Math 300: Midterm 2
Northwestern University, Spring 2017

Name:

1. (10 points) Give an example of each of the following with brief justification.
(a) A function f and sets X, Y such that $f(X \cap Y) \neq f(X) \cap f(Y)$.
(b) A surjective function $f: \mathbb{Z} \rightarrow \mathbb{N}$ which is not invertible.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $x_{1}>1$ and define the numbers x_{n} recursively by

$$
x_{n+1}=\frac{1+x_{n}}{2} \text { for } n \geq 1
$$

Show that $x_{n}>1$ and $x_{n} \geq x_{n+1}$ for all $n \in \mathbb{N}$.
3. (10 points) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function defined by

$$
f(n)= \begin{cases}n+2 & \text { if } n \text { is even } \\ 2 n & \text { if } n \text { is odd }\end{cases}
$$

Show that the image under f of the set of odd integers is the same as the image of the set of multiples of 4 .
4. (10 points) Suppose $f: A \rightarrow B$ is a function. Show that $f^{-1}(f(X))=X$ for all $X \subseteq A$ if and only if f is injective.
5. (10 points) Define a relation \sim on $\mathbb{N} \times \mathbb{N}$ by

$$
(m, n) \sim(a, b) \text { if } m+b=n+a .
$$

Show that \sim is an equivalence relation and find a bijection between the set of equivalence classes and \mathbb{Z}. Hint: How can you uniquely characterize equivalence classes using integers? As a start, determine which elements of $\mathbb{N} \times \mathbb{N}$ are in the equivalence class of $(1,1)$, and which are in the equivalence class of $(1,2)$.

