Math 300: Midterm 2
 Northwestern University, Winter 2019

Name:

1. (10 points) Give an example of each of the following with brief justification.
(a) An invertible function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which is not the identity function.
(b) A subset X of \mathbb{R} such that $f^{-1}(f(X)) \neq X$ where $f: \mathbb{R} \rightarrow \mathbb{R}$ is $f(x)=x^{2}$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $x_{1}<2$ and define the numbers x_{n} for $n>1$ by setting

$$
x_{n+1}=\frac{4 x_{n}+2}{5} \text { for } n \geq 1 .
$$

Show that 2 is an upper bound of the set $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ containing these numbers.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}3 x+1 & \text { if } x>-1 \\ e^{x} & \text { if } x \leq-1\end{cases}
$$

(a) (7 points) Determine, with proof, the image $f([-2,1])$ of the interval $[-2,1]$ under f. (You can draw a picture of the graph of f to come up with a guess as to what the answer should be, but the picture alone does not constitute a proof.)
(b) (3 points) Also, determine what the preimage $f^{-1}([1 / 3,1])$ of the interval $[1 / 3,1]$ is, but you do not have to prove that your answer is correct in this case.
4. (10 points) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that $g \circ f: A \rightarrow C$ is injective. Show that f is injective. (We did this in class, but of course you cannot simply quote this exact result from class.)
5. Define a relation \sim on \mathbb{R}^{2} by setting

$$
(x, y) \sim(a, b) \text { if } y-b=3(x-a)
$$

(a) (6 points) Show that \sim is an equivalence relation.
(b) (4 points) For a fixed point $(x, y) \in \mathbb{R}^{2}$ find the element in the equivalence class $[(x, y)]$ of (x, y) which is on the x-axis. (You can take for granted the fact that each equivalence class intersects the x-axis in exactly one point.)

