Math 300: Midterm 2 Northwestern University, Winter 2019

Name: _____

- 1. (10 points) Give an example of each of the following with brief justification.
 - (a) An invertible function $f : \mathbb{Z} \to \mathbb{Z}$ which is not the identity function.
 - (b) A subset X of \mathbb{R} such that $f^{-1}(f(X)) \neq X$ where $f : \mathbb{R} \to \mathbb{R}$ is $f(x) = x^2$.

Problem	Score
1	
2	
3	
4	
5	
Total	

2. (10 points) Suppose $x_1 < 2$ and define the numbers x_n for n > 1 by setting

$$x_{n+1} = \frac{4x_n + 2}{5}$$
 for $n \ge 1$.

Show that 2 is an upper bound of the set $\{x_n \mid n \in \mathbb{N}\}$ containing these numbers.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} 3x+1 & \text{if } x > -1 \\ e^x & \text{if } x \le -1 \end{cases}$$

(a) (7 points) Determine, with proof, the image f([-2, 1]) of the interval [-2, 1] under f. (You can draw a picture of the graph of f to come up with a guess as to what the answer should be, but the picture alone does not constitute a proof.)

(b) (3 points) Also, determine what the preimage $f^{-1}([1/3, 1])$ of the interval [1/3, 1] is, but you do not have to prove that your answer is correct in this case.

4. (10 points) Suppose $f : A \to B$ and $g : B \to C$ are functions such that $g \circ f : A \to C$ is injective. Show that f is injective. (We did this in class, but of course you cannot simply quote this exact result from class.) **5.** Define a relation \sim on \mathbb{R}^2 by setting

$$(x, y) \sim (a, b)$$
 if $y - b = 3(x - a)$

(a) (6 points) Show that ~ is an equivalence relation. (b) (4 points) For a fixed point $(x, y) \in \mathbb{R}^2$ find the element in the equivalence class [(x, y)]of (x, y) which is on the x-axis. (You can take for granted the fact that each equivalence class intersects the x-axis in exactly one point.)