0)$.